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Background: E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉]

Three Big Stein Things

Stein’s method: assessing distances between distributions
(Stein 1972)
Stein shrinkage: adjust estimators in high dimension (Stein
1956, James and Stein 1961)
Stein’s Unbiased Risk Estimate: estimates the risk of the
shrinkage estimator (Stein 1981)
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Background: E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉]

An underlying key observation

X ∼ N (µ, σ2) if and only if for all smooth functions f ,

E(X − µ)f (X ) = σ2Ef ′(X ).

X ∼ Nd(θ,Σ) =: ν if and only if for all f ∈W 1,2(ν)

E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉].

Here 〈A,B〉 = Tr(ABT ). For example, 〈Id, Id〉 = d .

The space W 1,2(ν) is a so-called Sobolev space, induced by

||f||2W 1,2(ν) := ||f||2L2(ν) + ||∇f||2L2(ν).
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Background: E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉]
Stein’s method

Stein’s method

Aim: assess distance to a normal distribution (or other distribution)

For a random vector W with EW = µ,VarW = Σ, if

E[〈W − θ, f(W)〉]− E[〈Σ,∇f(W)〉]

is close to zero for many functions f , then the distribution of W
should be close to ν in distribution.
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Background: E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉]
Stein’s shrinkage estimator

Stein’s shrinkage estimator

Aim: estimate θ in Nd(θ, σ2 Id) from data X ∈ Rd

For λ ≥ 0 put

Sλ(X) = X
(
1− λ

‖X‖2

)
For d ≥ 3 there exists a range of positive values for λ for which
Sλ(X) has a strictly smaller mean squared error than S0(X).

Mean squared error:

Eθ||Sλ(X)− θ||2 = Eθ

{
||X− θ||2 − 2λ

〈
X− θ,

X
‖X‖2

〉
+

λ2

||X||2

}

March 27, 2023 Stein’s Method, Shrinkage Estimator, and SURE 8



Stein’s Method, Shrinkage Estimator, and SURE

Background: E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉]
Stein’s shrinkage estimator

Why? For Sλ(X) = X
(
1− λ

‖X‖2

)
: Use f(x) = −λ x

||x||2 in

E[〈X− θ, f(X)〉] = E[〈σ2 Id,∇f(X)〉]

with ∇f(x) = −λ 1
‖x‖2 Id + λ 2

‖x‖4 xx
T to see that

−2λE
〈
X− θ,

X
‖X‖2

〉
= −2σ2dE

λ

||X||2
+ 2σ2E

λ

||X||2

and so

Eθ||Sλ(X)− θ||2 = Eθ

{
||X− θ||2 +

λ2

||X||2
[
−2σ2(d − 2) + λ

]}
.

The last contribution is negative when λ < 2σ2(d − 2).
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Background: E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉]
Stein’s Unbiased Risk Estimate (SURE)

Stein’s Unbiased Risk Estimate (SURE)

Aim: Unbiased estimator for the mean squared error (risk) of an
estimator of θ in Nd(θ,Σ) from data X ∈ Rd

Consider an estimator for θ of the form

S(X) = X + f(X).

Then

SURE(f,X) := Tr(Σ) + ‖f(X)‖2 + 2
d∑

i ,j=1

σij∂j fi (X)

is unbiased for E‖S(X)− θ‖2.
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Background: E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉]
Stein’s Unbiased Risk Estimate (SURE)

Why SURE(f,X) := Tr(Σ) + ‖f(X)‖2 + 2〈Σ,∇f(X)〉?

‖S(X)− θ‖2 = ‖X− θ + f(X)‖2

= ‖X− θ‖2 + ‖f(X)‖2 + 2〈f(X),X− θ〉.

An unbiased estimator for ‖X− θ‖2 is Tr(Σ) = dσ2.

An unbiased estimator for ‖f(X)‖2 is ‖f(X)‖2 as θ does not appear.

Taking expectations and using E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉]
eliminates θ: an unbiased estimator for 2〈f(X),X− θ〉 is

2
d∑

i ,j=1

σij∂j fi (X) = 2〈Σ,∇f(X)〉.

