An introduction to Stein's method

Nathan Ross (University of Melbourne)

Four lectures

1. Basics and normal approximation
2. Poisson approximation
3. Multivariate and process approximation
4. Concentration inequalities

References:

- Ross (2011). Fundamentals of Stein's method. Probability Surveys.
- Barbour, Holst, Janson (1992). Poisson approximation.
- Chen, Goldstein, Shao (2011). Normal approximation by Stein's method.

A collection of exercises from Greg Terlov and Partha Dey:

- https://sites.google.com/a/illinois.edu/gterlov

An introduction to Stein's method

4. Concentration inequalities
https://tinyurl.com/bdds7dpe

Nathan Ross (University of Melbourne)

Hoeffding's inequality

Assume

- $X_{1}, X_{2}, \ldots, X_{n}$ independent random variables,
- $a \leq X_{i} \leq b$,
- $W=W_{n}=\sum_{i=1}^{n} X_{i}$.

Then for any $t>0$,

$$
\mathbb{P}\left(\left|W_{n}-\mathbb{E} W_{n}\right| \geq t\right) \leq 2 e^{-\frac{2 t^{2}}{n(b-a)}}
$$

Exchangeable pairs bound

Assume

- W is a random variable with $\mathbb{E}[W]=0$ and $\operatorname{Var}(W)=\sigma^{2}$.
- $\left(W, W^{\prime}\right)$ is an exchangeable pair, satisfying

$$
\mathbb{E}\left[W^{\prime}-W \mid W\right]=-\lambda W
$$

some $\lambda>0$.

- $\mathbb{E}\left[\left(W^{\prime}-W\right)^{2} \mid W\right] \leq 2 \lambda(b W+c)$, some $b, c \geq 0$.
- $\mathbb{E}\left[e^{\theta W}\right]<\infty$, all $\theta \in \mathbb{R}$.
- $\mathbb{E}\left[e^{\theta W}\left|W^{\prime}-W\right|\right]<\infty$, all $\theta \in \mathbb{R}$.

Then for all $t>0$,

$$
\mathbb{P}(W \geq t) \leq \exp \left\{\frac{-t^{2}}{2(c+b t)}\right\}, \quad \mathbb{P}(W \leq-t) \leq \exp \left\{\frac{-t^{2}}{2 c}\right\}
$$

Application: Hoeffding's combinatorial statistic

- Fix $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ with $0 \leq a_{i j} \leq 1$.
- Let π be a uniform random permutation of $\{1, \ldots, n\}$.

Let

$$
W=\sum_{i} a_{i \pi_{i}}-\frac{1}{n} \sum_{i, j} a_{i, j}
$$

Then for any $t>0$,

$$
\mathbb{P}(|W| \geq t) \leq 2 \exp \left\{\frac{-t^{2}}{\frac{4}{n} \sum_{i, j} a_{i j}+2 t}\right\}
$$

Size bias bound

Assume

- $X \geq 0$ is a random variable with $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
- X^{s} is a size-biased coupling of X with $\left|X^{s}-X\right| \leq c$.

If $X^{s} \geq X$, then for all $t>0$,

$$
\mathbb{P}(X-\mu \leq-t) \leq \exp \left\{\frac{-t^{2}}{2 c \mu}\right\}
$$

If $\mathbb{E}\left[e^{(2 / c) X}\right]<\infty$, then for all $t>0$,

$$
\mathbb{P}(X-\mu \geq t) \leq \exp \left\{\frac{-t^{2}}{c(2 \mu+t)}\right\}
$$

Size-bias Construction

Assume

- $X=\sum_{\alpha} Y_{\alpha}$, with $Y_{\alpha} \sim \operatorname{Bernoulli}\left(p_{\alpha}\right)$ (any dependence),
- $\mu=\sum_{\alpha} p_{\alpha}<\infty$.

If for each α,

$$
\mathscr{L}\left(\left(Y_{\beta}^{(\alpha)}\right)_{\beta \neq \alpha}\right)=\mathscr{L}\left(\left(Y_{\beta}\right)_{\beta \neq \alpha} \mid Y_{\alpha}=1\right)
$$

and I is independent random variable with $\mathbb{P}(I=\alpha)=p_{\alpha} / \mu$, then

$$
X^{s}:=1+\sum_{\beta \neq 1} Y_{\beta}^{(I)}
$$

has the size-biased distribution of X.

References and further reading

- Ross (2011). Fundamentals of Stein's method. Probability Surveys. Section 7

