Quadratic programming (Equality constraint)

$$
\begin{array}{ll}
\min & q(x)=\frac{1}{2} x^{t} Q x+c^{t} x \\
\text { subject to } & A x=b
\end{array}
$$

The first order optimality condition

$$
\left[\begin{array}{cc}
Q & -A^{t} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x^{*} \\
\lambda^{*}
\end{array}\right]=\left[\begin{array}{c}
-c \\
b
\end{array}\right]
$$

Is this big matrix positive definite? Does it have a solution?

- Direct solution (Gauss Elimination) of the above system \Longrightarrow Numerical Linear Algebra
- Reduction of variables using $x=\bar{x}+Z v$
- Projected method

Quadratic programming (mixed constraints)

$$
\begin{array}{ll}
\min & q(x)=\frac{1}{2} x^{t} Q x+c^{t} x \\
\text { subject to } & a_{i}^{t} x=b_{i}, \quad i \in \mathcal{E}, \\
& a_{i}^{t} x \geq b_{i}, \quad i \in \mathcal{I} .
\end{array}
$$

The Lagrange function

$$
L(x, \lambda)=\frac{1}{2} x^{t} Q x+c^{t} x-\sum_{i \in \mathcal{I} \cup \mathcal{E}}
$$

and active set at x^{*}

$$
\mathcal{A}\left(x^{*}\right)=\left\{i \in \mathcal{E} \bigcup \mathcal{I} \mid a_{i}^{t} x^{*}=b_{i}\right\}
$$

The optimality conditions

$$
\begin{aligned}
& Q x^{*}+c-\sum_{i \in \mathcal{A}\left(x^{*}\right)} \lambda_{i}^{*} a_{i}=0, \\
& a_{i}^{t} x_{i}^{*}=b_{i}, \quad \forall i \in \mathcal{A}\left(x^{*}\right), \\
& a_{i}^{t} x_{i}^{*} \geq b_{i}, \quad \forall i \in \mathcal{I} \backslash \mathcal{A}\left(x^{*}\right), \\
& \lambda_{i}^{*} \geq 0, \quad \forall i \in \mathcal{I} \bigcap \mathcal{A}\left(x^{*}\right),
\end{aligned}
$$

Convex QP: Active-set methods

If we know $\mathcal{A}\left(x^{*}\right)$, then we can solve the equivalent problem

$$
\min _{x} q(x)=\frac{1}{2} x^{t} Q x+c^{t} x \quad \text { subject to } a_{i}^{t} x=b_{i}, \quad i \in \mathcal{A}\left(x^{*}\right) .
$$

In general we only have a working set \mathcal{W}_{k} at x_{k}. We can search in this subset of active constraints, until some of the rest constraints become active. Denote p and define

$$
p=x-x_{k}, \quad g_{k}=Q x_{k}+c
$$

then $q(x)=q\left(x_{k}+p\right)=\frac{1}{2} p^{t} Q p+g_{k}^{t} p+\rho_{k}$. Solving the subproblem

$$
\begin{array}{ll}
\min _{p} & \frac{1}{2} p^{t} G p+g_{k}^{t} p \\
\text { subject to } & a_{i}^{t} p=0, \quad i \in \mathcal{W}_{k} .
\end{array}
$$

Choose α_{k} in $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, such that \mathcal{W}_{k} changes.

