
Continuous Optimization
Convex optimization problems: Linear and Quadratic

programming

Sections covered in the textbook (2nd edition):

I Chapter 14

I Chapter 15

I Chapter 16



Basic definitions

I Convex sets, convex functions

I Equivalent definitions for smooth convex functions

(a) f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)
(b) ∇f is monotone: (∇f (x)−∇f (y), y − x) ≥ 0
(c) If f is smooth, ∇2f (x) is nonnegative definite

I Other common convex functions: xp on (0,∞) for p < 0
or p ≥ 1; norms ‖x‖p (including |x |); ex , · · ·

I Operations on convex functions

(i) If h and g are convex, then so are
m(x) = max(f (x), g(x)) and h(x) = f (x) + h(x)

(ii) If f and g are convex and g is non-decreasing, then
h(x) = g(f (x)) is convex

(iii) If f (x , y) is convex in x then g(x) = supy∈C f (x , y) is
convex



Projection of x on the convex set Ω

Find a point PΩ(x) ∈ Ω to minimize ‖y − x‖2 for any y ∈ Ω.
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Can you guess the sign of (xi − PΩ(x), x − PΩ(x))?

What is PΩ(x) if x ∈ Ω?

What if Ω is a subspace?



Projection of x on the convex set Ω

Characterization of the projection PΩ(x) of x on Ω:

Non-expansive of PΩ:

‖PΩ(x)− PΩ(y)‖ ≤ ‖x − y‖.

Projection on special convex sets:

(a) The unit ball ‖x‖p ≤ 1, especially p = 1, 2,∞
(b) The positive cone Rn

+ = {(x1, x2, · · · , xn) | xi ≥ 0}
(c) Graph G of a convex function g , for example

{(x , t) ∈ Rn × R | f (x) ≤ t}



Convex optimization problems

Standard form:
min
x∈Ω

f (x)

where f (x) is a convex function and Ω is a convex set. Or

min
x∈Rn

f (x)

subject to gi(x) ≤ 0, i = 1, · · · ,m,

where f and gi are convex.

Notice (1) the standard form is alway min
(2) the constraints are always “≤” (could be “=” for

linear constraints)
(3) it is possible to convert nonconvex into convex



Convex optimization problems

Properties

(a) If a local minimal exists, it is a global minimum (but may
not be strict)

(b) the set of all (global) minima is convex

(c) For each strictly convex function, if the function has a
minimum, then it is unique.

Examples

(i) Linear Programming

(ii) Linear least squares (with or without linear constraints)

(iii) Convex quadratic minimization with linear constraints

(iv) · · ·



Linear Programming

Simplex method vs Interior-point method

x1 + x2 = c

x2

x1 ≤ 3

x1 + x2 ≤ 1

x1 − x2 ≤ 1

x2 ≤ 3

x2 − x1 ≤ 1

x1 x1

x2

max x1 + x2

subject to x1 ≤ 3, x3 ≤ 2, x1 + x2 ≥ 1

x1 − x2 ≤ 1, x2 − x1 ≤ 1.



Interior-point method

Primal problem:

min c tx , subject to Ax = b, x ≥ 0.

Dual problem:

max btλ, subject to Atλ + s = c , s ≥ 0.

KKT conditions:

Atλ + s = c ,

Ax = b

xisi = 0, i = 1, 2, · · · , n,
x , s ≥ 0. (1a)



Interior-point method
Alternative form for the primal-dual form for interior-point
method

F (x , λ, s) =

Atλ + s − c
Ax − b
XSe

 = 0, x , s ≥ 0,

where e = (1, 1, · · · , 1)t ,

X = diag(x1, x2, · · · , xn), S = diag(s1, s2, · · · , sn).

Basic algorithm: find (xk , λk , sk) iteratively.

The name interior-point method comes from the fact that
xk > 0 and sk > 0. Theoretically you never get exact answer
in finite number of iterations, but this prevents certain
difficulties and accelerates the convergence for large scale
problems



Interior-point method
Recall general algorithms for unconstrained optimization: (1)
decreasing direction (2) step length
At (xk , λk , sk , define

r kb = Axk − b, r kc = Atλk + sk − c

then from 0 = F (xk + ∆xk , λk + ∆λk , sk + ∆sk), the
direction can be computed as 0 At I

A 0 0
Sk 0 X k

∆xk

∆λk

∆sk

 =

 −r kc
−r kb
−X kSke

 .
The step length αk is chosen such that

(xk+1, λk+1, sk+1) = (xk , λk , sk) + αk(∆xk ,∆λk ,∆sk).



Interior-point method

Given (x0, λ0, s0) with x0, s0 > 0;
for k = 0, 1, 2, · · · do

Choose σk ∈ [0, 1] and solve 0 At I
A 0 0
Sk 0 X k

∆xk

∆λk

∆sk

 =

 −r kc
−r kb

−X kSke + σkµke

 ,
where µk = (xk)tsk/n; ;
Set

(xk+1, λk+1, sk+1) = (xk , λk , sk) + αk(∆xk ,∆λk ,∆sk)

choosing αk so that xk+1, sk+1 > 0.
end



Interior-point method

Other forms:

(a) How about inequality constraints?

min c tx , subject to Ax ≥ b, x ≥ 0.

or
min c tx , subject to Ax ≥ b.

(b) How about the penalty form?

min c tx − τ
n∑

i=1

ln xi , subject to Ax = b.


