Continuous Optimization

Midterm Exam 1

February 9, 2012

Name (print): .	
,- ,	
Computing ID: -	
Signaturo	

Question	Grade
1	
2	
3	
Total	

1. (10 pt) Find the **largest connected interval** on which $f(x) = 1/(1+x^2)$ is convex.

- 2. (20 pt)Let $f(x,y) = x^2 + y^2 xy$.
- (a) (5 pt)Compute $\nabla f(x)$, Hf(x). Is f convex? Explain your answer.
- (b) (5 pt)Find the minimizer of f(x, y).
- (c) (5 pt)Write out the formula for the Steepest Descent method for function minimization.
- (d) (5 pt) Compute one Steepest Descent iteration, starting with initial point $(x^0, y^0) = (1, 1)$.
- 3. (20 pt)Let $\delta > 0$, x_0 be a real number and the function f(x) is defined as

$$f(x) = \frac{1}{2}(x - x_0)^2 + \delta|x|.$$

- (a) (8 pt) Is f convex? Why?
- (b) (12 pt)Find the global minimizer of f(x).