Math 309 Assignment 5 Solution

Problem 1. (a) The global minimizer is $x^{*}=(-1,-1)$.

(b) At x^{*}, the first two constraints are active and the third one is inactive. Then $\lambda_{3}^{*}=0$ and from the Lagrange function

$$
L\left(x_{1}, x_{2}, \lambda_{1}, \lambda_{2}\right)=-x_{2}-\lambda_{1}\left(2-x_{1}^{2}-x_{2}^{2}\right)-\lambda_{2}\left(x_{1}-x_{2}^{2}\right),
$$

we have

$$
\nabla_{x} L\left(x_{1}^{*}, x_{2}^{*}, \lambda_{1}^{*}, \lambda_{2}^{*}\right)=\binom{2 \lambda_{1}^{*} x_{1}^{*}-\lambda_{2}^{*}}{-1+2 \lambda_{1}^{*} x_{2}^{*}+2 \lambda_{2}^{*} x_{2}^{*}}=\binom{0}{0}
$$

Substituting $x^{*}=(1,1)$ into above equation, we have $\lambda_{1}^{*}=1 / 6, \lambda_{2}^{*}=1 / 3$. It is easy to see that x^{*} is feasible, $\lambda^{*} \geq 0$, the strict complementarity and LICQ conditions are satisfied.

Since at $x^{*}, \nabla c_{1}\left(x^{*}\right)$ and $\nabla c_{2}\left(x^{*}\right)$ are two linear indepedent vectors in \mathbb{R}^{2}. This implies that the critical cone $\mathcal{C}\left(x^{*}, \lambda^{*}\right)=\left\{w \mid w^{t} \nabla c_{1}\left(x_{1}^{*}\right)=0, w^{t} \nabla c_{2}\left(x_{1}^{*}\right)=0\right\}=\{0\}$. Therefore, the second order sufficient condition is satisfied too. Therefore x^{*} is a local minimizer.

Problem 2. (a) Since $\nabla c_{1}\left(x^{*}\right)=(0,1)^{t}, \nabla c_{2}\left(x^{*}\right)=(0,1)^{t}=\nabla c_{1}\left(x^{*}\right)$, the linearized feasible direction $\mathcal{F}\left(x^{*}\right)$ is

$$
\left\{w \mid w^{t} \nabla c_{1}\left(x^{*}\right)=w^{t} \nabla c_{2}\left(x^{*}\right)=0\right\}=\left\{(d, 0)^{t} \mid d \in \mathbb{R}\right\} .
$$

Since the feasible region Ω contains only one point $(0,0)^{t}$, any feasible sequence $\left\{z_{n}\right\}$ is exactly $z_{n}=(0,0)^{t}$ and the tangent cone $\mathcal{T}_{\Omega}\left(x^{*}\right)=\left\{(0,0)^{t}\right\}$, which is different frome $\mathcal{F}\left(x^{*}\right)$.
(b) The Lagrange multipliers satisfy the equation

$$
\nabla L\left(x^{*}, \lambda^{*}\right)=\binom{3 \lambda_{2}^{*} x_{1}^{* 2}}{1-\lambda_{1}^{*}-\lambda_{2}^{*}}=\binom{0}{0}
$$

Therefore, there are infinity many solutions, parameterized by $\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)=(t, 1-t), t \in \mathbb{R}$.
Problem 3. (a) The original problem is equivalent to

$$
\min _{x \in X} \max _{\lambda} L(x, \lambda)=\min _{x \in X} \max _{\lambda} x_{1} \log \frac{x_{1}}{a_{1}}+x_{2} \log \frac{x_{2}}{a_{2}}-\lambda\left(c_{1} x_{1}+c_{2} x_{2}-b\right)
$$

and the dual function is defined as

$$
q(\lambda)=\min _{x \in X} L(x, \lambda)=\min _{x \in X} x_{1} \log \frac{x_{1}}{a_{1}}+x_{2} \log \frac{x_{2}}{a_{2}}-\lambda\left(c_{1} x_{1}+c_{2} x_{2}-b\right)
$$

For fixed λ, the minimizer satisfies

$$
\nabla_{x} L(x, \lambda)=\binom{\log \frac{x_{1}}{a_{1}}+1-\lambda c_{1}}{\log \frac{x_{2}}{a_{2}}+1-\lambda c_{2}}=\binom{0}{0}
$$

or

$$
x_{1}=a_{1} e^{\lambda c_{1}-1}, \quad x_{2}=a_{2} e^{\lambda c_{2}-1} .
$$

Substituting it into L, we get

$$
\begin{aligned}
q(\lambda) & =a_{1}\left(\lambda c_{1}-1\right) e^{\lambda c_{1}-1}+a_{2}\left(\lambda c_{2}-1\right) e^{\lambda c_{2}-1}-\lambda\left(a_{1} c_{1} e^{\lambda c_{1}-1}+a_{2} c_{2} e^{\lambda c_{2}-1}-b\right) \\
& =\lambda b-a_{1} e^{\lambda c_{1}-1}-a_{2} e^{\lambda c_{2}-1}
\end{aligned}
$$

The first and second order derivatives of q are

$$
q^{\prime}(\lambda)=b-a_{1} c_{1} e^{\lambda c_{1}-1}-a_{2} c_{2} e^{\lambda c_{2}-1}, \quad q^{\prime \prime}(\lambda)=-a_{1} c_{1}^{2} e^{\lambda c_{1}-1}-a_{2} c_{2}^{2} e^{\lambda c_{2}-1}
$$

Problem 4. (a) If $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ are in Ω, then $x_{1}^{2} \leq x_{2}, y_{1}^{2} \leq y_{2}$. For any $\lambda \in[0,1]$,

$$
\begin{equation*}
\lambda x_{1}^{2}+(1-\lambda) y_{1}^{2}-\left(\lambda x_{1}+(1-\lambda) y_{1}\right)^{2}=\lambda(1-\lambda)\left(x_{1}-y_{1}\right)^{2} \geq 0 \tag{1}
\end{equation*}
$$

Therefor,

$$
\left(\lambda x_{1}+(1-\lambda) y_{1}\right)^{2} \leq \lambda x_{1}^{2}+(1-\lambda) y_{1}^{2} \leq \lambda x_{2}+(1-\lambda) y_{2} .
$$

This implies that $\left(\lambda x_{1}+(1-\lambda) y_{1}, \lambda x_{2}+(1-\lambda) y_{2}\right) \in \Omega$ and Ω is convex.
(b) Since $p \notin \Omega$, the projection $P_{\Omega}(p)=\left(x_{1}, x_{2}\right)$ is on the boundary of Ω, such that $x_{2}=x_{1}^{2}$. To find this point, we only have to find x_{1} such that it minimizes

$$
\|p-x\|_{2}^{2}=\left(x_{1}-3\right)^{2}+\left(x_{1}^{2}-0\right)^{2}=x_{1}^{4}+x_{1}^{2}-6 x_{1}+9 \stackrel{\text { def }}{=} f\left(x_{1}\right),
$$

which is given by the roots of $f^{\prime}\left(x_{1}\right)=4 x_{1}^{3}+2 x_{1}-6=0$. The only root is given by $x_{1}=1$ and therefore the projection of $(3,0)$ on Ω is $(1,1)$.

