Math 309 Assignment 3

Due on February 28

Problem 1(6 pt). Consider the inconsistent system of linea equations

$$
\begin{aligned}
x_{1} & =0 \\
x_{2} & =0 \\
x_{1}+x_{2} & =2 \\
x_{1}-x_{2} & =0 .
\end{aligned}
$$

(1) Write down the formulation for the least square solution of this problem, i.e., find A and b in the minimization problem $\min \|A x-b\|^{2}$. (2) Find the equation that the minimizer $x^{*}=\binom{x_{1}^{*}}{x_{2}^{*}}$ satisfies and find the minimizer $\binom{x_{1}^{*}}{x_{2}^{*}}$. (3) Calculate $r=A x-b$, verify that r is orthogonal to the columns of A.

Problem 2(4 pt) If $\|a\|_{2}=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}=A$ and $\|b\|_{2}=\sqrt{b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}}=B$ for some vectors $a, b \in \mathbb{R}^{n}$ with nonnegative components ($a_{i}, b_{i} \geq 0$), show that

$$
\max a^{t} b=\max \left(a_{1} b_{1}+\cdots+a_{n} b_{n}\right) \leq A B
$$

Problem 3(5 pt). Find all the values of the parameters a and b such that $(0,0)^{t}$ minimizes or maximizes the following function

$$
f\left(x_{1}, x_{2}\right)=(a+2) x_{1}+4 x_{2}
$$

subject to the constraint

$$
a\left(x_{1}+e^{x_{1}}\right)+b\left(x_{2}+e^{x_{2}}\right)=1 .
$$

(Just find a and b, no need to find any second order conditions to determine whther it is a maximizer or a minimizer. you may get nonlinear equations to solve; just eliminate the variables and you will solve a quadratic equation in the end).

Problem $4(5 \mathrm{pt})$. Consider the problem of finding the minimum distance from a point $r \in \mathbb{R}^{n}$ to a set $\left\{x: a^{t} x=b\right\}$. The problem can be written as

$$
\min \quad f(x)=\frac{1}{2}\|x-r\|_{2}^{2}=\frac{1}{2}(x-r)^{t}(x-r)
$$

subject to

$$
a^{t} x=b .
$$

Here $a \in \mathbb{R}^{n}$ and b is a scalar. Find the minimizer x^{*}.

