Math 309 Assignment 2

Due on February 2

Problem 1. Find the Maximum Likelihood Estimator $(\bar{\mu}, \bar{\sigma})$ of the function

$$
f(\mu, \sigma)=\prod_{j=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x_{j}-\mu\right)^{2}}{2 \sigma^{2}}}
$$

where x_{j} 's are the observed or sampled values, assumed to be normally distributed. Show that the estimator $(\bar{\mu}, \bar{\sigma})$ you found is a local maximizer, satisfying the second order sufficient condition.

Problem 2. Find the global minimizer of

$$
f(x)=\max \left(|x-2|, x^{2}\right), x \in \mathbb{R}
$$

Problem 3. For the 2×2 symmetric matrix

$$
M=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) .
$$

Show that if the $\operatorname{trace} \operatorname{tr}(M)=a+c>0$ and the determinant $\operatorname{det}(M)=a c-b^{2}>0$, then M is positive definite.

Problem 4. Let the matrices $A \in \mathbb{R}^{n \times n}, U \in \mathbb{R}^{n \times k}, C \in \mathbb{R}^{k \times k}, V \in \mathbb{R}^{k \times n}$. If A, C and $C^{-1}+V A^{-1} C$ are invertible, show that $A+U C V$ has a inverse given by

$$
A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}
$$

This is a generalization of Sherman-Morrison formula in the class.
Problem 5 (Compare the convergence rate of Steepest Decent and Conjugate Gradient). The solution of the linear equation $A x=b\left(A \in \mathbb{R}^{n \times n}\right.$ is positive definite and $b \in \mathbb{R}^{n}$ is a column vector) can be regarded as the minimizer of the quadratic equation

$$
f(x)=\frac{1}{2} x^{t} A x-b^{t} x
$$

For a given size $n=40$, generate the symmetric random marix A and vector b and compute the exact solution $x_{e} x t$ by direct matrix inversion:

```
clear all;
n = 40; % system size
rand('seed',sum(100*clock)); % update the rand seed
A = rand(n); % generate the random matrix
A = A'*A+5*eye(n); % generate the symmetric matrix
b = rand(n,1); % generate the right hand side
x_ext = A\b; % The exact solution (minimizer)
```

Then find the decay of the A-norm of the Steepest Descent Method for 10 iterations

```
x = zeros(n,1); % Starting point
err_sd = sqrt((x-x_ext)'*A*(x-x_ext)); % Initial error in A-norm
for k=1:10
    p = b-A*x;
    alpha = p'*p/(p'*A*p);
    x = x + alpha*p;
    err_sd = [err_sd sqrt((x-x_ext)'*A*(x-x_ext))];
end
```

Complete the code using Conjugate Gradient Method for 10 iterations to record err_cg and then compare their performance by plotting the error (uncomment the last line).
$\mathrm{x}=\mathrm{zeros}(\mathrm{n}, 1)$;
$\mathrm{r}=\mathrm{A} * \mathrm{x}-\mathrm{b}$;
$\mathrm{p}=-\mathrm{r}$;
err_cg $=$ sqrt((x-x_ext)'*A*(x-x_ext));
for $k=1: 10$
\% Complete this block
end
\% semilogy(0:10,err_sd,'-*', 0:10,err_cg,'-+');
You can download the incomplete code sdcgcomp.m from webct and finish it. You should oberve that the conjugate gradient method should converges much faster than the steepest descent method.

Please hand in: the code and the plot of the convergence of these two methods.

