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Genetic diversity and spatial structure

Aim: Model and understand the evolution of the genetic diversity of
a population having a continuous spatial structure.
 Dimension 2 is the most relevant for applications to biological pop.,
but the mathematical models are interesting in any dimension.



Footprint of a spatial structure

I Interactions/reproduction require that individuals should be
sufficiently close to each other.

I Offspring are born in a more or less extended neighbourhood of
their parents.

I The selective advantage offered by certain alleles depends on
the environment, which can vary from one region to another.

 Local allelic distributions are correlated, in a specific way that
depends on parameters such as the speed of spatial diffusion of
genes across the population.



Questions of interest

I (Compound) parameters characterising the genetic diversity in a
population and its evolution?

I Correlation pattern between the local allelic distributions at
several locations, under different evolutionary scenarios?
Inference methods for the estimation of the corresponding key
parameters?

I Detection of evolutionary forces in action based on appropriate
types of data?



Simulations of the SLFV in two dimensions

Initial configuration:

Simulations by H. Saadi. Fixed radius, u ≡ 1.
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After 3.106 events:

Simulations by H. Saadi. Fixed radius, u ≡ 1.



Simulations of the SLFV in two dimensions

After 4.106 events:

Simulations by H. Saadi. Fixed radius, u ≡ 1.



Simulations of the SLFV in two dimensions

After 5.106 events:

Simulations by H. Saadi. Fixed radius, u ≡ 1.



Long term evolution at an interface
(Berestycki, Etheridge & V., 2013)

Geographical space : Rd Allele space: {0, 1}

I Case 1: Constant radius
We fix R > 0 and u ∈ (0,1]. All events have radius R and impact
u.
 Reproductions are purely local.

I Case 2: Heavy-tailed radii
We fix α ∈ (1,2) and u ∈ (0,1]. Intensity measure on radii given
by

µ(dr) =
1{r>1}

rd+α+1 dr .

 Allows the occurrence of rare but very large events.
 Ancestral lineages behave like α-stable processes.
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Time- and space-scales

I Case 1: Constant radius and impact
I Case 2: Constant impact, intensity r−(d+α+1) dr for radii.

We set α = 2 in case 1 and for every n ≥ 1,

wn
t (x) := wnt(n1/αx).

Initial condition: w0(x) = 1H(x), where H = {x(1) ≤ 0}.

Questions: How does wn
t behave when n is large? Width of the

interface? Resulting pattern of genetic diversity?
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Purely local reproductions, d = 1

u = 0.8, r = 0.033 and n = 103. Initial condition, after 105 events, after 107 events.
(Simulations by J. Kelleher, Oxford Univ.)



That is...

Theorem 1 (Berestycki, Etheridge & V., 2013)

I There exists a process (M(2)
t , t ≥ 0), with values inMλ, such that

Mn (f .d.d.)−→ M(2) as n→∞.

I Moreover, there exists σ̃2 > 0 such that, if X denotes standard Brownian
motion and

p(2)
t (x) := Px

[
Xuσ̃2t ∈ H

]
, then

 If d = 1: for all t > 0, w (2)
t is a random field of correlated Bernoulli

r.v. satisfying
E
[
w (2)

t (x)
]
= p(2)

t (x).

 If d ≥ 2: for all t ≥ 0, w (2)
t (x) = p(2)

t (x) Lebesgue-a.e.
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In the presence of catastrophes, d = 1

u = 0.8, α = 1.3 and n = 104 (Simulations by J. Kelleher).
(a) Initial condition, (b-c) after 100 events, (d-e) after 106 events.



In the presence of catastrophes, d = 2

u = 0.8, α = 1.3 and n = 103. After 105, 106 and 107 events.
(Simulations by J. Kelleher)



Asymptotic behaviour in the presence of large events

Theorem 2 (Berestycki, Etheridge & V., 2013)

I There exists a process (M(α)
t , t ≥ 0), with values inMλ, such that

Mn (f .d.d.)−→ M(α) as n→∞.

