Math 309 Assignment 2 Solution

Problem 1. Let

$$
L(\mu, \sigma)=\ln f(\mu, \sigma)=-\frac{m}{2} \ln 2 \pi-m \ln \sigma-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{m}\left(\mu-x_{j}\right)^{2}
$$

The Maximum Likelihood estimator $(\bar{\mu}, \bar{\sigma})$ is given by

$$
\begin{gather*}
\frac{\partial L}{\partial \mu}(\bar{\mu}, \bar{\sigma})=-\frac{1}{\bar{\sigma}^{2}} \sum_{j=1}^{m}\left(\bar{\mu}-x_{j}\right)=-\frac{1}{\bar{\sigma}^{2}}\left(m \bar{\mu}-\sum_{j=1}^{m} x_{j}\right)=0 \tag{1a}\\
\frac{\partial L}{\partial \sigma}(\bar{\mu}, \bar{\sigma})=-\frac{m}{\bar{\sigma}}+\frac{1}{\bar{\sigma}^{3}} \sum_{j=1}^{m}\left(\bar{\mu}-x_{j}\right)^{2}=0 \tag{1b}
\end{gather*}
$$

Therefore, the esitmator is given by

$$
\bar{\mu}=\frac{1}{m} \sum_{j=1}^{m} x_{j}, \quad \bar{\sigma}=\left(\frac{1}{m} \sum_{j=1}^{m}\left(x_{j}-\bar{\mu}\right)^{2}\right)^{1 / 2} .
$$

The Hessian matrix is

$$
\nabla^{2} L(\mu, \sigma)=\left(\begin{array}{cc}
-\frac{m}{\sigma^{2}} & \frac{2}{\sigma^{3}} \sum_{j=1}^{m}\left(\mu-x_{j}\right) \\
\frac{2}{\sigma^{3}} \sum_{j=1}^{m}\left(\mu-x_{j}\right) & \frac{m}{\sigma^{2}}-\frac{3}{\sigma^{4}} \sum_{j=1}^{m}\left(\mu-x_{j}\right)^{2}
\end{array}\right) .
$$

and

$$
\nabla^{2} L(\bar{\mu}, \bar{\sigma})=\left(\begin{array}{cc}
-\frac{m}{\bar{\sigma}^{2}} & 0 \\
0 & \frac{m}{\bar{\sigma}^{2}}-\frac{3}{\bar{\sigma}^{4}} \sum_{j=1}^{m}\left(\bar{\mu}-x_{j}\right)^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{m}{\bar{\sigma}^{2}} & 0 \\
0 & -\frac{2 m}{\bar{\sigma}^{2}}
\end{array}\right)
$$

The two eigenvalues for the (diagonal) Hessian matrix $\nabla^{2} L(\bar{\mu}, \bar{\sigma})$ are $\lambda_{1}=-m / \bar{\sigma}^{2}, \lambda_{2}=$ $-2 m / \bar{\sigma}^{2}$, both negative. Therefore, $\nabla^{2} L(\bar{\mu}, \bar{\sigma})$ is negative definite and $(\bar{\mu}, \bar{\sigma})$ is a local maximizer.

Remark. In general, we don't know whether the estimator $(\bar{\mu}, \bar{\sigma})$ is a global maximizer or not, since neither f nor L is convex. However, since there is only one solution $(\bar{\mu}, \bar{\sigma})$ to the equation $\nabla L=0$, it must be the only global minimizer.

Problem 2. First we need to simplify the function by looking at all points x such that

$$
x^{2}=|2-x| .
$$

When $x>2$, then $x^{2}=x-2$ which has no solution (in fact we have $x^{2}>x-2$ for all $x \in \mathbb{R}$. For $x<2$ then $x^{2}=2-x$ has two solutions $x_{1}=-2$ and $x_{2}=1$. Moreover, for $x \in(-2,1)$ we have $x^{2}<2-x$. Therefore, the original function can be written as

$$
f(x)= \begin{cases}2-x, & x \in(-2,1) \\ x^{2}, & x \leq-2 \text { or } x>1\end{cases}
$$

On the interval $(-\infty,-2], f^{\prime}(x)=2 x<0$ and thus f is decreasing. The minimizer on this interval is obtained at $x_{1}^{*}=-2$ with value $f\left(x_{1}^{*}\right)=4$. On the interval $[-2,1], f^{\prime}(x)=-1$ and thus f is decreasing. The minimizer is obtained at $x_{2}^{*}=1$ with function value $f\left(x_{2}^{*}\right)=1$. On the interval $[1, \infty), f^{\prime}(x)=2 x>0$ and thus f is increasing. The minimizer is obtained at $x_{2}^{*}=1$ with value $f\left(x_{2}^{*}\right)=1$. Put all together, the global minimizer is at $x^{*}=1$ with the minimal value $f\left(x^{*}\right)=1$.

Problem 3. The characteristic polynomial is

$$
p(\lambda)=\operatorname{det}(\lambda I-M)=\lambda^{2}-(a+c) \lambda+a c-b^{2}=\lambda^{2}-\operatorname{tr}(M) \lambda+\operatorname{det}(M) .
$$

The two roots are

$$
\lambda_{ \pm}=\frac{a+c \pm \sqrt{(a+c)^{2}-4\left(a c-b^{2}\right)}}{2}=\frac{a+c \pm \sqrt{(a-c)^{2}+4 b^{2}}}{2}
$$

bot of which are real. Since $\lambda_{+}>0, \lambda_{-}=\operatorname{det} M / \lambda_{+}>0$. Therefore, M has two positive eigenvalues, and therefore is positive definite.

Problem 4. To show that one matrix N is the inverse of another matrix M, we only need to show that $N M=I$ (or $M N=I$), the identity matrix.

$$
\begin{align*}
& (A+U C V)\left(A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}\right) \\
= & A A^{-1}+A A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}-U C V A^{-1}-U C V A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1} \\
= & I+U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}-U C V A^{-1}-U C \mathbf{V A}^{-1} \mathbf{U}\left(\mathbf{C}^{-1}+\mathbf{V A}^{-1} \mathbf{U}\right)^{-1} V A^{-1} \tag{2}
\end{align*}
$$

Using the fact that

$$
\begin{aligned}
I & =\left(C^{-1}+V A^{-1} U\right)\left(C^{-1}+V A^{-1} U\right)^{-1} \\
& =C^{-1}\left(C^{-1}+V A^{-1} U\right)^{-1}+V A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1},
\end{aligned}
$$

we have $V A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1}=I-C^{-1}\left(C^{-1}+V A^{-1} U\right)^{-1}$. Substituting it into (2),

$$
\begin{align*}
& (A+U C V)\left(A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}\right) \\
= & I+U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}-U C V A^{-1}-U C\left(\mathbf{I}-\mathbf{C}^{-\mathbf{1}}\left(\mathbf{C}^{-\mathbf{1}}+\mathbf{V A}^{-1} \mathbf{U}\right)^{-\mathbf{1}} V A^{-1}\right. \\
= & I . \tag{3}
\end{align*}
$$

Therefore, $A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}$ is the inverse of $A+U C V$.
Problem 5. See the completed code on webct (under "matlab demo").

