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Branching- selection systems
· Particle systems:particles branch (produce offspring) and move in space

killing rule keeps total number of particles constant.

· Toy models for a population under selection.

Location of a particle (individual) represents its evolutionary fitness.
· Introduced by Brunet and Derrida in 1980s.

Recentresults and open conjectures aboutlong-term behaviour.
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N-particle branching random walk(N-BRW)

Discrete-time branchingselection system.
N particles with locations in R ateach timestep.

LetXbe a real-valued random variable (jump distribution).

Ateach time neNo, each particle has two offspring.
Each of the IN offspring particles makes an independent jump from its parent's location,
with the same law as X.

The N rightmostparticles (ofthe IN offspring particles) form the population at time at

·

Notation:XY(n) <Xc(n) - ... - XY(n) ordered particle positions attime n.
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Light-tailed jump distribution P(Xxx) =ex,>0

Asymptotic speed
If*(X) < * then 5vNe(0,2) s.t. m

x(n) =vw=lim
X(n) a.s. and

n- 0 n in L.
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(Mueller, Mytnik, Quastel 2009)



Light-tailed jump distribution P(Xxx) =ex,>0

Asymptotic speed
If *(X) < & then 5vNeC0,4) s.t. lim XY(m)

=vw=lim X(n) a.s. and

n- 2 n n- 0 n in L.

Theorem (Berard and Gouere2010) IfLeY] < a for some 10 (technical assumptions)
then lim Un= va exists and va-VNaClogN)as N-x.

N ->X

conjectured by Brunet + Derrida 1897. Related resultfor Fisher - KPPequation with noise
(Mueller, Mytnik, Quastel 2009)

Genealogy

Sample R particles from the N particles and trace their ancestry backwards in time

-> coalescentprocess.
Conjecture (Brunet, Derrida, Mueller, Munier)

If Xis light-tailed then the genealogy of a sample on a ClogN)Btimescale converges to
a Bolthausen- Sznitman coalescent as N- x.

See Berestycki, Berestycki, Schweinsberg.



Coalescentprocesses

Kingman's coalescent Bolthausen-Szuitman coalescent

Neutral population:choose particles to kill population under selection.
uniformly atrandom in each generation.

Thanks to GotzKersting
and Anton Wakolbinger
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N-BRW with heavy-tailed jump distribution

Suppose P(Xec) vs
*

as x- x,for some x>0.

Asymptotic speed
Theorem (Berard and Maillard 2014)

1)A[x]<x, hEaX (n) =vw where VNwcaN" (logN)"**as New.
n

If E(X] =x, cloud of particles accelerates.
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n

If E(X] =x, cloud of particles accelerates.

Genealogy

Conjecture (Berard and Maillard)
The genealogy on a log timescale is approximately given by a star-shaped coalescent
when I is large.



Time and space scales

LetP(Xx2) =26c) for xc,0.

Assume his regularly varying with index as 0

i.e. for any y<0, h(ocy) x y
*

as x- x.

h(x)

and P(X=0) =1 (no negative jumps). e.g. h(x) =xfor x,1

LetIN =logeNY time scale

Letan =h"(2N(w), where h(ec)==inf[y<,0:hly) > ec]. space scale

I [I jumps of size I can in
= 2N.caNP(X< c,aw)

a time interval of length calw]
= 2NcaN 2NCCN =2

Lh(c1aN) c2New C,

as N- J.



Main result

w.h.p.-with probability - 1 as Nex.

Theorem (P., Roberts,Talyiga's 2021)

For 40, ReN and t4w, the following occurs w.h.p.:
· Spatial distribution:Attime t, there are N-o(N) particles in

[X,(), X(t) +yaw].
· Genealogy:The genealogy on an IN-timescale is asymptotically given by a

star-shaped coalescent.

i.e. I Te [t-21N,t-lw] s.t.w.h.p., for a uniform sample of a particles
at time t, every particle is descended from the rightmostparticle attime I

and no pair of particles in the sample has a common ancestor after time

T+ENew, for any (ENIN with EN -0 and ENlr -> as Ne N.
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ITe (t-21N,t - (w) s.t.w.h.p., for a uniform sample of a particles
at time t, every particle is descended from the rightmostparticle attime T

and no pair of particles in the sample has a common ancestor after time

T +ENew, for any (ENIN with EN -0 and ENlr -> as Ne N.
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"big jump" the lead.
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Proof heuristics to:=t - li &> 0 small constant.

LetT-lasttime before time towhen a particle makes a jump paw and takes
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A:Aparticle makes a big jump attime and takes the lead (by (aw)).
Its descendants stay in the lead until time to(other particles can't
take the lead with a big jump, and can'tmove far withouta big jump).



< ⌘aN

T

t1

T + `N

t

A

B

C

D

Proof heuristics ty =

=t - IN. &> 0 small constant.

LetT-lasttime before time towhen a particle makes a jump paw and takes

"big jump" the lead.

time

B: There are 0(1) big jumps in time interval [ty,t],each with 0 (N)

descendants attime t.
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Proof heuristics ty =t - IN.<0 small constant.

LetT-lasttime before time towhen a particle makes a jump paw and takes
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C:The tribe descended from the time-- leader doubles in size ateach

timestepuntil almosttime +N.
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Proof heuristics to:=t - li &> 0 small constant.

LetT-lasttime before time towhen a particle makes a jump paw and takes

"big jump" the lead.

time

D:On the time interval [T+ew,t], the time -- leader's tribe has

size N - 0 (N).



N - BRW genealogy
Jumpdistribution X.

Time to coalesce coalescent

Light-tailed P(Xec) = ex,c>0 ClogN)3 Bolthausen- Szuitman

Heavy-tailed P(Xxx) rcc,a> 0 logN star-shaped



N - BRW genealogy
Jumpdistribution X.

Time to coalesce coalescent

C32

Light-tailed P(Xec) =e,c> 0 ClogN)3 Bolthausen- Szuitman

Stretched exponential P(Xxc) - e-ec,Be(0,1) %. !8
tail

Heavy-tailed P(Xxx) rcc,a> 0 logN star-shaped

Work in progress with Z. Talyigas.



N- BRW asymptotic speed

Jumpdistribution X. #(X) < x. Vw:=lim XY (n)
⑧

n- X U

Light-tailed P(Xec) = ex,c>0

Stretched exponential P(Xxc) - e-ec,Be(0,1)
tail

Heavy-tailed P(Xxx) rcc,a> 0
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