Continuous Optimization

Convex optimization problems: Linear and Quadratic programming

Sections covered in the textbook (2nd edition):

- Chapter 14
- Chapter 15
- Chapter 16

Basic definitions

- Convex sets, convex functions
- Equivalent definitions for smooth convex functions
(a) $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$
(b) ∇f is monotone: $(\nabla f(x)-\nabla f(y), y-x) \geq 0$
(c) If f is smooth, $\nabla^{2} f(x)$ is nonnegative definite
- Other common convex functions: x^{p} on $(0, \infty)$ for $p<0$ or $p \geq 1$; norms $\|x\|_{p}$ (including $|x|$); e^{x}, \cdots
- Operations on convex functions
(i) If h and g are convex, then so are

$$
m(x)=\max (f(x), g(x)) \text { and } h(x)=f(x)+h(x)
$$

(ii) If f and g are convex and g is non-decreasing, then $h(x)=g(f(x))$ is convex
(iii) If $f(x, y)$ is convex in x then $g(x)=\sup _{y \in C} f(x, y)$ is convex

Projection of x on the convex set Ω

Find a point $P_{\Omega}(x) \in \Omega$ to minimize $\|y-x\|_{2}$ for any $y \in \Omega$.

Can you guess the sign of $\left(x_{i}-P_{\Omega}(x), x-P_{\Omega}(x)\right)$?
What is $P_{\Omega}(x)$ if $x \in \Omega$?
What if Ω is a subspace?

Projection of x on the convex set Ω

Characterization of the projection $P_{\Omega}(x)$ of x on Ω :

Non-expansive of P_{Ω} :

$$
\left\|P_{\Omega}(x)-P_{\Omega}(y)\right\| \leq\|x-y\|
$$

Projection on special convex sets:
(a) The unit ball $\|x\|_{p} \leq 1$, especially $p=1,2, \infty$
(b) The positive cone $\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid x_{i} \geq 0\right\}$
(c) Graph G of a convex function g, for example

$$
\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R} \mid f(x) \leq t\right\}
$$

Convex optimization problems

Standard form:

$$
\min _{x \in \Omega} f(x)
$$

where $f(x)$ is a convex function and Ω is a convex set. Or

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, \quad i=1, \cdots, m
\end{array}
$$

where f and g_{i} are convex.

Notice (1) the standard form is alway min
(2) the constraints are always " \leq " (could be " $=$ " for linear constraints)
(3) it is possible to convert nonconvex into convex

Convex optimization problems

Properties
(a) If a local minimal exists, it is a global minimum (but may not be strict)
(b) the set of all (global) minima is convex
(c) For each strictly convex function, if the function has a minimum, then it is unique.

Examples
(i) Linear Programming
(ii) Linear least squares (with or without linear constraints)
(iii) Convex quadratic minimization with linear constraints (iv) \ldots

Linear Programming

Simplex method vs Interior-point method

$$
\begin{array}{ll}
\max & x_{1}+x_{2} \\
\text { subject to } & x_{1} \leq 3, x_{3} \leq 2, x_{1}+x_{2} \geq 1 \\
& x_{1}-x_{2} \leq 1, \quad x_{2}-x_{1} \leq 1
\end{array}
$$

Interior-point method

Primal problem:

$$
\min c^{t} x, \quad \text { subject to } A x=b, x \geq 0
$$

Dual problem:

$$
\max b^{t} \lambda, \text { subject to } A^{t} \lambda+s=c, s \geq 0
$$

KKT conditions:

$$
\begin{align*}
A^{t} \lambda+s & =c \\
A x & =b \\
x_{i} s_{i} & =0, \quad i=1,2, \cdots, n \\
x, s & \geq 0 \tag{1a}
\end{align*}
$$

Interior-point method

Alternative form for the primal-dual form for interior-point method

$$
F(x, \lambda, s)=\left[\begin{array}{c}
A^{t} \lambda+s-c \\
A x-b \\
X S e
\end{array}\right]=0, \quad x, s \geq 0
$$

where $e=(1,1, \cdots, 1)^{t}$,

$$
X=\operatorname{diag}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad S=\operatorname{diag}\left(s_{1}, s_{2}, \cdots, s_{n}\right)
$$

Basic algorithm: find $\left(x^{k}, \lambda^{k}, s^{k}\right)$ iteratively.
The name interior-point method comes from the fact that $x^{k}>0$ and $s^{k}>0$. Theoretically you never get exact answer in finite number of iterations, but this prevents certain difficulties and accelerates the convergence for large scale problems

Interior-point method

Recall general algorithms for unconstrained optimization: decreasing direction (2) step length
At $\left(x^{k}, \lambda^{k}, s^{k}\right.$, define

$$
r_{b}^{k}=A x^{k}-b, \quad r_{c}^{k}=A^{t} \lambda^{k}+s^{k}-c
$$

then from $0=F\left(x^{k}+\Delta x^{k}, \lambda^{k}+\Delta \lambda^{k}, s^{k}+\Delta s^{k}\right)$, the direction can be computed as

$$
\left[\begin{array}{ccc}
0 & A^{t} & l \\
A & 0 & 0 \\
S^{k} & 0 & X^{k}
\end{array}\right]\left[\begin{array}{c}
\Delta x^{k} \\
\Delta \lambda^{k} \\
\Delta s^{k}
\end{array}\right]=\left[\begin{array}{c}
-r_{c}^{k} \\
-r_{b}^{k} \\
-X^{k} S^{k} e
\end{array}\right]
$$

The step length α^{k} is chosen such that

$$
\left(x^{k+1}, \lambda^{k+1}, s^{k+1}\right)=\left(x^{k}, \lambda^{k}, s^{k}\right)+\alpha_{k}\left(\Delta x^{k}, \Delta \lambda^{k}, \Delta s^{k}\right)
$$

Interior-point method

Given $\left(x^{0}, \lambda^{0}, s^{0}\right)$ with $x^{0}, s^{0}>0$;
for $k=0,1,2, \cdots$ do
Choose $\sigma_{k} \in[0,1]$ and solve

$$
\left[\begin{array}{ccc}
0 & A^{t} & I \\
A & 0 & 0 \\
S^{k} & 0 & X^{k}
\end{array}\right]\left[\begin{array}{c}
\Delta x^{k} \\
\Delta \lambda^{k} \\
\Delta s^{k}
\end{array}\right]=\left[\begin{array}{c}
-r_{c}^{k} \\
-r_{b}^{k} \\
-X^{k} S^{k} e+\sigma_{k} \mu_{k} e
\end{array}\right],
$$

where $\mu_{k}=\left(x^{k}\right)^{t} s^{k} / n ;$;
Set

$$
\left(x^{k+1}, \lambda^{k+1}, s^{k+1}\right)=\left(x^{k}, \lambda^{k}, s^{k}\right)+\alpha_{k}\left(\Delta x^{k}, \Delta \lambda^{k}, \Delta s^{k}\right)
$$

choosing α_{k} so that $x^{k+1}, s^{k+1}>0$.
end

Interior-point method

Other forms:
(a) How about inequality constraints?

$$
\min c^{t} x, \quad \text { subject to } A x \geq b, x \geq 0
$$

or

$$
\min c^{t} x, \quad \text { subject to } A x \geq b
$$

(b) How about the penalty form?

$$
\min c^{t} x-\tau \sum_{i=1}^{n} \ln x_{i}, \quad \text { subject to } A x=b
$$

