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Growth fragmentations



• positive self-similar Markov 
process, some initial value x


• E.g. Stable Lévy process 
conditioned to be die 
continuously at 0 
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• positive self-similar Markov 
process, some initial value x


• Growth (or shrinking) of cells: 
evolution of 


• Fragmentation: negative jump -
 of new particle with 

initial size , then evolves 
independently under same law 
as  (mass is conserved)

X =

X

Δ X ↝
Δ

X
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• positive self-similar Markov 
process, some initial value x


• Growth (or shrinking) of cells: 
evolution of 


• Fragmentation: negative jump -
 of new particle with 

initial size 


• Signed version: positive jumps 
 new particles of negative 

mass

X =

X

Δ X ↝
Δ

↝
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• positive self-similar Markov 
process, some initial value x


• Growth (or shrinking) of cells: 
evolution of 


• Fragmentation: negative jump -
 of new particle with 

initial size 


• At time , system = 
collection of particles with 
(signed) masses

X =

X

Δ X ↝
Δ

t ≥ 0

Growth Fragmentations Bertoin, Bertoin-Budd-Curien-
Kortchemski, Aïdékon-Da Silva, Da 
Silva …



Conformal Loop Ensembles



• Simple CLE  = random collection of 
disjoint simple loops in a simply 
connected domain of , introduced by 
(Sheffield-Werner)   

κ
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• Simple CLE  = random collection of 
disjoint simple loops in a simply 
connected domain of , introduced by 
(Sheffield—Werner)   


• (Conjectured) scaling limit of 
interfaces in discrete models 


• CLE  (top, bottom left): Chelkak—
Duminil-Copin—Hongler—Smirnov, 
Benoist—Hongler 

κ

ℂ
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• Simple CLE  = random collection of 
disjoint simple loops in a simply 
connected domain of , introduced by 
(Sheffield-Werner)   


• (Conjectured) scaling limit of 
interfaces in discrete models 


• Conformally invariant 

•

κ

ℂ

Γ (d)= CLEκ in D ⇒ φ(Γ) (d)= CLEκ in D′￼
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• Simple CLE  = random collection of 
disjoint simple loops in a simply 
connected domain of , introduced by 
(Sheffield-Werner)   


• (Conjectured) scaling limit of 
interfaces in discrete models 


• Conformally invariant 

• Nested version defined by iteration

κ

ℂ

Conformal Loop Ensembles   κ ∈ (8/3,4]



Gaussian Multiplicative Chaos



• Family of measures on ,


• Parameter  


• ,   a 
Gaussian log-correlated field on 

D ⊂ ℝd

γ ∈ (0, 2d)

μγ(dx) '' = ''  exp(γh(x)) dx h

D
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• Family of measures on ,


• Parameter  


• ,   a 
Gaussian log-correlated field on 


• Constructed by regularisation 


• Defines areas of regions and 
lengths of (some) curves (Kahane, 
Duplantier-Sheffield, Robert-Vargas, 
Rhodes-Vargas, Berestycki, Shamov, 
Junnila-Saksman …)

D ⊂ ℝd

γ ∈ (0, 2d)

μγ(dx) '' = ''  exp(γh(x)) dx h
D
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• Family of measures on ,


• Parameter  


• , with  
a Gaussian free field on 


• Constructed by regularisation 


• Defines areas of regions and 
lengths of (some) curves (Kahane, 
Duplantier-Sheffield, Robert-Vargas, 
Rhodes-Vargas, Berestycki, 
Shamov, Junnila-Saksman …)

D ⊂ ℝ2

γ ∈ (0,2)

μγ(dx) '' = ''  exp(γh(x)) dx h
D

Gaussian Multiplicative Chaos/ 
Liouville Quantum Gravity
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Loops and Chaos



Growth Fragmentations 
and Random 
Quadrangulations

• Example: O(n) model of random 
quadrangulation with fixed 
perimeter p plus loops 

 (q, l)

Borot-Bouttier-Guittier



Growth Fragmentations 
and Random 
Quadrangulations

• Example: O(n) model of random 
quadrangulation with fixed 
perimeter p plus loops 

 (q, l)

• P((q, l)) ∝ g#faces q htotal length ln#l
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• Example: O(n) model of quadrangulation 
with fixed perimeter p plus loops  


•

(q, l)
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• Example: O(n) model of quadrangulation 
with fixed perimeter p plus loops  


• 


• Conjecture 


 “dilute critical” values s.t large  
scaling limit of  embedded in 


 =independent  plus -GMC measure 


(q, l)

Pp((q, l)) ∝ g#faces q htotal length ln#l

(n ∈ (0,2])

∃(g*, h*) p
(q, l) 𝔻

CLEκ γ

κ = γ2 = 2− 1
π arccos( n

2 ) ∈ ( 8
3 ,4]

Loop decorated 
random planar maps



• Example: O(n) model of quadrangulation 
with fixed perimeter p plus loops 


• 


• Conjecture 


 “dilute critical” values s.t large  
scaling limit of  embedded in 


 =independent  plus -GMC measure 


(q, l)

Pp((q, l)) ∝ g#faces q htotal length ln#l

(n ∈ (0,2])

∃(g*, h*) p
(q, l) 𝔻

CLEκ γ

κ = γ2 = 2− 1
π arccos( n

2 ) ∈ ( 8
3 ,4]

Loop decorated 
random planar maps

©Jason Miller



Loop decorated 
random planar maps
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• Example: O(n) model of quadrangulation 
with fixed perimeter p plus loops 


