Growth Fragmentations, **Brownian Motion and Random** Geometry UK Easter Probability Meeting, Manchester, March 2023

Ellen Powell, Durham University. Based on joint work with Juhan Aru, Nina Holden, Xin Sun

Planar Brownian Excursions

Aim

©Wendelin Werner - Jason Miller

Growth Fragmentations

Gaussian Multiplicative Chaos & Conformal Loop Ensembles

©David Wilson - Jason Miller

- *X* = positive self-similar Markov process, some initial value x
- E.g. Stable Lévy process conditioned to be die continuously at 0

- *X* = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of *X*

- *X* = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of *X*

- *X* = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of *X*

- *X* = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of *X*

- *X* = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of *X*

- *X* = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of *X*
- Fragmentation: negative jump -Δ of X ~ new particle with initial size Δ, then evolves independently under same law as X (mass is conserved)

- *X* = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of *X*
- Fragmentation: negative jump Δ of $X \leadsto$ new particle with initial size Δ
- Iterates

- *X* = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of *X*
- Fragmentation: negative jump Δ of $X \leadsto$ new particle with initial size Δ
- Iterates

- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of *X*
- Fragmentation: negative jump Δ of $X \leadsto$ new particle with initial size Δ
- Signed version: positive jumps

 ¬new particles of negative mass

- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of *X*
- Fragmentation: negative jump Δ of $X \leadsto$ new particle with initial size Δ
- At time $t \ge 0$, system = collection of particles with (signed) masses

Bertoin, Bertoin-Budd-Curien-Kortchemski, Aïdékon-Da Silva, Da Silva ...

Conformal Loop Ensembles

• Simple CLE_{κ} = random collection of disjoint simple loops in a simply connected domain of \mathbb{C} , introduced by (Sheffield-Werner)

©David Wilson

- Simple CLE_{κ} = random collection of disjoint simple loops in a simply connected domain of \mathbb{C} , introduced by (Sheffield – Werner)
- (Conjectured) scaling limit of interfaces in discrete models
- CLE₃ (top, bottom left): Chelkak— Duminil-Copin—Hongler—Smirnov, **Benoist**—Hongler

©Raphaël Cerf

©Miller-Watson-Wilson

- Simple CLE_{κ} = random collection of disjoint simple loops in a simply connected domain of \mathbb{C} , introduced by (Sheffield-Werner)
- (Conjectured) scaling limit of interfaces in discrete models
- Conformally invariant
- $\Gamma \stackrel{(d)}{=} \operatorname{CLE}_{\kappa} \operatorname{in} D \Rightarrow \varphi(\Gamma) \stackrel{(d)}{=} \operatorname{CLE}_{\kappa} \operatorname{in} D'$

- Simple CLE_{κ} = random collection of disjoint simple loops in a simply connected domain of \mathbb{C} , introduced by (Sheffield-Werner)
- (Conjectured) scaling limit of interfaces in discrete models
- Conformally invariant
- Nested version defined by iteration

Gaussian Multiplicative Chaos

Gaussian Multiplicative Chaos/ Liouville Quantum Gravity

- Family of measures on $D \subset \mathbb{R}^d$,
- Parameter $\gamma \in (0, \sqrt{2d})$
- $\mu_{\gamma}(dx)$ " = " $\exp(\gamma h(x)) dx$, h a Gaussian log-correlated field on

Gaussian Multiplicative Chaos/ Liouville Quantum Gravity

- Family of measures on $D \subset \mathbb{R}^d$,
- Parameter $\gamma \in (0, \sqrt{2d})$
- $\mu_{\gamma}(dx)$ " = " $\exp(\gamma h(x)) dx$, h a Gaussian log-correlated field on D
- Constructed by regularisation
- Defines areas of regions and lengths of (some) curves (Kahane, Duplantier-Sheffield, Robert-Vargas, Rhodes-Vargas, Berestycki, Shamov, Junnila-Saksman ...)

Gaussian Multiplicative Chaos/ Liouville Quantum Gravity

- Family of measures on $D \subset \mathbb{R}^2$,
- Parameter $\gamma \in (0,2)$
- $\mu_{\gamma}(dx)$ '' = '' $\exp(\gamma h(x)) dx$, with h a Gaussian free field on D
- Constructed by regularisation
- Defines areas of regions and lengths of (some) curves (Kahane, Duplantier-Sheffield, Robert-Vargas, Rhodes-Vargas, Berestycki, Shamov, Junnila-Saksman ...)