March 27, 2023 Stein’s Method, Shrinkage Estimator, and SURE 11



Stein’s Method, Shrinkage Estimator, and SURE

Non-Gaussian models

Outline
1 Background: E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉]

Stein’s method
Stein’s shrinkage estimator
Stein’s Unbiased Risk Estimate (SURE)

2 Non-Gaussian models
Paths to extension
General Stein kernels E[〈X− θ, f(X)〉] = E[〈TX−θ,∇f(X)〉]

Stein kernel consequence: shrinkage
Stein kernel consequence: SURE

Zero-biasing E[〈Y, f(Y)〉] = E[〈Σ,∇f(Y∗)〉]
Zero bias consequence: shrinkage
Zero bias consequence: SURE

3 What else
March 27, 2023 Stein’s Method, Shrinkage Estimator, and SURE 12



Stein’s Method, Shrinkage Estimator, and SURE

Non-Gaussian models

Stein characterisations for non-Gaussian models
The important equation above is

E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉]

which characterises the multivariate normal distribution.

Characterisations for other distributions are available! (E.g.
Mijoule, R., Swan 2022)

Hence we can extend Stein’s shrinkage estimator and SURE to
non-Gaussian models.

Some special cases which assume some symmetry: Cellier et al.
1989, Srivastava and Bilodeau 1989, Evans and Stark 1996, Chen,
Wiesel and Hero 2011, Fourdrinier et al. 2018. Here no such
assumption is needed.
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Non-Gaussian models

Paths to extension

Shrinkage

shrinkage estimator for λ ≥ 0

Sλ(X) = X
(
1− λ

||X||2

)
has mean squared error

Eθ||Sλ(X)−θ||2 = Eθ

{
||X− θ||2 − 2λ

〈
X− θ,

X
‖X‖2

〉
+

λ2

||X||2

}
.

We cannot do anything about Eθ||X− θ||2. The middle, red term
is of the form

Eθ〈X− θ, f (X)〉.
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Non-Gaussian models

Paths to extension

SURE

SURE for S(X) = X+ f(X): unbiased estimate of the expectation of

‖S(X)− θ‖2 = ‖X− θ + f(X)‖2

= ‖X− θ‖2 + ‖f(X)‖2 + 2 〈f(X),X− θ〉.

An unbiased estimator for ‖X− θ‖2 is Tr(Σ) = dσ2.

An unbiased estimator for ‖f(X)‖2 is ‖f(X)‖2.

The expectation of the last, red term is of the form

Eθ〈X− θ, f (X)〉.
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Non-Gaussian models

Paths to extension

Path to extension 1: Stein kernels

In dimension 1: X has law N (θ, σ2) ⇐⇒ for all smooth f

E[(X − θ)f (X )] = σ2E[f ′(X )].

A Stein kernel TX−θ for the distribution of a mean θ random
variable X is a random variable for which for all smooth f

E[(X − θ)f (X )] = E[TX−θf
′(X )].

(Cacoullos and Papathanasiou 92).

For N (θ, σ2), TX−θ = σ2 does not depend on θ. In general, it
does.
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Non-Gaussian models

Paths to extension

The density of a Stein kernel in 1 dim is explicit: If X has pdf pX ,
mean zero, variance σ2, then T = T (X ) can be chosen to be

T (X ) = pX (X )−1
∫ X

−∞
y pX (y) dy

Check:

E[Tf ′(X )] =

∫ ∞
−∞

f ′(x)pX (x)−1
∫ x

−∞
y pX (y) dy pX (x) dx

=

∫ ∞
−∞

f ′(x)

∫ x

−∞
y pX (y) dy dx .
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Non-Gaussian models

Paths to extension

Now (assuming interchanging integrals is allowed)∫ ∞
0

f ′(x)

∫ ∞
x

ypX (y) dy dx

=

∫ ∞
0

y pX (y)

∫ y

0
f ′(x) dx dy

=

∫ ∞
0

y pX (y)[f (y)− f (0)] dy

= E[X f (X )1(X ≥ 0)]− f (0)E[X1(X ≥ 0)];

similarly for the other integral. As E[X ] = 0,

E[T f ′(X )] = E[X f (X )].
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Non-Gaussian models

Paths to extension

Path to extension 2: Zero-bias couplings

In dimension 1: X has law N (θ, σ2) ⇐⇒ for all smooth f

E[(X − θ)f (X )] = σ2E[f ′(X )].

