Math 309 Assignment 1

Due on January 17

Problem 1. (i) Let f be a smooth convex function defined on a convex domain $\Omega \subset \mathbb{R}^{n}$. For any $x, y \in \Omega$, using the definition of the convexity and directional derivative, show that

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x) \cdot(y-x) \tag{1}
\end{equation*}
$$

(ii) Using (??), show that

$$
(\nabla f(y)-\nabla f(x)) \cdot(y-x) \geq 0
$$

Hint: Notice the symmetric role of x and y.

Problem 2. (i) Calculate the gradient and the Hessian matrix for the function

$$
f(x)=\frac{1}{2} x^{t} A x-b^{t} x=\frac{1}{2} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}-\sum_{i=1}^{n} b_{i} x_{i}, \quad x \in \mathbb{R}^{n}
$$

where A is a matrix of size $n \times n$ and b is a vector in \mathbb{R}^{n}. Write your answer in matrix (and vector) form.
(ii) If A is symmetric and positive definite, and x^{*} satisfies $A x^{*}=b$. Show that $f(x) \geq$ $f\left(x^{*}\right)$. (Hint: write $f(x)-f\left(x^{*}\right)$ in terms of some function of $x-x^{*}$).

Problem 3. For the problem

$$
\begin{array}{lc}
\max & \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \\
\text { subject to } \\
& \|x\|_{1} \leq 1
\end{array}
$$

Here $\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|$.
(i) Plot the feasible region (the set of points $\left(x_{1}, x_{2}\right)$ that satisfies the constrain $\left.\|x\|_{1} \leq 1\right)$ and plot a few contour lines (or level sets) of the objective function.
(ii) Find the maximizer $\left(x_{1}^{*}, x_{2}^{*}\right)$ from the plot and the maximal value at that point.

Problem 4. (Try the MATLAB build-in unconstrained functions fminunc or fminsearch). The peak function is defined as

$$
f(x, y)=3(1-x)^{2} e^{-x^{2}-(y+1)^{2}}-10\left(\frac{x}{5}-x^{3}-y^{5}\right) e^{-x^{2}-y^{2}}-\frac{1}{3} e^{-(x+1)^{2}-y^{2}}
$$

