Math 309 Assignment 1 Solution

Problem 1. (i) Since f is convex,

$$f(x + \lambda(y - x)) = f((1 - \lambda)x + \lambda y) \le (1 - \lambda)f(x) + \lambda f(y), \lambda \in (0, 1)$$

$$\tag{1}$$

By definition,

$$(\nabla f(x), y - x) = \frac{d}{d\lambda} f(x + \lambda(y - x))$$

$$= \lim_{\lambda \searrow 0} \frac{f(x + \lambda(y - x)) - f(x)}{\lambda}$$

$$\leq \lim_{\lambda \searrow 0} \frac{(1 - \lambda)f(x) + \lambda f(y) - f(x)}{\lambda}$$

$$= f(y) - f(x)$$
(2)

Therefore $f(y) \ge f(x) + (\nabla f(x), y - x)$.

(ii) Switching x and y we have $f(x) \ge f(y) + (\nabla f(y), x - y)$. Adding them together,

$$f(y) + f(x) \ge f(y) + f(x) + (\nabla f(x), y - x) + (\nabla f(y), x - y),$$

which is exactly $(\nabla f(y) - \nabla f(x), y - x)$.

Problem 2. (i)

$$\nabla f(x) = \frac{1}{2}Ax + \frac{1}{2}A^{t}x - b, \qquad \nabla^{2}f(x) = \frac{1}{2}(A + A^{t}).$$

(ii)

$$f(x) - f(x^*) = \frac{1}{2}x^t A x - \frac{1}{2}x^{*t} A x^* - b^t x + b^t x^*$$

$$= \frac{1}{2}(x - x^*)^t A (x - x^*) + \frac{1}{2}x^t A x^* + \frac{1}{2}x^{*t} A x - x^{*t} A x^* - b^t x + b^t x^*$$

$$= \frac{1}{2}(x - x^*)^t A (x - x^*) + \frac{1}{2}x^t b + \frac{1}{2}b^t x - b^t x^* - b^t x + b^t x^*$$

$$= \frac{1}{2}(x - x^*)^t A (x - x^*) \ge 0$$
(3)

since A is positive definite.

Figure 1: The plot for the feasible region and the contours (or level sets) of the objective function.

Problem 3. (i)

(ii) From the plot, the maximizer is obtained as $(x_1^*, x_2^*) = (-1, 0)$ and the maximal value is

$$(2 - (-1))^2 + (1 - 0)^2 = 10.$$

Problem 4. (i) >> fminunc(@mypeaks,[0 -2])

Instead of the initial point $x_1 = [0, -2]$, you may try others like $[-1, -2], [1, -2], \cdots$. The returned (global) minizer is close to $x^*[0.2283, -1.6255]$.

(ii) >> fminunc(@mypeaks,[-2 0])

The initial point x_1 can be $[-2, 1], [-2, -1], \cdots$. The returned (local) minizer is close to $x^* = [-1.347, 0.2045]$.

(iii) >> fminunc(@mypeaks,[0 2])

In general, the build-in algorithm stops at some point that can not be predicted.

Remark: This function is **not convex**, and the returned result depends critically on the starting point. For convex problem, the minimizer is unique (for strictly convex object function).