Quadratic programming (Equality constraint)

min
$$q(x) = \frac{1}{2}x^tQx + c^tx$$

subject to $Ax = b$.

The first order optimality condition

$$\begin{bmatrix} Q & -A^t \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \lambda^* \end{bmatrix} = \begin{bmatrix} -c \\ b \end{bmatrix}$$

Is this big matrix positive definite? Does it have a solution?

- ▶ Direct solution (Gauss Elimination) of the above system ⇒ Numerical Linear Algebra
- Reduction of variables using $x = \bar{x} + Zv$
- Projected method

Quadratic programming (mixed constraints)

min
$$q(x) = \frac{1}{2}x^tQx + c^tx$$

subject to $a_i^tx = b_i, \qquad i \in \mathcal{E},$
 $a_i^tx \geq b_i, \qquad i \in \mathcal{I}.$

The Lagrange function

$$L(x,\lambda) = \frac{1}{2}x^{t}Qx + c^{t}x - \sum_{i \in \mathcal{I} \cup \mathcal{E}}$$

and active set at x^*

$$\mathcal{A}(x^*) = \{i \in \mathcal{E} \bigcup \mathcal{I} \mid a_i^t x^* = b_i\}.$$

The optimality conditions

$$\begin{split} Qx^* + c - \sum_{i \in \mathcal{A}(x^*)} \lambda_i^* a_i &= 0, \\ a_i^t x_i^* &= b_i, \qquad \forall i \in \mathcal{A}(x^*), \\ a_i^t x_i^* &\geq b_i, \qquad \forall i \in \mathcal{I} \backslash \mathcal{A}(x^*), \\ \lambda_i^* &\geq 0, \qquad \forall i \in \mathcal{I} \bigcap \mathcal{A}(x^*), \end{split}$$

Convex QP: Active-set methods

If we know $A(x^*)$, then we can solve the equivalent problem

$$\min_{x} q(x) = \frac{1}{2}x^{t}Qx + c^{t}x$$
 subject to $a_{i}^{t}x = b_{i}, i \in \mathcal{A}(x^{*}).$

In general we only have a *working set* W_k at x_k . We can search in this subset of active constraints, until some of the rest constraints become active. Denote p and define

$$p = x - x_k, \quad g_k = Qx_k + c$$

then $q(x) = q(x_k + p) = \frac{1}{2}p^tQp + g_k^tp + \rho_k$. Solving the subproblem

$$\min_{p} \qquad \frac{1}{2}p^{t}Gp + g_{k}^{t}p$$
 subject to
$$a_{i}^{t}p = 0, \qquad i \in \mathcal{W}_{k}.$$

Choose α_k in $x_{k+1} = x_k + \alpha_k p_k$, such that \mathcal{W}_k changes.

