Math 309 Assignment 5 Solution

Problem 1. (a) We need one (free) dual variable λ for the equality constraint $x_{1}+2 x_{2}+$ $3 x_{3}=6$ and three non-negative dual variables $s=\left(s_{1}, s_{2}, s_{3}\right)$ for $x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$. Therefore the original problem is equivalent to

$$
\min _{x \text { free }}^{\max _{\substack{\lambda \text { free. } \\ s_{1} \geq 0, s_{2} \geq 0, s_{3} \geq 0}} x_{1}+x_{2}-\lambda\left(x_{1}+2 x_{2}+3 x_{3}-6\right)-s_{1} x_{1}-s_{2} x_{2}-s_{3} x_{3}}
$$

The dual problem is obtained by interchange the order of min and max, i.e.,

$$
\max _{\substack{\lambda \text { free, } \\ s_{1} \geq 0, s_{2} \geq 0, s_{3} \geq 0}}^{\min } \min _{x} x_{1}+x_{2}-\lambda\left(x_{1}+2 x_{2}+3 x_{3}-6\right)-s_{1} x_{1}-s_{2} x_{2}-s_{3} x_{3}
$$

The coefficients of both x_{1}, x_{2} and x_{3} must vanish (or taking the gradient), which gives the condition

$$
1-\lambda-s_{1}=0, \quad 1-2 \lambda-s_{2}=0, \quad-3 \lambda-s_{3}=0
$$

The objective function for the dual problem is simplified as 6λ. Therefore, the dual problem is

$$
\begin{array}{cl}
\max & 6 \lambda \\
\text { subject to } & \lambda+s_{1}=1 \\
& 2 \lambda+s_{2}=1 \\
& 3 \lambda+s_{3}=0 \\
& s_{1} \geq 0, s_{2} \geq 0, s_{3} \geq 0
\end{array}
$$

(b) The step length α is determined by the the constrants that $x^{0}+\alpha \Delta x \geq 0$ and $s^{0}+\Delta s \geq 0$ (λ is free, no conditions for it). This implies the following inequalities

$$
x^{0}+\alpha \Delta x=\left(\begin{array}{c}
4+\alpha \\
1+\alpha \\
-\alpha
\end{array}\right) \geq 0, \quad s^{0}+\alpha \Delta s=\left(\begin{array}{c}
2-\alpha \\
3-2 \alpha \\
3-3 \alpha
\end{array}\right) \geq 0 .
$$

The intersection of all these inequalities is $\alpha=0$ (α should be non-negative) and we have $x^{1}=x^{0}$.
(c) Since the complementarity conditions $x_{i} s_{i}=0$ are obviously violated at x^{1}, this is not a local minimizer.
2. Since β_{μ} is unconstrained, the local minimizer is given by

$$
\beta_{\mu}^{\prime}(x)=\frac{1}{x+1}-\frac{\mu}{x}=0
$$

or the minimizer (depending on μ) is $x(\mu)=\mu /(1-\mu)$. We have

$$
\lim _{\mu \rightarrow 0^{+}} x(\mu)=0=x^{*},
$$

which is the global minimizer.
3. (a) If we choose c_{1} as the only active constraint, then the subproblem is

$$
\begin{array}{ll}
\max & \frac{1}{2}\left(x_{1}-3\right)^{2}+\left(x_{2}-2\right)^{2} \\
\text { subject to } & 2 x_{1}-x_{2}=0 .
\end{array}
$$

The minizer is $x^{1}=(11 / 9,22 / 9)$ and the Lagrange Multiplier is $\lambda_{1}=-8 / 9<0$. This implies that c_{1} can not be a local minimizer of the original problem and c_{1} is not active.
(b) We have an unconstrained problem at x^{1} with

$$
\nabla f\left(x^{1}\right)=\binom{-16 / 9}{8 / 9}, \quad \nabla^{2} f\left(x^{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

The search direction is given by $p^{1}=-\left(\nabla^{2} f\left(x^{1}\right)\right)^{-1} \nabla f\left(x^{1}\right)=\binom{16 / 9}{-4 / 9}$. The step length α is determined either when the global minimizer is obtained inside the feasible region or $x^{1}+\alpha p^{1}$ stays on the boundary of the feasible set (some constraints become active). For this case, the global minimizer along the line $x^{1}+\alpha p^{1}=\left(\frac{11-16 \alpha}{9}, \frac{22+8 \alpha}{9}\right)$ is outside the feasible region. we have to choose the largest non-negative α in $x^{1}+\alpha p^{2}$ while satisfying the constraints,

$$
2 \frac{11-16 \alpha}{9}-\frac{22+8 \alpha}{9} \geq 0, \quad-\frac{11-16 \alpha}{9}-\frac{22+8 \alpha}{9} \geq-4, \quad-\frac{22+8 \alpha}{9} \geq 0
$$

or $0 \leq \alpha \leq 1 / 4$. Therefore $\alpha^{1}=1 / 4, x^{2}=(5 / 3,7 / 3)$ and c_{2} becomes active. Finally if we take c_{2} as the only active constraint, we can get the global minimizer $x^{*}=(7 / 3,5 / 3)$.