A random variable X ∗ has the zero bias distribution for the
distribution of a mean 0, variance σ2 random variable X if for all
smooth f

E[Xf (X )] = σ2E[f ′(X ∗)].

(Goldstein and R. 97). For X with mean θ

X ∗ := (X − θ)∗ + θ.

For N (θ, σ2), X ∗ = X in distribution.
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Non-Gaussian models

Paths to extension

The density of the zero bias distribution in 1 dim is explicit: If X
has mean zero, distribution µ, variance σ2, then X ∗ is continuous
with density

p∗(x) =
1
σ2E[X1(X ≥ x)].

Check:

σ2E[f ′(X ∗)] =

∫ ∞
−∞

f ′(x)E[X1(X ≥ x)] dx

=

∫ ∞
−∞

f ′(x)

∫ ∞
x

y1(y ≥ x) dµ(y) dx .

March 27, 2023 Stein’s Method, Shrinkage Estimator, and SURE 20
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Non-Gaussian models

Paths to extension

Now (assuming interchanging integrals is allowed)∫ ∞
0

f ′(x)

∫ ∞
−∞

y1(y ≥ x) dµ(y) dx

=

∫ ∞
0

y

∫ ∞
0

f ′(x) dx dµ(y)

=

∫ ∞
0

ypX (y)[f (y)− f (0)] dy

= E[Xf (X )1(X ≥ 0)]− f (0)E[X1(X ≥ 0)];

similarly for the other integral. As E[X ] = 0,

σ2E[f ′(X ∗)] = E[Xf (X )].
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Non-Gaussian models

Paths to extension

Mixture construction

Let Yj , j = 1, . . . , n be independent, mean zero R valued random
vectors with variances σ2

j and associated zero bias variables Y ∗j .

Then Y =
∑n

j=1 Yjhas zero bias variable

Y ∗ = Y − YI + Y ∗I

where I is independent of the Y ′j s and P(I = j) =
σ2
j

σ2 .

When Y = Yj with probability µ(j), then

Y ∗ = Y ∗J

where J is independent of the Y ′j s and P(J = j) =
σ2
j

σ2µ(j).
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Non-Gaussian models

General Stein kernels E[〈X− θ, f(X)〉] = E[〈TX−θ ,∇f(X)〉]

Stein kernels

Chatterjee 2008; Nourdin and Peccati 2012; Mijoule, R. Swan 2022

Given a random vector X ∈ Rd with mean θ and distribution ν
which is absolutely continuous with respect to Lebesgue measure
on Rd , a Stein kernel TX−θ for X− θ is a matrix-valued function
such that for all f ∈W 1,2(ν)

E[〈X− θ, f(X)〉] = E[〈TX−θ,∇f(X)〉].

Using f(x) = x we obtain E[TX−θ] = Σ, the covariance matrix.

For multivariate normal, Σ can serve as Stein kernel.
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Non-Gaussian models

General Stein kernels E[〈X− θ, f(X)〉] = E[〈TX−θ ,∇f(X)〉]

Stein kernel consequence: shrinkage

Let X have mean θ, positive semidefinite Σ with largest eigenvalue
κ, Stein kernel T , and consider Sλ(X) = X

(
1− λ

||X||2

)
. Then with

f(x) = x/||x||2

Eθ||Sλ(X)− θ||2 = Eθ

{
||X− θ||2 − 2λ

〈
X− θ,

X
‖X‖2

〉
+

λ2

||X||2

}
= Eθ

{
||X− θ||2 − 2λ 〈X− θ, f(X)〉+

λ2

||X||2

}
= Eθ

{
||X− θ||2 − 2λ 〈TX−θ,∇f(X)〉+

λ2

||X||2

}
.
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Non-Gaussian models

General Stein kernels E[〈X− θ, f(X)〉] = E[〈TX−θ ,∇f(X)〉]

Now for Eθ〈TX−θ,∇f(X)〉, with f(x) = x/||x||2,

Eθ〈TX−θ,∇f(X)〉 = Eθ[〈Σ,∇f(X)〉] + Eθ[〈TX−θ − Σ,∇f(X)〉].

