Fluctuations of Additive Functionals of Fractional Brownian Motion

Giovanni Peccati (Luxembourg University) Joint works with:
A. Jaramillo, I. Nourdin E D. Nualart

Manchester - March 30th, 2023

Fractional Brownian Motion

\star The fractional Brownian motion with Hurst index $H \in(0,1)$ is the unique (in law) centered Gaussian process $B^{H}=\left\{B_{t}^{H}: t \geq 0\right\}$ such that

$$
\mathbb{E}\left[B_{s}^{H} B_{t}^{H}\right]=\frac{1}{2}\left[t^{2 H}+s^{2 H}-|t-s|^{2 H}\right]
$$

($B^{\frac{1}{2}}:=W=$ standard Brownian motion).

* Self-similarity: for all $a>0$,

Fractional Brownian Motion

\star The fractional Brownian motion with Hurst index $H \in(0,1)$ is the unique (in law) centered Gaussian process $B^{H}=\left\{B_{t}^{H}: t \geq 0\right\}$ such that

$$
\mathbb{E}\left[B_{s}^{H} B_{t}^{H}\right]=\frac{1}{2}\left[t^{2 H}+s^{2 H}-|t-s|^{2 H}\right]
$$

($B^{\frac{1}{2}}:=W=$ standard Brownian motion).
\star Stationary increments:

$$
\mathbb{E}\left[\left(B_{s}^{H}-B_{t}^{H}\right)^{2}\right]=|t-s|^{2 H}
$$

* Self-similarity: for all $a>0$,

Fractional Brownian Motion

\star The fractional Brownian motion with Hurst index $H \in(0,1)$ is the unique (in law) centered Gaussian process $B^{H}=\left\{B_{t}^{H}: t \geq 0\right\}$ such that

$$
\mathbb{E}\left[B_{s}^{H} B_{t}^{H}\right]=\frac{1}{2}\left[t^{2 H}+s^{2 H}-|t-s|^{2 H}\right]
$$

($B^{\frac{1}{2}}:=W=$ standard Brownian motion).
\star Stationary increments:

$$
\mathbb{E}\left[\left(B_{s}^{H}-B_{t}^{H}\right)^{2}\right]=|t-s|^{2 H}
$$

\star Self-similarity: for all $a>0$,

$$
B^{H} \stackrel{\text { LAW }}{=}\left\{\frac{1}{a^{H}} B_{a t}^{H}: t \geq 0\right\}
$$

Fractional Brownian Motion

\star The fractional Brownian motion with Hurst index $H \in(0,1)$ is the unique (in law) centered Gaussian process $B^{H}=\left\{B_{t}^{H}: t \geq 0\right\}$ such that

$$
\mathbb{E}\left[B_{s}^{H} B_{t}^{H}\right]=\frac{1}{2}\left[t^{2 H}+s^{2 H}-|t-s|^{2 H}\right]
$$

($B^{\frac{1}{2}}:=W=$ standard Brownian motion).

* Stationary increments:

$$
\mathbb{E}\left[\left(B_{s}^{H}-B_{t}^{H}\right)^{2}\right]=|t-s|^{2 H}
$$

\star Self-similarity: for all $a>0$,

$$
B^{H} \stackrel{\text { LAW }}{=}\left\{\frac{1}{a^{H}} B_{a t}^{H}: t \geq 0\right\}
$$

* Kolmogorov (1940), Mandelbrot \& van Ness (1968).

Fractional Brownian Motion

$=$

\star Hölder Regularity: for all $\gamma<$ H, B^{H} is locally γ-Hölder continuous:

$$
\begin{aligned}
& \left|B_{s}^{H}(\omega)-B_{t}^{H}(\omega)\right| \\
& \leq C_{\gamma, T, \omega}|s-t|^{\gamma}, \forall s, t \leq T .
\end{aligned}
$$

\star Correlated fractional noise: For $H \neq \frac{1}{2}$,

with:
(i) for $H>\frac{1}{2}, O_{H}(n)>0$ and $\sum_{n} O_{H}(n)=\infty($ long memory $)$,
(ii) for $H<\frac{1}{2}, \rho_{H}(n)<0$ (intermittency) and $\sum_{n}\left|\rho_{H}(n)\right|<\infty$.

