## Math 309 Assignment 3

Problem 1. (1)

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & -1
\end{array}\right), \quad b=\left(\begin{array}{l}
0 \\
0 \\
2 \\
0
\end{array}\right)
$$

(2) The objective function $\|A x-b\|^{2}$ can be written as

$$
f(x)=\|A x-b\|^{2}=(A x-b)^{t}(A x-b)=\left(x^{t} A^{t}-b^{t}\right)(A x-b)=x^{t} A^{t} A x-2 b A^{t} x+b^{t} b
$$

and therefore the minimizer satisfies

$$
\nabla f\left(x^{*}\right)=A^{t} A x^{*}-A^{t} b=0
$$

where

$$
A^{t} A=\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right), \quad A^{t} b=\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
2 \\
0
\end{array}\right)=\binom{2}{2 .}
$$

Therefore, the minimizer $x^{*}=\binom{2 / 3}{2 / 3}$.

$$
r=A x-b=\left(\begin{array}{cc}
1 & 0  \tag{3}\\
0 & 1 \\
1 & 1 \\
1 & -1
\end{array}\right)\binom{\frac{2}{3}}{\frac{2}{3}}-\left(\begin{array}{l}
0 \\
0 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 / 3 \\
2 / 3 \\
-2 / 3 \\
0
\end{array}\right)
$$

The two columns of $A$ are $c_{1}=(1,0,1,1)^{t}$ and $c_{2}=(0,1,1,-1)^{t}$. It is obvious that $c_{1}^{t} r=0$ and $c_{2}^{t} r=0$.

Problem 2. The Lagrange function is

$$
L\left(a, b, \lambda_{1}, \lambda_{2}\right)=a^{t} b-\lambda_{1}\left(\|a\|_{2}-A\right)-\lambda_{2}\left(\|b\|_{2}-B\right) .
$$

Taking the gradient with respect to $a$ and $b$, we have

$$
\nabla_{a} L=b-\lambda_{1} \frac{a}{\|a\|_{2}}=0, \quad \nabla_{a} L=a-\lambda_{2} \frac{b}{\|b\|_{2}}=0
$$

Therefore,

$$
b=\lambda_{1} \frac{a}{\|a\|_{2}}=\frac{\lambda_{1}}{A} a
$$

and $\|b\|_{2}=\left\|\frac{\lambda_{1}}{A} a\right\|_{2}=\frac{\left|\lambda_{1}\right|}{A}\|a\|_{2}=\left|\lambda_{1}\right|$. Since the components of $a$ and $b$ are positive, $\lambda_{1}>0$ and hence $\lambda_{1}=B$. Using the optimal relation, $b=\frac{\lambda_{1}}{A} a=\frac{B}{A} a$, we have

$$
\max a^{t} b=\frac{B}{A} a^{t} a=A B
$$

Problem 3. The Lagrange function is

$$
L\left(x_{1}, x_{2}, \lambda\right)=(a+2) x_{1}+4 x_{2}-\lambda\left[a\left(x_{1}+e^{x_{1}}\right)+b\left(x_{2}+e^{x_{2}}\right)-1\right] .
$$

Taking the partial derivatives of $L$ w.r.t $x_{1}$ and $x_{2}$ then

$$
\left\{\begin{array}{l}
\frac{\partial L}{\partial x_{1}}=a+2-\lambda a-\lambda a e^{x_{1}}=0 \\
\frac{\partial L}{\partial x_{2}}=4-\lambda b-\lambda b e^{x_{2}}=0
\end{array}\right.
$$

Since $(0,0)^{t}$ is the minimizer, we have

$$
\left\{\begin{array}{l}
0=\frac{\partial L}{\partial x_{1}}(0,0, \lambda)=a+2-2 \lambda a  \tag{1}\\
0=\frac{\partial L}{\partial x_{2}}(0,0, \lambda)=4-2 \lambda b
\end{array}\right.
$$

together with the constraint $a+b=1$.
The first equation in (1) can be written as

$$
\begin{equation*}
\lambda(a+1)=a+2 \tag{2}
\end{equation*}
$$

and the second equation in (1) can be reduced to

$$
\begin{equation*}
\frac{a+2}{4}=\frac{2 \lambda a}{2 \lambda b}=\frac{a}{b} \tag{3}
\end{equation*}
$$

Substute $b=1-a$ into the previous equation, we get a quadratic equation for $a$,

$$
a^{2}+5 a-2=0
$$

or $a=(-5 \pm \sqrt{33}) / 2$.
When $a=(-5-\sqrt{33}) / 2, b=1-a=(7+\sqrt{33}) / 2, \lambda=2 / b=(7-\sqrt{33}) / 4$ and when $a=(-5+\sqrt{33}) / 2, b=1-a=(7-\sqrt{33}) / 2, \lambda=2 / b=(7+\sqrt{33}) / 4$.

Theorem 0.1. Sorry I made a mistake. The calculation with the original objective function $f\left(x_{1}, x_{2}\right)=(a+2) x_{1}-2 x_{2}$ is actually simpler.

Problem 4. The Lagrange function is

$$
L(x, \lambda)=\frac{1}{2}\|x-r\|_{2}^{2}-\lambda\left(a^{t} x-b\right)
$$

Therefore, the solution $x^{*}$ is given by

$$
\nabla_{x} L\left(x^{*}, \lambda\right)=x^{*}-r-\lambda a=0
$$

Substitute $x^{*}=r+\lambda a$ into the constraint, we have

$$
b=a^{t}(r+\lambda a)=a^{t} r+\lambda a^{t} a
$$

This gives $\lambda=\left(b-a^{t} r\right) / a^{t} a$ and $x^{*}=r+\frac{b-a^{t} r}{a^{t} a} a$.

