Math 309 Assignment 1 Solution

Problem 1. (i) Since f is convex,
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By definition,
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Therefore f(y) > f(x) + (Vf(z),y — x).
(i) Switching x and y we have f(z) > f(y) + (Vf(y),x —y). Adding them together,
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which is exactly (Vf(y) — Vf(z),y — z).

Problem 2. (i)
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since A is positive definite.



Figure 1: The plot for the feasible region and the contours (or level sets) of the objective
function.

Problem 3. (i)
(i) From the plot, the maximizer is obtained as (27, z5) = (—1,0) and the maximal value
1s
(2—(=1))*+ (1 —0)* = 10.

Problem 4. (i) >> fminunc(@mypeaks, [0 -2])

Instead of of the initial point x; = [0, —2], you may try others like [—1, —2],[1,—2],- - -.
The returned (global) minizer is close to z*[0.2283, —1.6255].

(ii) >> fminunc(@mypeaks, [-2 0])

The initial point z; can be [-2,1],[—2, —1],---. The returned (local) minizer is close to
x* = [—1.347,0.2045].

(iii) >> fminunc(@mypeaks, [0 2])

In general, the build-in algorithm stops at some point that can not be predicted.

Remark: This function is not convex, and the returned result depends critically on
the starting point. For convex problem, the minimizer is unique (for strictly convex object
function).