As
∇f(x) =

1
‖x‖2

Id− 2
‖x‖4

xxT, we have

Eθ[〈Σ,∇f(X)〉] = Eθ

[
〈Σ, 1
‖X‖2

Id− 2
‖X‖4

XXT〉
]

= Eθ

[
Tr(Σ)

‖X‖2
− 2Tr(ΣXXT)

‖X‖4

]
≥ Eθ

[
Tr(Σ)− 2κ
‖X‖2

]
.
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Non-Gaussian models

General Stein kernels E[〈X− θ, f(X)〉] = E[〈TX−θ ,∇f(X)〉]

Similarly, (omitting the suffix X− θ in T )

Eθ[〈T − Σ,∇f(X)〉] = Eθ

[
〈T − Σ,

1
‖X‖2

Id− 2
‖X‖4

XXT〉
]

= Eθ

[
Tr(T − Σ)

‖X‖2
− 2Tr(T − ΣXXT)

‖X‖4

]
.

Using the Cauchy-Schwarz inequality and Eθ[T ] = Σ,

Eθ

[
Tr(T − Σ)

‖X‖2

]
≤
√

Var(Tr(T ))
√
E[||X||−4].

For the second term we also use Cauchy Schwarz, after bounding

|Tr((T − Σ)XXT)| = |〈T − Σ,XXT〉| ≤ ‖X‖2‖T − Σ‖.
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Non-Gaussian models

General Stein kernels E[〈X− θ, f(X)〉] = E[〈TX−θ ,∇f(X)〉]

Result for shrinkage

Let Bλ = λ
d

√
Eθ[d2‖X‖−4]

{√
Var(Tr(T )) + 2

√
E [‖T − Σ‖2]

}
.

Then

Eθ||Sλ(X)− θ||2 ≤ E||X− θ||2 + Eθ

[
λ

||X||2
(λ− 2 (Tr(Σ)− 2κ))

]
+2Bλ.

If for some d0: supd>d0 Eθ[d2||X||−4] <∞ and
Var(Tr(T )) = o(d2), and E[||T − Σ||2] = o(d2) and λ = O(d),
then Bλ = o(d).

In this situation, for λ ∈ [0, 2(Tr(Σ)− 2κ)] the risk of Sλ is no
larger than that of S0 asymptotically.
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Non-Gaussian models

General Stein kernels E[〈X− θ, f(X)〉] = E[〈TX−θ ,∇f(X)〉]

Example: Student distribution

X = Y + θ in Rd with Y from the family of multivariate central
Student-t distributions, with k ≥ 5 degrees of freedom, shape given
by the identity matrix in Rd×d and d = 2m ≥ 6, even.

The covariance matrix is then Σ = σ2 Id.

Using results from Mijoule, R., Swan 2022,

T =

(
YTY + kσ2

d + k − 2

)
Id

is a Stein kernel.

The above limiting regime holds as long as 1/k = o(1).
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Non-Gaussian models

General Stein kernels E[〈X− θ, f(X)〉] = E[〈TX−θ ,∇f(X)〉]

Stein kernel consequence: SURE
SURE for S(X) = X+ f(X): unbiased estimate of the expectation of

‖S(X)− θ‖2 = ‖X− θ‖2 + ‖f(X)‖2 + 2 〈f(X),X− θ〉.

An unbiased estimator for ‖X− θ‖2 is Tr(Σ) = dσ2.

An unbiased estimator for ‖f(X)‖2 is ‖f(X)‖2.

By the Stein kernel, an unbiased estimate of 〈f(X),X− θ〉 is

〈TX−θ,∇f(X)〉.