Fractional Brownian Motion

\star Hölder Regularity: for all $\gamma<$ H, B^{H} is locally γ-Hölder continuous:

$$
\begin{aligned}
& \left|B_{s}^{H}(\omega)-B_{t}^{H}(\omega)\right| \\
& \quad \leq C_{\gamma, T, \omega}|s-t|^{\gamma}, \forall s, t \leq T
\end{aligned}
$$

\star Correlated fractional noise: For $H \neq \frac{1}{2}$,

$$
\rho_{H}(n):=\mathbb{E}\left[B_{1}^{H}\left(B_{n+1}^{H}-B_{n}^{H}\right)\right] \sim H(2 H-1) n^{2 H-2},
$$

with:
(i) for $H>\frac{1}{2}, \rho_{H}(n)>0$ and $\sum_{n} \rho_{H}(n)=\infty$ (long memory),
(ii) for $H<\frac{1}{2}, \rho_{H}(n)<0$ (intermittency) and $\sum_{n}\left|\rho_{H}(n)\right|<\infty$.

Fractional Brownian Motion

\star Local non-determinism: for all $t_{0}<\cdots<t_{m}$ and $a_{1}, \ldots, a_{m} \in \mathbb{R}$,

$$
\operatorname{Var}\left(\sum_{i=1}^{m} a_{i}\left(B_{t_{i}}^{H}-B_{t_{i-1}}^{H}\right)\right) \geq k_{H} \sum_{i=1}^{m} a_{i}^{2}\left(t_{i}-t_{i-1}\right)^{2 H} .
$$

* For all $H \in(0,1)$ there exists a jointly continuous version of the local time

$\star \mathrm{fBm}$ as a « canonical object »: Taqqu (1975), Sottinen (2001), Enriquez (2004), Hammond \& Sheffield (2011).

Fractional Brownian Motion

\star Local non-determinism: for all $t_{0}<\cdots<t_{m}$ and $a_{1}, \ldots, a_{m} \in \mathbb{R}$,

$$
\operatorname{Var}\left(\sum_{i=1}^{m} a_{i}\left(B_{t_{i}}^{H}-B_{t_{i-1}}^{H}\right)\right) \geq k_{H} \sum_{i=1}^{m} a_{i}^{2}\left(t_{i}-t_{i-1}\right)^{2 H}
$$

* For all $H \in(0,1)$ there exists a jointly continuous version of the local time

$$
\begin{aligned}
& (t, x) \mapsto L_{t}^{H}(x):=\int_{0}^{t} \delta_{0}\left(B_{s}^{H}-x\right) d s \\
& \text { so that: } \int_{0}^{t} f\left(B_{s}^{H}\right) d s=\int_{\mathbb{R}} f(x) L_{t}^{H}(x) d x
\end{aligned}
$$

$\star \mathrm{fBm}$ as a « canonical object »: Taqqu (1975), Sottinen (2001), Enriquez (2004), Hammond \& Sheffield (2011).

Fractional Brownian Motion

\star Local non-determinism: for all $t_{0}<\cdots<t_{m}$ and $a_{1}, \ldots, a_{m} \in \mathbb{R}$,

$$
\operatorname{Var}\left(\sum_{i=1}^{m} a_{i}\left(B_{t_{i}}^{H}-B_{t_{i-1}}^{H}\right)\right) \geq k_{H} \sum_{i=1}^{m} a_{i}^{2}\left(t_{i}-t_{i-1}\right)^{2 H} .
$$

\star For all $H \in(0,1)$ there exists a jointly continuous version of the local time

$$
\begin{aligned}
& (t, x) \mapsto L_{t}^{H}(x):=\int_{0}^{t} \delta_{0}\left(B_{s}^{H}-x\right) d s \text {, } \\
& \text { so that: } \int_{0}^{t} f\left(B_{s}^{H}\right) d s=\int_{\mathbb{R}} f(x) L_{t}^{H}(x) d x .
\end{aligned}
$$

$\star \mathrm{fBm}$ as a « canonical object »: Taqqu (1975), Sottinen (2001), Enriquez (2004), Hammond \mathcal{E} Sheffield (2011).