Loops and Chaos

Growth Fragmentations and Random Quadrangulations

• **Example:** O(n) model of random quadrangulation with fixed perimeter p plus loops

Growth Fragmentations and Random Quadrangulations

• **Example:** O(n) model of random quadrangulation with fixed perimeter p plus loops

• $\mathbf{P}((q, l)) \propto g^{\# \text{faces } q} h^{\text{total length } l} n^{\# l}$

Loop decorated random planar maps

- **Example:** O(n) model of quadrangulation with fixed perimeter p plus loops (q, l)
- $\mathbf{P}_p((q,l)) \propto g^{\#\text{faces } q} h^{\text{total length } l_n \# l}$

Loop decorated random planar maps

- **Example:** O(n) model of quadrangulation with fixed perimeter p plus loops (q, l)
- $\mathbf{P}_p((q, l)) \propto g^{\#\text{faces } q} h^{\text{total length } l} n^{\#l}$
- Conjecture $(n \in (0,2])$

 $\exists (g^*, h^*)$ "dilute critical" values s.t large p scaling limit of (q, l) embedded in \mathbb{D}

=independent CLE_{κ} plus $\gamma\text{-}GMC$ measure

$$\kappa = \gamma^2 = 2 - \frac{1}{\pi} \arccos(\frac{n}{2}) \in (\frac{8}{3}, 4)$$

Loop decorated random planar maps

- **Example:** O(n) model of quadrangulation with fixed perimeter p plus loops (q, l)
- $\mathbf{P}_p((q, l)) \propto g^{\#\text{faces } q} h^{\text{total length } l} n^{\#l}$
- Conjecture ($n \in (0,2]$)

 $\exists (g^*, h^*)$ "dilute **critical**" values s.t large *p* scaling limit of (q, l) embedded in \mathbb{D}

=independent CLE_{κ} plus $\gamma\text{-}GMC$ measure

$$\kappa = \gamma^2 = 2 - \frac{1}{\pi} \operatorname{arccos}(\frac{n}{2}) \in (\frac{8}{3}, 4)$$

Loop decorated random planar maps

- **Example:** O(n) model of quadrangulation with fixed perimeter p plus loops (q, l)
- $\mathbf{P}_p((q, l)) \propto g^{\#\text{faces } q} h^{\text{total length } l} n^{\#l}$
- Conjecture $(n \in (0,2])$

 $\exists (g^*, h^*)$ "dilute critical" values s.t large p scaling limit of (q, l) embedded in \mathbb{D}

=independent CLE_{κ} plus $\gamma\text{-}GMC$ measure

$$\kappa = \gamma^2 = 2 - \frac{1}{\pi} \arccos(\frac{n}{2}) \in (\frac{8}{3}, 4)$$

©Timothy Budd

CLE decorated GMC

Therefore natural to study in the continuum (on \mathbb{D}):

- a conformal loop ensemble with parameter $\kappa \in (8/3, 4]$
- a ($\gamma = \sqrt{\kappa}$) GMC measure
- independent of one another

So far...

Growth Fragmentations

©William Da Silva

Gaussian Multiplicative Chaos & Conformal Loop Ensembles

©David Wilson - Jason Miller

Existing connection with growth fragmentations $n \in (0,2)$

Existing connection with growth fragmentations $n \in (0,2)$

Peeling explorations of random planar maps - growth fragmentations in large volume limit

Existing connection with growth fragmentations $n \in (0,2)$

Peeling explorations of random planar maps - growth fragmentations in large volume limit

Angel, Bertoin, Budd, Chen, Curien, Kortchemski, Maillard, Le Gall ...

Existing connection with growth fragmentations $n \in (0,2)$

CLE percolations (continuum analogue) Miller-Sheffield-Werner

©William Da Silva

Peeling explorations of random planar maps - growth fragmentations in large volume limit

Angel, Bertoin, Budd, Chen, Curien, Kortchemski, Maillard, Le Gall ...

The $\gamma = 2, \kappa = 4$ case

Special case ($\gamma = 2, \kappa = 4$)

©David Wilson

Special case ($\gamma = 2, \kappa = 4$) • $\kappa = 4$ is a **critical value** for SLE and CLE; SLE_{κ} is simple for $\kappa \leq 4$ but self-touching for $\kappa > 4$

©David Wilson

Special case ($\gamma = 2, \kappa = 4$) • $\kappa = 4$ is a **critical value** for SLE and CLE; SLE_{κ} is simple for $\kappa \leq 4$ but self-touching for $\kappa > 4$

- $\gamma = 2$ is critical for GMC in the plane; usual definition doesn't work.

