MATH 309 Assignment 6

No need to hand in, the solution will be released on April 10th.

1. Consider the interior point method for the linear programming

$$
\begin{array}{ll}
\min & x_{1}+x_{2} \\
\text { subject to } & x_{1}+2 x_{2}+3 x_{3}=6 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{array}
$$

(a) What's the dual problem, in terms of λ and $s=\left(s_{1}, s_{2}, s_{3}\right)$? Write down all the objective function and constraints using numbers (not the "abstract" formulation with A, b and c).
(b) If we start the interior point method with

$$
x^{0}=(4,1,0), \lambda^{0}=-1, s^{0}=(2,3,3)
$$

and the increment

$$
\Delta x=(1,1,-1), \Delta \lambda=1, \Delta s^{0}=(-1,-2,-3) .
$$

How large can you choose α so that $\left(x^{1}, \lambda^{1}, s^{1}\right)=\left(x^{0}, \lambda^{0}, s^{0}\right)+\alpha(\Delta x, \Delta \lambda, \Delta s)$ is still inside the feasible region (for both primal and dual problem)?
(c) Do you get the optimal solution $\left(x^{*}, \lambda^{*}, s^{*}\right)$ by choosing the largest possible α calculated in (b)?
2. Consider the one-dimensional optimization problem

$$
\begin{array}{ll}
\min & f(x)=\log (x+1) \\
\text { subject to } & x \geq 0
\end{array}
$$

Find the minimizer x_{μ}^{*} with the logarithmic barrier

$$
\beta_{m} u(x)=\log (x+1)-\mu \log (x),
$$

for $0<\mu<1$. What's the limit of x_{μ}^{*} when $\mu \rightarrow 0$?
3. (Active-set method.) Consider the problem

$$
\begin{array}{ll}
\min & f(x)=\frac{1}{2}\left(x_{1}-3\right)^{2}+\left(x_{2}-2\right)^{2} \\
\text { subject to } & 2 x_{1}-x_{2} \geq 0 \\
& -x_{1}-x_{2} \geq-4 \\
& x_{2} \geq 0
\end{array}
$$

In the lecture, starting with $x^{0}=(0,0)$ by assuming both c_{1} and c_{3} are active, we get rid of c_{1} and then find the sequence of points $x^{1}=(3,0), x^{2}=(3,1)$ and finally the global minimizer $x^{*}=(7 / 3,5 / 3)$. This exercise ask you to do the same problem by get rid of c_{3} during the first step.
(a) If c_{1} is the only active set, what's the minimizer x^{1} ? Show that this is not a local minimizer of the original problem (the Lagrangian multiplier has the wrong sign).
(b) The previous step implies that c_{1} is not active and we treat this as a unconstrained problem using Newton's method. Find the decreasing direction $p=$ $-\left(\nabla^{2} f\left(x^{1}\right)\right)^{-1} \nabla f\left(x^{1}\right)$ from Newton's method and choose the largest α such that $x^{1}+\alpha p$ is still inside the feasible region. Now c_{2} becomes active now.

You don't have to do the last step (consider the subproblem that only c_{2} is active), because we get the same global minimizer $x^{*}=(7 / 3,5 / 3)$ as in the lecture.