We introduce

SUREk(f,X) = Tr(Σ) + ||f(X)||2 + 2〈TX−θ,∇f(X)〉.
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Non-Gaussian models

General Stein kernels E[〈X− θ, f(X)〉] = E[〈TX−θ ,∇f(X)〉]

The bias of SURE
In practice it may not be possible to calculate SUREk . What if we
use SURE instead? Recall

SURE(f,X) = Tr(Σ) + ‖f(X)‖2 + 2〈Σ,∇f(X)〉

The bias is

Biasθ(SURE(f,X)) = Eθ[SURE(f,X))]− Eθ‖S(X)− θ‖2

= Eθ[SURE(f,X))]− E[SUREk(f,X)]

= 2E[〈Σ− TX−θ,∇f(X)〉].

Thus,

|Biasθ(SURE(f,X))| ≤ 2|E[〈Σ− TX−θ,∇f(X)〉]|.
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Non-Gaussian models

General Stein kernels E[〈X− θ, f(X)〉] = E[〈TX−θ ,∇f(X)〉]

Corollary

If X = Y + θ, where Y has covariance matrix Σ and Stein kernel T ,
and if f(x) = −λ x

||x||2 then with Bλ as above

|Biasθ(SURE(f,X))| ≤ 2Bλ.

If the order conditions for the shrinkage bound hold and if
λ ∈ [0, 2(Tr(Σ)− 2κ)] then this bound is of order o(d).
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Non-Gaussian models

Zero-biasing E[〈Y, f(Y)〉] = E[〈Σ,∇f(Y∗)〉]

Let Y ∈ Rd be mean zero with positive definite covariance matrix
Σ having entries σij = Cov(Yi ,Yj), we say the collection of vectors
{Yij : i , j such that σij 6= 0} in Rd has the multivariate Y-zero bias
distribution when

E[〈Y, f(Y)〉] = E

 d∑
i ,j=1

σij∂j fi (Yij)

 =: E[〈Σ,∇f(Y∗)〉]

for all f in suitable Sobolev space.

Advantage: no continuity of the distribution of Y required.

This is a variant of the definition in Goldstein, R. 2005.
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Non-Gaussian models

Zero-biasing E[〈Y, f(Y)〉] = E[〈Σ,∇f(Y∗)〉]

Zero bias consequence: shrinkage

Let X = Y + θ where Y ∈ Rd has covariance matrix Σ with largest
eigenvalue κ, and suppose that for all pairs i , j such that σij 6= 0
the zero bias vectors Xij exist. Then with f(x) = x

||x||2

Eθ||Sλ(X)− θ||2 = Eθ

{
||X− θ||2 − 2λ 〈X− θ, f(X)〉+

λ2

||X||2

}
= Eθ

{
||X− θ||2 − 2λ 〈Σ,∇f(X∗)〉+

λ2

||X||2

}
= Eθ

{
||X− θ||2 − 2λ 〈Σ,∇f(X)〉+

λ2

||X||2
+ 2R

}
with R = Eθ

{∑d
i ,j=1 σij [∂j fi (X)− ∂j fi (Xij)]

}
.
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Non-Gaussian models

Zero-biasing E[〈Y, f(Y)〉] = E[〈Σ,∇f(Y∗)〉]

We have already seen that Eθ[〈Σ,∇f(X)〉] ≥ Eθ

[
Tr(Σ)−2κ
‖X‖2

]
. We

set

B∗λ =

∣∣∣∣∣∣Eθ


d∑

i ,j=1

σij [∂j fi (X)− ∂j fi (Xij)]


∣∣∣∣∣∣ .

Then it follows that

Eθ||Sλ(X)− θ||2 ≤ Eθ||X− θ||2 + Eθ

[
λ

||X||2
(λ− 2 (Tr(Σ)− 2κ))

]
+2B∗λ.

March 27, 2023 Stein’s Method, Shrinkage Estimator, and SURE 34



Stein’s Method, Shrinkage Estimator, and SURE

Non-Gaussian models

Zero-biasing E[〈Y, f(Y)〉] = E[〈Σ,∇f(Y∗)〉]

Example: Student distribution

X = Y + θ in Rd with Y from the family of multivariate central
Student-t distributions, with k ≥ 5 degrees of freedom, shape given
by the identity matrix in Rd×d and d = 2m ≥ 6, even.

