An introduction to Stein's method

Nathan Ross (University of Melbourne)

Three lectures

- 1. Basics and normal approximation
- 2. Poisson approximation
- 3. Multivariate and process approximation

References:

- Ross (2011). Fundamentals of Stein's method. Probability Surveys.
- Barbour, Holst, Janson (1992). Poisson approximation.
- Chen, Goldstein, Shao (2011). Normal approximation by Stein's method.

A collection of exercises from Greg Terlov and Partha Dey:

https://sites.google.com/a/illinois.edu/gterlov

An introduction to Stein's method 1. Basics and normal approximation https://tinyurl.com/axps86dh

Nathan Ross (University of Melbourne)

Classical CLT

Assume

• X_1, X_2, \dots iid, • $\mathbb{E}X_i = 0, \text{ Var}(X_i) = 1,$ • $W = W_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i.$

Then, for $Z \sim Normal(0, 1)$ and $x \in \mathbb{R}$,

$$\mathbb{P}(W_n \leq x) \to \mathbb{P}(Z \leq x).$$

Berry-Esseen Theorem

Assume

Then, for $Z \sim Normal(0,1)$ and $x \in \mathbb{R}$,

$$\left|\mathbb{P}(W_n \leq x) - \mathbb{P}(Z \leq x)\right| \leq \frac{\mathbb{E}\left[|X_1|^3\right]}{\sqrt{n}}.$$

Dependency Graph

We say X_1, X_2, \ldots, X_n has dependency graph G with vertices $\{1, \ldots, n\}$ if

▶ for any two disjoint subsets {i₁,..., i_k} and {j₁,..., j_m} of vertices, with no edges between the two sets,

$$(X_{i_1},\ldots,X_{i_k})$$
 is independent of (X_{j_1},\ldots,X_{j_m}) .

<u>Q</u>: Under what conditions on dependency graph G is $\sum_{i=1}^{n} X_i$ close in distribution to a normal distribution?

For random variables W and Z, define the Wasserstein distance between their distributions by

$$d_{\operatorname{Lip}}(W,Z) = \sup_{h\in\operatorname{Lip}_1} |\mathbb{E}h(W) - \mathbb{E}h(Z)|.$$

Proposition: If Z has density bounded by C, then

$$|\mathbb{P}(W \leq x) - \mathbb{P}(Z \leq x)| \leq \sqrt{(2C)d_{\mathrm{Lip}}(W,Z)}$$

Stein's Method Framework

Three steps to Stein's method for a given target distribution of Z.

1. Characterizing operator $\mathcal{A} = \mathcal{A}_Z$ on real valued functions:

 $\mathbb{E}\mathcal{A}f(X) = 0$ wide class of functions $f \iff X \stackrel{d}{=} Z$.

2. For given h, find Stein solution f_h :

$$\mathcal{A}f_h(x) = h(x) - \mathbb{E}h(Z) =: \tilde{h}(x).$$

3. Use structure of W and properties of f_h to bound

$$|\mathbb{E}\mathcal{A}f_h(W)| = |\mathbb{E}h(W) - \mathbb{E}h(Z)|.$$

For bound on d_{Lip} , take $h \in \text{Lip}_1$.

Stein's Method for Normal Approximation

For random variable W and $Z \sim Normal(0, 1)$,

$$d_{\operatorname{Lip}}(W,Z) \leq \sup_{f \in \mathcal{F}} |\mathbb{E}[f'(W) - Wf(W)]|,$$

where

$$\mathcal{F} := \left\{ f : \|f\|_{\infty} \le 2; \ \|f''\|_{\infty} \le 2; \ \|f'\|_{\infty} \le \sqrt{2/\pi} \right\}.$$

Dependency Graph Bound

Assume

X₁, X₂,..., X_n has dependency graph with maximum degree bounded above by D.

•
$$\mathbb{E}X_i = 0$$
 and $\mathbb{E}[X_i^4] < \infty$.

•
$$W = \frac{1}{\sigma} \sum_{i=1}^{n} X_i$$
, where $\sigma^2 = \operatorname{Var}\left(\sum_{i=1}^{n} X_i\right)$.

Then, for $Z \sim Normal(0, 1)$,

$$d_{ ext{Lip}}(W,Z) \leq 3(D+1)^2 \Bigg(rac{1}{\sigma^3}\sum_{i=1}^n \mathbb{E}ig[|X_i|^3ig] + rac{1}{\sigma^2}\sqrt{\sum_{i=1}^n \mathbb{E}ig[X_i^4ig]}\Bigg).$$

Exercises

- (Easy) Apply the previous result directly to W equal to the (centered and scaled) number of triangles in an Erdős-Rényi random graph with m vertices and edge probability p, to derive a CLT for p = p_m ≈ m^{-α} for 0 ≤ α < 2/9.</p>
- (Hard) In the setting of the previous exercise, derive a CLT in a greater range of α by bounding |E[f'(W) – Wf(W)]| directly using additional structure of W and Taylor expansion.

References and Further Reading

Basic introduction:

 Ross (2011). Fundamentals of Stein's method. *Probability* Surveys. Sections 1, 2, 3.1 and 3.2.

Research monograph:

Chen, Goldstein, Shao (2011). Normal approximation by Stein's method. Sections 1.3, 2.1, 2.2, 4.7.