Continuous Optimization Examples and Applications

Formulate some practical problems in an optimization problem, classify it (convex or nonconvex or possible ways to make it convex) and solve it (analytically or numerically).

Minimal distance to discrete points (Least Square)
Sum of squared distance:

$$
\min _{x} \sum_{i=1}^{n}\left\|x-x_{i}\right\|^{2}
$$

Minimal distance to a subspace (Projection)

Find the minimal distance from a point x_{0} to the intersection of the space spanned by the vectors $v_{1}, v_{2}, \cdots, v_{m}$.

Minimal covering disk

Given points $x_{1}, x_{2}, \cdots, x_{N}$, find a disk with minimal radius (centered at x_{0} with radius R) such that $\left\|x_{0}-x_{i}\right\| \leq R$.

Heron's problem

Find C on the line ℓ, such that $|A C|+|B C|$ is minimal.