Vignette: Breuer-Major CLTs

Theorem (Breuer \& Major, 1983; Nourdin \& Nualart, 2019)
Let $\left\{X_{i}: i \geq 0\right\}$ be a unit variance, centered stationary Gaussian sequence, and write $\rho_{X}(i)=\mathbb{E}\left(X_{0} X_{i}\right)$ (e.g., $\left.X_{i}=B_{i+1}^{H}-B_{i}^{H}\right)$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $\mathbb{E}\left[f\left(X_{0}\right)\right]=0, \mathbb{E}\left[\left|f\left(X_{0}\right)\right|^{p}\right]<\infty, p>2$, and f has Hermite rank $R \geq 1$. Then, if

$$
\sum_{i}\left|\rho_{X}(i)\right|^{R}<\infty
$$

one has that

$$
t \mapsto V_{n}(t):=\frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor n t\rfloor} f\left(X_{i}\right), \quad t \in[0,1]
$$

converges weakly in $D[0,1]$ to a multiple of a standard Brownian motion.

Papanicolaou, Stroock and Varadhan (1977)

\star Consider an integrable $f: \mathbb{R} \rightarrow \mathbb{R}$. One has that, a.s.- \mathbb{P},

$$
\begin{aligned}
& \sqrt{n} \int_{0}^{t} f\left(\sqrt{n} W_{s}\right) d s \\
& =\sqrt{n} \int f(\sqrt{n} x) L_{t}(x) d x \longrightarrow L_{t}(0) \int f(x) d x, \quad n \rightarrow \infty .
\end{aligned}
$$

* [Papanicolaou, Stroock and Varadhan, 1977] Under some additional integrability assumptions, if $\int f(x) d x=0$, then

where β is a Brownian motion independent of $W, c<\infty$ depends on f, and the convergence is functional and stable. (Proof: martingale methods)

Papanicolaou, Stroock and Varadhan (1977)

\star Consider an integrable $f: \mathbb{R} \rightarrow \mathbb{R}$. One has that, a.s.- \mathbb{P},

$$
\begin{aligned}
& \sqrt{n} \int_{0}^{t} f\left(\sqrt{n} W_{s}\right) d s \\
& =\sqrt{n} \int f(\sqrt{n} x) L_{t}(x) d x \longrightarrow L_{t}(0) \int f(x) d x, \quad n \rightarrow \infty .
\end{aligned}
$$

^ [Papanicolaou, Stroock and Varadhan, 1977] Under some additional integrability assumptions, if $\int f(x) d x=0$, then

$$
n^{3 / 4} \int_{0}^{t} f\left(\sqrt{n} W_{s}\right) d s\left(\stackrel{\text { LAW }}{=} n^{-1 / 4} \int_{0}^{n t} f\left(W_{u}\right) d u\right) \stackrel{\text { LAW }}{\Longrightarrow} c \beta_{L_{t}(0)},
$$

where β is a Brownian motion independent of $W, c<\infty$ depends on f, and the convergence is functional and stable. (Proof: martingale methods)

Case of Fractional Brownian Motion

\star For all $\lambda \in \mathbb{R}$, one has that, a.s. $-\mathbb{P}$,

$$
n^{H} \int_{0}^{t} f\left(n^{H}\left(B_{s}^{H}-\lambda\right)\right) d s \longrightarrow L_{t}^{H}(\lambda) \int f(x) d x, \quad n \rightarrow \infty,
$$

* [Nualart \& Xu, 2014] If $\frac{1}{3}<H<1$, and f is integrable against $|x|^{1 / H-1} d x$ and such that $\int f(x) d x=0$, then

where β is a Brownian motion independent of $B, c<\infty$ depends on f and H, and the convergence is functional and stable. (Proof: method of moments (!)).

