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Three lectures

1. Basics and normal approximation

2. Poisson approximation

3. Multivariate and process approximation
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Classical Law of Small Numbers

Assume

▶ X1,X2, . . . independent with Xi ∼ Bernoulli(pi ),

▶ W = Wn =
∑n

i=1 Xi .

Then, for Z = Zn ∼ Poisson
(∑n

i=1 pi
)
and A ⊆ {0, 1, . . . , },

|P(W ∈ A)− P(Z ∈ A)| ≤
n∑

i=1

p2i .



Erdős-Rényi random Graph

Erdős-Rényi random graph Gn ∼ ER(n, p):

▶ n vertices,

▶ Each of the
(n
2

)
possible edges is present with probability p,

independent between edges.

Structural statistics:

▶ Number of vertices of degree k , k = 0, 1, . . .

▶ Number of small subgraphs such as triangles and two-stars
(related to clustering coefficient).

We can write these statistics as

W =
∑

α Xα,

where Xα is the indicator that the structure occurs at “position” α.

Q: When is
∑

α Xα close in distribution to a Poisson distribution?



Total variation distance

For random variables W and Z , define the total variation distance
between their distributions by

dTV(W ,Z ) = sup
eventA

|P(W ∈ A)− P(Z ∈ A)|

= sup
eventA

|EhA(W )− EhA(Z )|,

where hA(x) = I[x ∈ A].

The second expression has the right form for Stein’s method.



Stein’s Method Framework

Three steps to Stein’s method for a given target distribution of Z .

1. Characterising operator A = AZ on real valued functions:

EAf (X ) = 0 wide class of functions f ⇐⇒ X
d
= Z .

2. For given h, find Stein solution fh:

Afh(x) = h(x)− Eh(Z ) =: h̃(x).

3. Use structure of W and properties of fh to bound

|EAfh(W )| = |Eh(W )− Eh(Z )|.

For bound on dTV, take h(x) = I[x ∈ A] with A ⊆ Z.



Stein’s Method for Poisson Approximation

For integer-valued random variable W and Z ∼ Poisson(λ),

dTV(W ,Z ) ≤ sup
f ∈Fλ

|E[λf (W + 1)−Wf (W )]|,

where

Fλ :=
{
f : ∥f ∥∞ < λ−1/2; ∥∆f ∥∞ ≤ (1− e−λ)/λ

}
,



Size-bias Bound

For W ≥ 0 an integer-valued random variable with EW = λ, we
say the random variable W s has the size-biased distribution of W if

P(W s = k) =
kP(W = k)

λ
.

If (W ,W s) are defined on the same space and Z ∼ Poisson(λ),
then

dTV(W ,Z ) ≤ min{1, λ}E|W + 1−W s |.



Size-bias Construction

Assume

▶ W =
∑

α Xα, with Xα ∼ Bernoulli(pα) (any dependence),

▶ λ =
∑

α pα < ∞.

If for each α,

L
(
(X

(α)
β )β ̸=α) = L

(
(Xβ)β ̸=α|Xα = 1)

and I is independent random variable with P(I = α) = pα/λ, then

W s := 1 +
∑
β ̸=I

X
(I )
β

has the size-biased distribution of W .

If variables above are on the same space and Z ∼ Poisson(λ),

dTV(W ,Z ) ≤ min{λ−1, 1}
∑

α pα E
∣∣Xα −

∑
β ̸=α(X

(α)
β − Xβ)

∣∣.



Erdős-Rényi application

dTV(W ,Z ) ≤ min{λ−1, 1}
∑

α pα E
∣∣Xα −

∑
β ̸=α(X

(α)
β − Xβ)

∣∣.
If the construction is such that X

(α)
β ≥ Xβ, then

dTV(W ,Z ) ≤ Var(W )

λ
− 1 +

2

λ

∑
αp

2
α.

This result applies to W equal to the count in an Erdős-Rényi
random graph of any of

▶ vertices having degree no greater than k ,

▶ vertices having degree no less than k,

▶ copies of a fixed graph H.

Still work to analyze the mean and variance to determine when this
is small in terms of parameter of the Erdős-Rényi graph.



Some notes

▶ Poisson bounds under local dependence (Ross 2011, Sections
4.1 and 4.2).

▶ Can also use size-biasing in Stein’s method for normal
approximation (Ross 2011, Section 3.4) and (Chen, Goldstein,
Shao 2011, Section 2.3.4, and applications throughout).

▶ More general construction for size-biasing a sum of random
variables, where size-bias a random summand chosen
proportional to its mean, and adjust the rest conditional on
that summand having the size-biased value.



Exercises

▶ (Easy) Derive a general bound in terms of mean and variance

in the case that the size-bias coupling satisfies X
(α)
β ≤ Xβ.

▶ (Easy) Use the previous result to bound the total variation
distance between the number of empty bins when distributing
k balls into n bins uniformly at random, and a Poisson
distribution with the same mean.

▶ (Hard) Derive a bound on the total variation distance between
the number of vertices having degree exactly k in an
Erdős-Rényi random graph, and a Poisson distribution with
the same mean.
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