Math 309 Assignment 3

Problem 1. (1)
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(2) The objective function || Az — b||? can be written as
f(z) = ||Az — b||* = (Az — b)'(Ax — b) = (2" A" — b")(Ax — b) = 2' A" Az — 20A'x + b'Db
and therefore the minimizer satisfies

Vf(z*) = A"Az* — A'b = 0,

where
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Therefore, the minimizer z* = ( 2/3 )
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The two columns of A are ¢; = (1,0,1,1)" and ¢ = (0,1,1,—1)". Tt is obvious that ¢ir =0
and chr = 0.

Problem 2. The Lagrange function is
L(a, b, )\1, )\2) = atb — )\1(”&“2 — A) — )\Q(HbHQ — B)
Taking the gradient with respect to a and b, we have
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Therefore,
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and [|b]|2 = 29 = 7||a||2 = |A1]. Since the components of a and b are positive, A; > 0
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and hence \; = B. Using the optimal relation, b = Zla = Za, we have

B
maxa'b = —ata = AB.
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Problem 3. The Lagrange function is
L(z1,29,\) = (a+ 2)z1 + 4zy — Aa(zy + ™) + b(x2 + ™) — 1].

Taking the partial derivatives of L w.r.t x; and x5 then
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Since (0,0)" is the minimizer, we have
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together with the constraint a + b = 1.
The first equation in (1) can be written as

AMa+1)=a+2 (2)
and the second equation in (1) can be reduced to
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Substute b = 1 — a into the previous equation, we get a quadratic equation for a,

a>+5a—2=0

ora = (—5++/33)/2.
When a = (=5 —v/33)/2, b=1—a = (7T++/33)/2, A = 2/b = (7 — /33)/4 and when

a=(=5++33)/2,b=1—a=(7T—+/33)/2, \=2/b= (T4 /33) /4.

Theorem 0.1. Sorry I made a mistake. The calculation with the original objective function
f(z1,29) = (@ + 2)xy — 224 is actually simpler.



Problem 4. The Lagrange function is

1
L(w, A) = Sllw = rll; = Aa'z = b)

Therefore, the solution x* is given by
V.L(z* \)=2"—r—Xa=0
Substitute x* = r + Aa into the constraint, we have
b=a'(r+ \a) = a'r + \d'a.
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This gives A = (b — a'r)/a'a and " =r +

a.
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