MATH 309 Assignment 5

Due March 30

1. Consider the problem

min
$$f(x) = -x_2$$

subject to $x_1^2 + x_2^2 \le 2$,
 $-x_1 + x_2^2 \le 0$,
 $x_1 + x_2 \ge 0$.

- (a) Plot the feasible region, contours of the objective function and find the global minimizer graphically.
- (b) Show that the minimizer satisfies all the first and second order optimality conditions.
- 2. Consider the problem

min
$$f(x) = x_2$$

subject to $x_2 = 0$
 $x_2 - x_1^3 = 0$.

The global minimizer is obviously $x^* = (0,0)$ because the feasible region contains only this point.

- (a) Find the tangent cone $\mathcal{T}_{\Omega}(x^*)$ and linearized feasible region $\mathcal{F}(x^*)$.
- (b) Find $\lambda^* = (\lambda_1^*, \lambda_2^*)$ such that $\nabla L(x^*, \lambda^*) = 0$, where

$$L(x, \lambda) = x_2 - \lambda_1 x_2 - \lambda_2 (x_2 - x_1^3).$$

The problem shows that if $\mathcal{T}_{\Omega}(x^*)$ is different from $\mathcal{F}(x^*)$, the Lagrange Multiplier λ^* could exist such that $\nabla L(x^*, \lambda^*) = 0$.

3. Consider the problem

$$\min_{x \in X} f(x) = x_1 \log \frac{x_1}{a_1} + x_2 \log \frac{x_2}{a_2}, \quad \text{subject to} \quad c_1 x_1 + c_2 x_2 = b$$

where a_1 and a_2 are positive and $X = \{(x_1, x_2) \mid x_1 > 0, x_2 > 0\}.$

(a) Find $q(\lambda)$ in the dual problem, assuming no Lagrange Multipliers for the constraint $x \in X$.

1

(b) Find the first and second order derivatives of q.

4. (a) Show that the set

$$\Omega = \{(x_1, x_2) \mid x_1^2 \le x_2\}$$

is convex.

(b) Find the projection of the point p=(3,0) on Ω (You have to solve a cubic equation. You can either using the formula for the roots of cubic equation, or just verify the root. No need to show it is unique).