Case of Fractional Brownian Motion

\star For all $\lambda \in \mathbb{R}$, one has that, a.s. $-\mathbb{P}$,

$$
n^{H} \int_{0}^{t} f\left(n^{H}\left(B_{s}^{H}-\lambda\right)\right) d s \longrightarrow L_{t}^{H}(\lambda) \int f(x) d x, \quad n \rightarrow \infty,
$$

* [Nualart \& Xu, 2014] If $\frac{1}{3}<H<1$, and f is integrable against $|x|^{1 / H-1} d x$ and such that $\int f(x) d x=0$, then
$n^{\frac{H+1}{2}} \int_{0}^{t} f\left(n^{H} B_{s}^{H}\right) d s\left(\stackrel{\text { LAW }}{=} n^{\frac{H-1}{2}} \int_{0}^{n t} f\left(B_{u}^{H}\right) d u\right) \stackrel{\text { LAW }}{\Longrightarrow} c \beta_{L_{t}^{H}(0)}$,
where β is a Brownian motion independent of $B, c<\infty$ depends on f and H, and the convergence is functional and stable. (Proof: method of moments (!)).

JEGANATHAN, 2004-2008

^ [Jeganathan, 2004] Assume $f \in L^{1} \cap L^{2}$. Then, for every $H \in(0,1)$ and every $\lambda \in \mathbb{R}$, as $n \rightarrow \infty$,

$$
n^{H-1} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{H}\left(B_{\frac{i-1}{n}}^{H}-\lambda\right)\right) \xrightarrow{L^{2}(\mathbb{P})} L_{t}^{H}(\lambda) \int f(x) d x .
$$

* [Jeganathan, 2008] Assume $\int|f(x)|^{p}+|x f(x)|<\infty$, for $p=1,2,3,4$ and $\int f(x) d x=0$. Then, for every $\frac{1}{3}<H<1$, as $n \rightarrow \infty$,

where β is a Brownian motion independent of $B^{H}, c<\infty$ depends on f and H, and the convergence is in the sense of finite-dimensional distributions and stable.

JEGANATHAN, 2004-2008

^ [Jeganathan, 2004] Assume $f \in L^{1} \cap L^{2}$. Then, for every $H \in(0,1)$ and every $\lambda \in \mathbb{R}$, as $n \rightarrow \infty$,

$$
n^{H-1} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{H}\left(B_{\frac{i-1}{n}}^{H}-\lambda\right)\right) \xrightarrow{L^{2}(\mathbb{P})} L_{t}^{H}(\lambda) \int f(x) d x .
$$

* [Jeganathan, 2008] Assume $\int|f(x)|^{p}+|x f(x)|<\infty$, for $p=1,2,3,4$ and $\int f(x) d x=0$. Then, for every $\frac{1}{3}<H<1$, as $n \rightarrow \infty$,

$$
n^{\frac{H-1}{2}} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{H} B_{\frac{i-1}{n}}^{H}\right)\left(\stackrel{\text { LAW }}{=} n^{\frac{H-1}{2}} \sum_{i=1}^{\lfloor n t\rfloor} f\left(B_{i-1}^{H}\right)\right) \stackrel{f . \text { d.d. }}{\Longrightarrow} c \beta_{L_{t}^{H}(0)},
$$

where β is a Brownian motion independent of $B^{H}, c<\infty$ depends on f and H, and the convergence is in the sense of finite-dimensional distributions and stable.

QUESTIONS

1. Can one remove the assumption that $\int f(x) d x=0$?
2. What happens in the «critical case » $H=\frac{1}{3}$?
3. What happens in the «rough range» $0<H<\frac{1}{3}$?

Main Results: $H>\frac{1}{3}$

Theorem (Jaramillo, Nourdin, Nualart \& Peccati, 2023)

Suppose $\frac{1}{3}<H<1$ and fix $\lambda \in \mathbb{R}$. Then,

$$
\begin{aligned}
& A_{n}(t) \\
& :=n^{\frac{1-H}{2}}\left(n^{H} \int_{0}^{t} f\left(n^{H}\left(B_{s}^{H}-\lambda\right)\right) d s-L_{t}^{H}(\lambda) \int f(x) d x\right), t \geq 0 .
\end{aligned}
$$

converges towards

$$
C(f, H) \times \beta_{L_{t}^{H}(\lambda)}, \quad t \geq 0
$$

in the sense of finite-dimensional distributions, where β is a standard Brownian motion independent of B^{H}, the convergence is stable and $C(f, H)$ is an absolute constant.

