Continuous Optimization

Convex optimization problems: Linear and Quadratic programming

Sections covered in the textbook (2nd edition):

- Chapter 14
- ► Chapter 15
- Chapter 16

Basic definitions

- Convex sets, convex functions
- Equivalent definitions for smooth convex functions
 - (a) $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$
 - (b) ∇f is monotone: $(\nabla f(x) \nabla f(y), y x) \ge 0$
 - (c) If f is smooth, $\nabla^2 f(x)$ is nonnegative definite
- ▶ Other common convex functions: x^p on $(0, \infty)$ for p < 0 or $p \ge 1$; norms $||x||_p$ (including |x|); e^x , ...
- Operations on convex functions
 - (i) If h and g are convex, then so are $m(x) = \max(f(x), g(x))$ and h(x) = f(x) + h(x)
 - (ii) If f and g are convex and g is non-decreasing, then h(x) = g(f(x)) is convex
 - (iii) If f(x, y) is convex in x then $g(x) = \sup_{y \in C} f(x, y)$ is convex

Projection of x on the convex set Ω

Find a point $P_{\Omega}(x) \in \Omega$ to minimize $||y - x||_2$ for any $y \in \Omega$.

Can you guess the sign of $(x_i - P_{\Omega}(x), x - P_{\Omega}(x))$?

What is $P_{\Omega}(x)$ if $x \in \Omega$?

What if Ω is a subspace?

Projection of x on the convex set Ω

Characterization of the projection $P_{\Omega}(x)$ of x on Ω :

Non-expansive of P_{Ω} :

$$||P_{\Omega}(x)-P_{\Omega}(y)||\leq ||x-y||.$$

Projection on special convex sets:

- (a) The unit ball $||x||_p \le 1$, especially $p = 1, 2, \infty$
- (b) The positive cone $\mathbb{R}^{n}_{+} = \{(x_{1}, x_{2}, \dots, x_{n}) \mid x_{i} \geq 0\}$
- (c) Graph G of a convex function g, for example

$$\{(x,t)\in\mathbb{R}^n\times\mathbb{R}\mid f(x)\leq t\}$$

Convex optimization problems

Standard form:

$$\min_{x \in \Omega} f(x)$$

where f(x) is a convex function and Ω is a convex set. Or

$$\min_{x \in \mathbb{R}^n} \ f(x)$$
 subject to $g_i(x) \leq 0, \quad i = 1, \cdots, m,$

where f and g_i are convex.

- Notice (1) the standard form is alway **min**
- (2) the constraints are always " \leq " (could be "=" for linear constraints)
 - (3) it is possible to convert nonconvex into convex

Convex optimization problems

Properties

- (a) If a local minimal exists, it is a global minimum (but may not be strict)
- (b) the set of all (global) minima is convex
- (c) For each strictly convex function, if the function has a minimum, then it is unique.

Examples

- (i) Linear Programming
- (ii) Linear least squares (with or without linear constraints)
- (iii) Convex quadratic minimization with linear constraints
- (iv) ...

Linear Programming

Simplex method

Interior-point method

max
$$x_1 + x_2$$

subject to $x_1 \le 3, \ x_3 \le 2, \ x_1 + x_2 \ge 1$
 $x_1 - x_2 \le 1, \ x_2 - x_1 \le 1.$

Primal problem:

min
$$c^t x$$
, subject to $Ax = b, x \ge 0$.

Dual problem:

$$\max b^t \lambda$$
, subject to $A^t \lambda + s = c$, $s \ge 0$.

KKT conditions:

$$A^t \lambda + s = c,$$
 $Ax = b$
 $x_i s_i = 0, i = 1, 2, \dots, n,$
 $x, s \ge 0.$ (1a)

Alternative form for the primal-dual form for interior-point method

$$F(x, \lambda, s) = \begin{bmatrix} A^t \lambda + s - c \\ Ax - b \\ XSe \end{bmatrix} = 0, \quad x, s \ge 0,$$

where $e = (1, 1, \cdots, 1)^t$,

$$X = \operatorname{diag}(x_1, x_2, \cdots, x_n), \qquad S = \operatorname{diag}(s_1, s_2, \cdots, s_n).$$

Basic algorithm: find (x^k, λ^k, s^k) iteratively.

The name interior-point method comes from the fact that $x^k > 0$ and $s^k > 0$. Theoretically you never get exact answer in finite number of iterations, but this prevents certain difficulties and accelerates the convergence for large scale problems

Recall general algorithms for unconstrained optimization: (1) decreasing direction (2) step length At $(x^k, \lambda^k, s^k, \text{ define})$

$$r_b^k = Ax^k - b, \quad r_c^k = A^t\lambda^k + s^k - c$$

then from $0 = F(x^k + \Delta x^k, \lambda^k + \Delta \lambda^k, s^k + \Delta s^k)$, the direction can be computed as

$$\begin{bmatrix} 0 & A^t & I \\ A & 0 & 0 \\ S^k & 0 & X^k \end{bmatrix} \begin{bmatrix} \Delta x^k \\ \Delta \lambda^k \\ \Delta s^k \end{bmatrix} = \begin{bmatrix} -r_c^k \\ -r_b^k \\ -X^k S^k e \end{bmatrix}.$$

The step length α^k is chosen such that

$$(x^{k+1}, \lambda^{k+1}, s^{k+1}) = (x^k, \lambda^k, s^k) + \alpha_k(\Delta x^k, \Delta \lambda^k, \Delta s^k).$$

Given
$$(x^0, \lambda^0, s^0)$$
 with $x^0, s^0 > 0$;
for $k = 0, 1, 2, \cdots$ do
Choose $\sigma_k \in [0, 1]$ and solve
$$\begin{bmatrix} 0 & A^t & I \\ A & 0 & 0 \\ S^k & 0 & X^k \end{bmatrix} \begin{bmatrix} \Delta x^k \\ \Delta \lambda^k \\ \Delta s^k \end{bmatrix} = \begin{bmatrix} -r_c^k \\ -r_b^k \\ -X^k S^k e + \sigma_k \mu_k e \end{bmatrix},$$
where $\mu_k = (x^k)^t s^k / n$; Set
$$(x^{k+1}, \lambda^{k+1}, s^{k+1}) = (x^k, \lambda^k, s^k) + \alpha_k (\Delta x^k, \Delta \lambda^k, \Delta s^k)$$

choosing α_k so that $x^{k+1}, s^{k+1} > 0$.

end

Other forms:

(a) How about inequality constraints?

min
$$c^t x$$
, subject to $Ax \ge b, x \ge 0$.

or

min
$$c^t x$$
, subject to $Ax \ge b$.

(b) How about the penalty form?

min
$$c^t x - \tau \sum_{i=1}^n \ln x_i$$
, subject to $Ax = b$.