I Moreover, there exists a symmetric α-stable process X (α) such that, if

p(α)
t (x) := Px

[
X (α)

ut ∈ H
]
,

then in any dimension, for all t > 0, w (α)
t is a random field of correlated

Bernoulli r.v. satisfying

E
[
w (α)

t (x)
]
= p(α)

t (x).



Conclusions

I No local coexistence of alleles except if d ≥ 2 and
reproductions are purely local.

I The correlations between the local allele frequencies are
characterised by the genealogical process.
Correlation length:
I
√

n in the case of constant (or bounded) event radius,
I n1/α in the case of heavy tailed radius distribution.

 Rare but massive extinction/recolonisation events may have a
significant impact on the genetic diversity seen in a population.



An example of spatial clustering - C. elegans in the
wild (M.-A. Félix & H. Teotonio - ENS)

I A complex life cycle, with an optional dauer phase during which it
only moves - does not eat/reproduce.

I Local population dynamics in “boom and bust”:
I Appearance of a food source exponential growth
I Exhaustion of the resource transition to dauer stage

I Migration possible via individual motion (slow) and/or by
hitchhiking in groups (∼10 individuals, potentially moving several
meters hung on a snail or an isopod).



(Richaud et al., 2018)

Sampling location: Santeuil (Paris
region)

Type of data: Haplotypes of C.
elegans (orange, green, blue) + C.
briggsae (red)

S60 (4) 
S61 (1)

S63 (1)

S64
S65 (1)

S68 (7)
S70 (1)

S73

S76 (5)
S77 (1)

S78 (7)

S85 (1)

S86 (6)

S87

S96 (6)

S97
  (1)

S98 (5)

S100 (1)

S101 (6)

S102

S103 (6)
S104 (3)

S105 (6)
S106 (6)

S107 (6)
S109 (5)

S110 (6)

(3 HS1; 3 HS3) 

(4 HS3; 1 HS2 
1 HS3/HS1?)

S70

S60
S61

HS2
HS3

HS1

C. briggsae

C. elegans haplotypes:

no Caenorhabditis

10 m

Santeuil 25 Oct 2009



Why you may doubt

I For a 1mm long nematode, a 10m wide strip is not particularly
one-dimensional...

I All we can conclude is that a neutral model is compatible with
this type of spatial segregation, but maybe (or almost surely...)
individuals are in competition for food or other resources.
 “Boom and bust” dynamics reinforcing a selective pattern?

I One or two samplings each year and only the most obvious
pattern was shown here.



10 m

HS2
HS3

HS1

C. briggsae

C. elegans haplotypes:

no Caenorhabditis

Santeuil 30 Sep 2014

S351 (1)

S353 (1 het HS2/HS3) 

S356 (1)

S358 (1)

S359 (1)

S360 (1)

S361 (1)

S362 (1)

S364 (1)
S365 (1)

S366 (1)
S367 (1)
S368 (1) S370 (1)

(Richaud et al., 2018) - Other sampling



Genetic diversity of expanding populations

Hallatschek et al. (2007), PNAS. Sectors forming after placing a well-mixed droplet (or
line) of fluorescent-green/red bacteria (left) or yeast (right).



Genetic diversity in expanding populations

A vast literature:
I PDE models of invasion fronts, notably Fisher-KPP-type

equations, but also models with accelerating fronts ("cane toad
model"). Mostly studied in one spatial dimension.

I Stochastic individual-based models (Champagnat & Méléard ’07,
e.g.) focusing on the distribution of a trait that potentially
influences individual movement and reproduction chances.
Focus put on eco-evo aspects.

Questions:
I What is the role of stochastic fluctuations at the front when

spatial expansion is in 2d? (most relevant dimension for
biological applications)

I Can we detect a recent expansion thanks to the neutral diversity
pattern left behind the front?
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Growth speed higher than "expected"

For each value of a, all events have the same parameters (a, b, 0), where b is chosen
such that the express chain goes at average speed a. Each cross results from the
independent simulation of 30 dual processes. The dotted line is ν̂−1(a) = 2.58a.



Thank you for your attention!
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