©David Wilson

Special case ($\gamma = 2, \kappa = 4$) • $\kappa = 4$ is a **critical value** for SLE and CLE; SLE_{κ} is simple for $\kappa \leq 4$ but self-touching for $\kappa > 4$

- $\gamma = 2$ is critical for GMC in the plane; usual definition doesn't work.
- $(\gamma = 2)$ -GMC can be defined from $(\gamma < 2)$ -GMC, but need to **blow up** measures by $1/(2 - \gamma)$

- Special case ($\gamma = 2, \kappa = 4$) • $\kappa = 4$ is a **critical value** for SLE and CLE; SLE_{κ} is simple for $\kappa \leq 4$ but self-touching for $\kappa > 4$
 - $\gamma = 2$ is **critical** for GMC in the plane; usual definition doesn't work.
 - $(\gamma = 2)$ -GMC can be defined from $(\gamma < 2)$ -GMC, but need to **blow up** measures by $1/(2 - \gamma)$ Miller-Sheffield-Werner's exploration doesn't have a nice
 - limit, but...

- Special case ($\gamma = 2, \kappa = 4$) • $\kappa = 4$ is a **critical value** for SLE and CLE; SLE_{κ} is simple for $\kappa \leq 4$ but self-touching for $\kappa > 4$
 - $\gamma = 2$ is critical for GMC in the plane; usual definition doesn't work.
 - $(\gamma = 2)$ -GMC can be defined from $(\gamma < 2)$ -GMC, but need to **blow up** measures by $1/(2 - \gamma)$ Miller-Sheffield-Werner's exploration doesn't have a nice
 - limit, but...
 - Budd-Curien-Marzouk: peeling the gasket of a critical O(2) mode -> Cauchy process

Special case ($\gamma = 2, \kappa = 4$)

Theorem (Aru-Holden-P.-Sun)

Take a uniform branching exploration* of a CLE_4 in \mathbb{D} and an independent GFF (variant) on \mathbb{D}

*see next slide!

Keeping track of critical GMC boundary lengths, as measured by the GFF

 \sim growth fragmentation process

©David Wilson

©Jason Miller

- Start with a Poisson point process of "SLE₄ bubbles"
- Add them in chronologically into the connected component containing the target with "uniform attachment point" on the boundary

Uniform CLE₄ exploration

• Branching version: branches towards two points are independent until separated, then evolve independently

Special case ($\gamma = 2, \kappa = 4$)

Theorem (Aru-Holden-P.-Sun)

Take a uniform branching exploration of a CLE_4 in \mathbb{D} and an independent GFF (variant) on \mathbb{D}

Critical GMC lengths of yet-to-be-explored connected components

(explicit) signed growth fragmentation process

Signs: how many loops completely surround component

©David Wilson

©Jason Miller

Comments

- The uniform CLE_4 exploration is different to that considered by Miller-Sheffield-Werner in the subcritical case
- "Eve cell" (pssMp X from def of GF) is a type of **Cauchy process**
- Time parameterisation = "quantum distance" from boundary
- It's exactly the same the signed GF that Aïdékon-Da Silva constructed out of a Brownian half plane excursion...

©David Wilson

©Jason Miller

Brownian half-plane excursions Growth fragmentations and Cauchy processes (Aïdekon & Da Silva)

- Start with a half-planar Brownian excursion (given duration, X coordinate is Brownian) bridge and Y coordinate is independent **Brownian** excursion)
- At each height $h \ge 0$ have countable collection of sub-excursions above h
- These have masses (widths) with signs according to direction traversed by the **Brownian half-plane excursion**
- Gives a signed growth fragmentation with the same law as in our theorem

Our Result

Correspondence: Brownian half-plane excursion \leftrightarrow CLE₄ + "critical LQG"

CLE ₄ decorated critical quantum disk	Brow
Branching structure defined by exploration	Branching
Boundary lengths of discovered disks	Displace
Areas of discovered disk	Durations
Parity of nesting	
Some notion of "quantum" distance from boundary	

vnian half-plane excursion

g structure in the associated CRT

ements of sub-excursions above heights

of sub-excursions above heights

Sign of subexcursion

Height

- For $\gamma \neq 2, \kappa \neq 4$, a correspondence between CLE_{κ} decorated γ -GMC and **Brownian cone excursions** is already known (Duplantier-Miller-Sheffield)
 - Can you extract a growth fragmentation process directly from correlated BM? Work in progress with Alex Watson and William Da Silva
- What can we use this to say about critical LQG?
 - Convergence results?

Questions?

 Relationship with critical LQG metrics (Ding-Gwynne) and conformally invariant CLE₄ metric (Sheffield-Watson-Wu)?

©Jason Miller

Thanks!