The covariance matrix is then Σ = σ2 Id.

We can write Y as
Yγ = γ−1/2σN

with
N ∼ Nd(0, Id)

mixed over
γ ∼ Γ(k/2, k/2).
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Non-Gaussian models

Zero-biasing E[〈Y, f(Y)〉] = E[〈Σ,∇f(Y∗)〉]

Zero bias coupling for the Student

Write Y as
Yγ = γ−1/2σN

with N ∼ Nd(0, Id) mixed over γ ∼ Γ(k/2, k/2).

For i = 1, . . . , d , the zero bias vectors Yi are given by the mixture
Yδ where δ ∼ Γ(k/2− 1, k/2).

Let ε ∼ Γ(1, k/2) be independent of δ and N be independent of
both, and set γ = δ + ε.

Then a zero bias coupling is achieved by

X = θ +
σ√
δ + ε

N and Xi = θ +
σ√
δ
N, i = 1, . . . , d .

March 27, 2023 Stein’s Method, Shrinkage Estimator, and SURE 36



Stein’s Method, Shrinkage Estimator, and SURE

Non-Gaussian models

Zero-biasing E[〈Y, f(Y)〉] = E[〈Σ,∇f(Y∗)〉]

With this coupling, if θ = 0,

B∗λ ≤
2λ
k
.

This bound is o(d) when λ = O(d) and 1/k = o(1).

If θ 6= 0,

B∗λ ≤
8λ(d + k − 2)

(d − 2)k
.

This bound is o(d) when λ = O(d) and 1/k = o(1).
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Non-Gaussian models

Zero-biasing E[〈Y, f(Y)〉] = E[〈Σ,∇f(Y∗)〉]

Zero bias consequence: SURE
We introduce

SUREz(f,X) := Tr(Σ) + ‖f(X)‖2 + 2
d∑

i ,j=1

σij∂j fi (Xij).

This is another unbiased risk estimate.

The zero bias construction usually depends on θ, here unknown.
Let X = θ + Y where Y has mean zero, covariance Σ, and whose
zero bias vectors exist. Then,

|Biasθ(SURE(f,X))| ≤ 2

∣∣∣∣∣∣
d∑

i ,j=1

σijEθ
(
∂j fi (Xij)− ∂j fi (X)

)∣∣∣∣∣∣ .
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Non-Gaussian models

Zero-biasing E[〈Y, f(Y)〉] = E[〈Σ,∇f(Y∗)〉]

Corollary

If X = Y + θ, if zero bias vectors of Y exist, and if f(x) = −λ x
||x||2

then with B∗λ as above

|Biasθ(SURE(f,X))| ≤ 2B∗λ.
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What else

Outline
1 Background: E[〈X− θ, f(X)〉] = E[〈Σ,∇f(X)〉]

Stein’s method
Stein’s shrinkage estimator
Stein’s Unbiased Risk Estimate (SURE)

2 Non-Gaussian models
Paths to extension
General Stein kernels E[〈X− θ, f(X)〉] = E[〈TX−θ,∇f(X)〉]

Stein kernel consequence: shrinkage
Stein kernel consequence: SURE

Zero-biasing E[〈Y, f(Y)〉] = E[〈Σ,∇f(Y∗)〉]
Zero bias consequence: shrinkage
Zero bias consequence: SURE

3 What else
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What else

We also have ...

looked at other examples, such as strongly log-concave
random vectors
looked at soft thresholding, fλ(x) = Sλ(x)− x with

Sλ(x)i = sgn(xi )(|xi | − λ)+

giving for Σ = σ2Id

SURE (fλ,X) = dσ2 +
d∑

i=1

min{X 2
i , λ

2}−2 ·Card{i : |Xi | 6 λ}

instead of SURE(f,X) = Tr(Σ) + ‖f(X)‖2 + 2〈Σ,∇f(X)〉
looked at stability results over sets of distributions.
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What else

We have not ...

looked at covariance matrix estimation
looked at more involved applications
looked at other Stein characterisations
...
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