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Examples of optimizations
I Financial portfolio

min risk/reward ratio

subject to

risk tolerance

time frame

I Nature system: the hanging chain

I Logistics
I Curve fitting



General formulation

min
x∈Rn

f (x)

subject to cj(x) = 0 j ∈ E

cj(x) ≤ 0 j ∈ I .

Some Notations and conventions

I Variable x , objective function f , constraint cj .

I “Minimize“ is preferred over ”Maximize“ for some historic
reasons.

min
C

f (x) = −max
C
−f (x)

I Equality constraints can be written as inequality
constraints

cj(x) = 0 ⇔
{
cj(x) ≤ 0

cj(x) ≥ 0



Course Outline

I Introduction

I Unconstrained optimization:
I First-order and second-order necessary conditions
I Line search methods for scalar functions
I Conjugate gradient methods for quadratic functions
I Newton (Quasi-Newton) methods

I Constrained optimization:
I First-order and second-order necessary conditions
I Lagrange Multiplier for equality constraints
I KKT condition
I Penalty, barrier and argumented Lagrangian methods

I Additional Topics:
I Convex programming
I Sequential quadratic programming
I Applications



Review on calculus and linear algebra

I Calculate the gradient ∇f (x) and Hessian matrix ∇2f (x)

I Directional derivative: x , y ∈ Rn

d

dλ
f (x + λ(y − x)) =

I Taylor expansion for functions of one variable and
multiple variables (up to the quadratic order)

I Matrix (and vector) notations: find the gradient and

Hessian matrix of f (x) =
1

2
x tAx − btx .

I Different norms and their convexity:

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p

‖(1− λ)x + λy‖p ≤ (1− λ)‖x‖p + λ‖y‖p, λ ∈ (0, 1)



Classification of different problems

I Singular variable (<) multiple variables

I Linear Problem (<) Nonlinear Problem

I Unconstrained (<) Constrained

I Convex (�) Nonconvex

Here A < B means that A is relatively easier to solve
(analytically or numerically) than B .

Different algorithms work for different problems. The
recognization of a particular class of problems may help use to
choose the right algorithm to solve it.



Conversion to simpler problems
These classification are not unique, because some problems
can be converted into simpler ones.

I Convert the absolute value | · | into linear ones. If there

min x1

subject to

|x1 − 1|+ x2 ≤ 4

x1 − |x2 − 1| ≥ 0

I Convert equality into convex inequality (if the extremer is
obtained at that equality)

min x1 + x2 + x3

subject to

x21 + x22 + x23=1

The problem can be converted into a convex one with

x21 + x22 + x23 ≤ 1.



Simplex method vs Continuous Optimization

x1 + x2 = c

x2

x1 ≤ 3

x1 + x2 ≤ 1

x1 − x2 ≤ 1

x2 ≤ 3

x2 − x1 ≤ 1

x1 x1

x2

max x1 + x2

subject to x1 ≤ 3, x3 ≤ 2, x1 + x2 ≥ 1

x1 − x2 ≤ 1, x2 − x1 ≤ 1.



Convex set and convex functions
A set Ω is convex if for any x , y ∈ Ω, the line segment [x , y ] is
in Ω.

x

y

(1− λ)x + λy (1− λ)x + λy

x

y

A function f is convex if

f ((1− λ)x + λy) ≤ (1− λ)f (x) + λf (y).



Characterization and properties of convex functions

A smooth function f (x) is convex if and only if the Hessian
matrix H is nonnegative definite.

Hij =
∂2f

∂xi∂xj
.

Properties:

I f (y) ≥ f (x) + (∇f (x), y − x)

I ∇f is monotone, (∇f (y)−∇f (x), y − x) ≥ 0



Graph Method: 1D

Find the minimizers of the following functions:

(1) f (x) = max(|x |, |2x − 3|)

(2) f (x) = |x |+ |2x − 3|



Graph Method: Equality constraint

minimize
x

f (x1, x2) =
√

(x1 − 2)2 + (x2 − 2)2

subject to x1 + x2 = 2

1 2 3 x1

x2
3

2

1

x1 + x2 = 2

√
(x1 − 2)2 + (x2 − 2)2 = c

(x∗1, x
∗
2)

General Procedure:

(a) Plot the feasible region.

(b) Plot the contour lines of the objective function.



Graph Method: Inequality constraint

minimize
x

f (x1, x2) =
√

(x1 − 2)2 + (x2 − 2)2

subject to g(x1, x2) ≤ 0

3 x1

x2
3

2

1

210

g(x1, x2) ≤ 0

What kind of special properties does the minimizer possess?



Graph Method: Optimality condition

minimize
x

f (x1, x2) =
√

(x1 − 2)2 + (x2 − 2)2

subject to x1 ≤ 0.75,

x2 ≤ x1.

x1 ≤ 0.75

1 2 3 x1

x2
3

2

1

x2 ≤ x1

Is the feasible region (shaded) “tangent” to the contour lines?
We are going to find these conditions later in this class.



Convergence of algorithms

The minimizer x∗ of a problem is usually obtained iteratively,
as the limit of {xn}. There are some concepts associated with
the rate of how fast xn approaches x∗.

I Global convergence (x1 can be any initial states) vs Local
convergence (x1 is restricted)

I Convergence rate:
I Q-linear, Q-superlinear, Q-quadratic:
|xn+1 − x∗|/|xn − x |∗

I R-convergence: |xn − x∗|1/n


