Continuous Optimization

Convex optimization problems: Linear and Quadratic
programming

Sections covered in the textbook (2nd edition):
» Chapter 14
» Chapter 15
» Chapter 16



Basic definitions

» Convex sets, convex functions

v

Equivalent definitions for smooth convex functions
() F(Ax+ (1= A)y) < AM(x)+ (1= N)f(y)

(b) Vf is monotone: (Vf(x) —Vf(y),y —x)>0
(c) If f is smooth, V2f(x) is nonnegative definite

v

Other common convex functions: x? on (0, 00) for p < 0
or p > 1; norms ||x||, (including |x]|); €%, ---

v

Operations on convex functions

(i) If h and g are convex, then so are
m(x) = max(f(x),g(x)) and h(x) = f(x) + h(x)
(i) If f and g are convex and g is non-decreasing, then
h(x) = g(f(x)) is convex
(iii) If f(x,y) is convex in x then g(x) = sup,cc f(x,y) is
convex



Projection of x on the convex set (2

Find a point Pq(x) € Q to minimize ||y — x||> for any y € Q.

Can you guess the sign of (x; — Pa(x),x — Pa(x))?
What is Pq(x) if x € Q7

What if Q is a subspace?



Projection of x on the convex set (2

Characterization of the projection Pq(x) of x on Q:

Non-expansive of Pq:

[Pa(x) = Pa(y)Il < [Ix — yII

Projection on special convex sets:

(a) The unit ball ||x||, <1, especially p =1,2, 00

(b) The positive cone R} = {(x1, X2, ,xn) | Xi > 0}
(c) Graph G of a convex function g, for example

{((x,t) ER" x R | f(x) < t}



Convex optimization problems

Standard form:
min  f(x)

x€N

where f(x) is a convex function and 2 is a convex set. Or
min  f(x
xeR" ( )

subject to gi(x) <0, i=1,---

Y )

where f and g; are convex.

Notice (1) the standard form is alway min

(2) the constraints are always “<" (could be
linear constraints)

(3) it is possible to convert nonconvex into convex

=" for



Convex optimization problems

Properties

(a) If a local minimal exists, it is a global minimum (but may
not be strict)

(b) the set of all (global) minima is convex

(c) For each strictly convex function, if the function has a
minimum, then it is unique.

Examples

(i) Linear Programming

(ii

(iii) Convex quadratic minimization with linear constraints

(iv) -

Linear least squares (with or without linear constraints)



Linear Programming

Simplex method VS Interior-point method

) Lo

<
T j§3
" Ty I
.’1'1\3&\1?2 <1
max X1+ Xo

subjectto x;1 <3, x3<2, x3+x >1

x1—x <1 x—x <1



Interior-point method
Primal problem:
min cx, subject to Ax = b,x > 0.

Dual problem:

max b'\, subject to A'A+s=c, s> 0.

KKT conditions:

AN+ 5 = c,
Ax=b
x5 =0, i=12--n,
x,s > 0.



Interior-point method

Alternative form for the primal-dual form for interior-point
method

AN +s—c
F(x,\,s) = Ax — b =0, x,s >0,
XSe

where e = (1,1,--- , 1),
X = diag(x1, %2, -+, Xn), S = diag(s1, 2, -+, Sn)-
Basic algorithm: find (x*, Ak, s¥) iteratively.

The name interior-point method comes from the fact that
x¥ >0 and s > 0. Theoretically you never get exact answer
in finite number of iterations, but this prevents certain
difficulties and accelerates the convergence for large scale
problems



Interior-point method

Recall general algorithms for unconstrained optimization: (1)
decreasing direction (2) step length
At (x*, Nk sk, define

rf=AxK — b, k=AM —¢

then from 0 = F(xK + Ax*, Ak + AN¥ s + AsK), the
direction can be computed as

0 At 1] [Axk _rk
A0 0o =] -
Sk 0 XKk| | Ask —XkSke

The step length o is chosen such that

(AL AL R LY = (k2K sK) 4y (AxE, ANK, AsF).



Interior-point method

Given (x% A% s%) with x%,s° > 0;
for k=0,1,2,--- do
Choose oy € [0,1] and solve

0 A" | Axk —rk
A 0 0] [|AXN]| = —rg ,
Sk 0 XK| | AsK —XkSke + oy ke

where i = (x¥)ts%/n; ;
Set

(AT S = (9N $9) + an (A, AN As¥)

choosing oy so that x**1, sk+1 > Q.
end



Interior-point method

Other forms:
(a) How about inequality constraints?

min c'x, subject to Ax > b,x > 0.

or
min c’x, subject to Ax > b.

(b) How about the penalty form?

n
min c'x — 7'2 In x;, subject to Ax = b.
i=1