Main Results: $H=\frac{1}{3}$

Theorem (Jaramillo, Nourdin, Nualart \& Peccati, 2023)

Suppose $H=\frac{1}{3}$ and fix $\lambda \in \mathbb{R}$. Then,

$$
\begin{aligned}
& B_{n}(t) \\
& :=\frac{n^{\frac{1-H}{2}}}{\sqrt{\log n}}\left(n^{H} \int_{0}^{t} f\left(n^{H}\left(B_{s}^{H}-\lambda\right)\right) d s-L_{t}^{H}(\lambda) \int f(x) d x\right) \\
& =\frac{n^{1 / 3}}{\sqrt{\log n}}\left(n^{1 / 3} \int_{0}^{t} f\left(n^{1 / 3}\left(B_{s}^{1 / 3}-\lambda\right)\right) d s-L_{t}^{1 / 3}(\lambda) \int f(x) d x\right)
\end{aligned}
$$

converges stably towards

$$
C(f) \times \beta_{L_{t}^{1 / 3}(\lambda)}, \quad t \geq 0,
$$

in the sense of finite-dimensional distributions.

Idea of Proof $(H>1 / 3)$

\star Start by representing B^{H} as a Volterra process:

$$
B_{t}^{H}=\int_{0}^{t} K_{H}(t, s) d W_{s}
$$

where W is a standard Brownian motion (see e.g. Mandelbrot \mathcal{E} van Ness, 1968).

* Represent local time by using the Clark-Ocone formula: where D is the Malliavin gradient.

Idea of Proof $(H>1 / 3)$

\star Start by representing B^{H} as a Volterra process:

$$
B_{t}^{H}=\int_{0}^{t} K_{H}(t, s) d W_{s}
$$

where W is a standard Brownian motion (see e.g.
Mandelbrot \mathcal{E} van Ness, 1968).
\star Represent local time by using the Clark-Ocone formula:

$$
L_{t}^{H}(\lambda)=\mathbb{E}\left[L_{t}^{H}(\lambda)\right]+\int_{0}^{t} \mathbb{E}\left[D_{r} L_{t}^{H}(\lambda) \mid W_{u}: u \leq r\right] d W_{r},
$$

where D is the Malliavin gradient.

Idea of Proof ($H>1 / 3$)

* Write

$$
\begin{aligned}
& A_{n}(t)=n^{\frac{1-H}{2}}\left(n^{H} \int_{0}^{t} f\left(n^{H}\left(B_{s}^{H}-\lambda\right)\right) d s-L_{t}^{H}(\lambda) \int f(x) d x\right) \\
& =n^{\frac{1-H}{2}}\left(n^{H} \int L_{t}(x) f\left(n^{H}(x-\lambda)\right) d x-L_{t}(\lambda) \int f(y) d y\right) \\
& =n^{\frac{1-H}{2}}\left(\int_{\mathbb{R}} f(y)\left[L_{t}\left(\lambda+\frac{y}{n^{H}}\right)-L_{t}(\lambda)\right] d y\right) .
\end{aligned}
$$

* Use Clark-Ocone to write

$$
A_{n}(t)=\int_{0}^{t} G(t, s, n) d W_{s}+R(t, n)
$$

where $R(t, n)$ is negligible and $M_{u}^{(t, n)}:=\int_{0}^{u} G(t, s, n) d W_{s}$, $u \leq t$ is a Brownian martingale.

Idea of Proof

* Prove that

$$
\left\langle M^{(t, n)}, M^{(t, n)}\right\rangle_{u} \xrightarrow{\mathbb{P}} \sqrt{C(f, H)} L_{t \wedge u}^{H}(\lambda)
$$

and that

$$
\left\langle M^{(t, n)}, W\right\rangle_{u} \xrightarrow{\mathbb{P}} 0 \quad \text { (uniformly) }
$$

\star Conclude by using a version of the asymptotic Knight's Theorem.