• 


• Conjecture 


 “dilute critical” values s.t large  
scaling limit of  embedded in 


 =independent  plus -GMC measure 


(q, l)

Pp((q, l)) ∝ g#faces q htotal length ln#l

(n ∈ (0,2])

∃(g*, h*) p
(q, l) 𝔻

CLEκ γ

κ = γ2 = 2− 1
π arccos( n

2 ) ∈ ( 8
3 ,4)



CLE decorated GMC
Therefore natural to study in the 
continuum (on ):

- a conformal loop ensemble with 
parameter 


- a  measure 

- independent of one another 


𝔻

κ ∈ (8/3,4]
(γ = κ) − GMC



So far…
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Existing connection 
with growth 
fragmentations
n ∈ (0,2)
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Existing connection 
with growth 
fragmentations
n ∈ (0,2)

©William Da Silva

Angel, 
Bertoin, 
Budd, Chen, 
Curien, 
Kortchemski, 
Maillard, Le 
Gall …

Peeling explorations of random planar maps 
- growth fragmentations in large volume limit

Miller-Sheffield-Werner 

CLE percolations 
(continuum analogue)



The  caseγ = 2, κ = 4



Special case (γ = 2, κ = 4)

©David Wilson

©Remi Rhodes-Vincent Vargas



Special case (γ = 2, κ = 4)

©David Wilson

©Remi Rhodes-Vincent Vargas

•  is a critical value for SLE and CLE; SLE  is simple 
for  but self-touching for 
κ = 4 κ

κ ≤ 4 κ > 4
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Special case (γ = 2, κ = 4)
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•  is a critical value for SLE and CLE; SLE  is simple 
for  but self-touching for 
κ = 4 κ

κ ≤ 4 κ > 4
•  is critical for GMC in the plane; usual definition 

doesn’t work. 
γ = 2

• -GMC can be defined from -GMC, but 
need to blow up measures by 
(γ = 2) (γ < 2)

1/(2 − γ)
• Miller-Sheffield-Werner’s exploration doesn’t have a nice 

limit, but…
• Budd-Curien-Marzouk: peeling the gasket of a critical 

O(2) mode -> Cauchy process



Special case (γ = 2, κ = 4)
Theorem (Aru-Holden-P.-Sun)


Take a uniform branching exploration* of a  in  
and an independent GFF (variant) on 


*see next slide!


Keeping track of critical GMC boundary lengths, as 
measured by the GFF


 growth fragmentation process

CLE4 𝔻
𝔻

↝

©David Wilson
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Uniform CLE4 exploration (one branch)

• Start with a Poisson point process of “SLE4 bubbles”


• Add them in chronologically into the connected component 
containing the target with “uniform attachment point” on 
the boundary



Uniform CLE4 explorationUniform CLE4 exploration (one branch)
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Uniform CLE4 explorationUniform CLE4 exploration (one branch)



Uniform CLE4 explorationUniform CLE4 exploration 

• Branching version: branches towards two points are independent until 
separated, then evolve independently



Special case (γ = 2, κ = 4)
Theorem (Aru-Holden-P.-Sun)


Take a uniform branching exploration of a  in 
 and an independent GFF (variant) on 


Critical GMC lengths of yet-to-be-explored 
connected components 


 (explicit) signed growth fragmentation process  

Signs: how many loops completely surround 
component

CLE4
𝔻 𝔻

↝

©David Wilson
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Comments
• The uniform  exploration is different to that 

considered by Miller-Sheffield-Werner in the 
subcritical case


• “Eve cell” (pssMp  from def of GF)  is a type of 
Cauchy process 

• Time parameterisation = “quantum distance” 
from boundary


• It’s exactly the same the signed GF that Aïdékon-
Da Silva constructed out of a Brownian half 
plane excursion…

CLE4

X ©David Wilson

©Jason Miller



Brownian half-plane excursions
Growth fragmentations and Cauchy processes (Aïdekon & Da Silva)

• Start with a half-planar Brownian excursion 
(given duration,  coordinate is Brownian 
bridge and  coordinate is independent 
Brownian excursion) 


• At each height  have countable 
collection of  sub-excursions above   

• These have masses (widths) with signs 
according to direction traversed by the 
Brownian half-plane excursion


• Gives a signed growth fragmentation with 
the same law as in our theorem

X
Y

h ≥ 0
h



Correspondence: 
Brownian half-plane excursion  


CLE4 + “critical LQG”
↔Our Result

CLE4 decorated critical quantum disk Brownian half-plane excursion

Branching structure defined by exploration Branching structure in the associated CRT

Boundary lengths of discovered disks Displacements of sub-excursions above 
heights

Areas of discovered disk Durations of sub-excursions above heights

Parity of nesting Sign of subexcursion

Some notion of “quantum” distance from 
boundary Height

↔



Questions?

• For , a correspondence between  decorated -GMC and 
Brownian cone excursions is already known (Duplantier-Miller-Sheffield)


Can you extract a growth fragmentation process directly from correlated BM? 
Work in progress with Alex Watson and William Da Silva


• What can we use this to say about critical LQG? 


Convergence results?


Relationship with critical LQG metrics (Ding-Gwynne) and conformally invariant 
CLE4 metric (Sheffield-Watson-Wu)?

γ ≠ 2, κ ≠ 4 CLEκ γ
©Jason Miller



Thanks!


