Continuous Optimization

Midterm Exam 1
February 9, 2012

Name (print): \qquad
Computing ID: \qquad
Signature: \qquad

Question	Grade
1	
2	
3	
Total	

1. (10 pt) Find the largest connected interval on which $f(x)=1 /\left(1+x^{2}\right)$ is convex.
2. $(20 \mathrm{pt})$ Let $f(x, y)=x^{2}+y^{2}-x y$.
(a) (5 pt)Compute $\nabla f(x), H f(x)$. Is f convex? Explain your answer.
(b) $(5 \mathrm{pt})$ Find the minimizer of $f(x, y)$.
(c) (5 pt)Write out the formula for the Steepest Descent method for function minimization.
(d) (5 pt)Compute one Steepest Descent iteration, starting with initial point $\left(x^{0}, y^{0}\right)=$ $(1,1)$.
3. (20 pt)Let $\delta>0, x_{0}$ be a real number and the function $f(x)$ is defined as

$$
f(x)=\frac{1}{2}\left(x-x_{0}\right)^{2}+\delta|x| .
$$

(a) $(8 \mathrm{pt})$ Is f convex? Why?
(b) (12 pt)Find the global minimizer of $f(x)$.