THE $\frac{1}{3}$ Threshold

Proposition (Jaramillo, Nourdin \& Peccati (2021))

Fix $0<H<\frac{1}{3}$, and denote by ϕ_{ε} the centered Gaussian density with variance ε. For every $t \geq 0$ and $\lambda \in \mathbb{R}$, as $\varepsilon \rightarrow 0$ the random variables

$$
L_{t, \varepsilon}^{(1, H)}(\lambda):=\int_{0}^{t} \frac{d}{d \lambda} \phi_{\varepsilon}\left(B_{s}^{H}-\lambda\right) d s
$$

converge in $L^{2}(\mathbb{P})$ to a limit $L_{t}^{(1, H)}(\lambda)$, as $\varepsilon \rightarrow 0$. The limit random variable $L_{t}^{(1, H)}(\lambda)$ can be written in Fourier form as

$$
L_{t}^{(1, H)}(\lambda)=-\frac{1}{2 \pi} \int_{\mathbb{R}} \int_{0}^{t}(i \xi) e^{i \xi\left(B_{s}^{H}-\lambda\right)} d s d \xi
$$

where the integral converges in $L^{2}(\Omega)$. The constraint on H is sharp.

The $\frac{1}{3}$ Threshold

Proposition (Jaramillo, Nourdin \& Peccati (2021))

For $0<H<\frac{1}{3}$,

$$
L_{t}^{(1, H)}(\lambda)=\lim _{h \rightarrow 0} \frac{1}{h}\left(L_{t}^{H}(\lambda+h)-L_{t}^{H}(\lambda)\right),
$$

where the limit is in $L^{2}(\mathbb{P})$. In addition, for fixed λ, the process

$$
\left\{L_{t}^{(1, H)}(\lambda): t \geq 0\right\}
$$

has a modification with γ-Hölder continuous paths (in the variable t) for all $\gamma<1-2 H$.

More Thresholds

\star In Jaramillo, Nourdin and Peccati (2021): for general $\ell=$ $1,2, \ldots$, if

$$
0<H<\frac{1}{2 \ell+1}
$$

then the ℓ th spatial derivative $\left\{L_{t}^{(\ell, H)}(\lambda): t \geq 0\right\}$ exists, with similar regularity properties.

* The existence of the ℓ th spatial derivative of the local time of B is proved in Geman \& Horowitz (1981), as an application of results by Berman (1971).
* Sharpness of the restriction $0<H<\frac{1}{3}$ and time regularity are new.

More Thresholds

\star In Jaramillo, Nourdin and Peccati (2021): for general $\ell=$ $1,2, \ldots$, if

$$
0<H<\frac{1}{2 \ell+1}
$$

then the ℓ th spatial derivative $\left\{L_{t}^{(\ell, H)}(\lambda): t \geq 0\right\}$ exists, with similar regularity properties.
\star The existence of the ℓ th spatial derivative of the local time of B is proved in Geman \& Horowitz (1981), as an application of results by Berman (1971).

* Sharpness of the restriction $0<H<\frac{1}{3}$ and time regularity are new.

More Thresholds

\star In Jaramillo, Nourdin and Peccati (2021): for general $\ell=$ $1,2, \ldots$, if

$$
0<H<\frac{1}{2 \ell+1}
$$

then the ℓ th spatial derivative $\left\{L_{t}^{(\ell, H)}(\lambda): t \geq 0\right\}$ exists, with similar regularity properties.

* The existence of the ℓ th spatial derivative of the local time of B is proved in Geman \& Horowitz (1981), as an application of results by Berman (1971).
* Sharpness of the restriction $0<H<\frac{1}{3}$ and time regularity are new.

Main Results: $H<\frac{1}{3}$

Theorem (Jaramillo, Nourdin \& Peccati, 2021; Jaramillo, Nourdin, Nualart \& Peccati, 2023)
For f s.t. $\int|f(y)|\left(1+|y|^{v}\right) d y<\infty$ and $\lambda \in \mathbb{R}$, one has that both

$$
C_{n}(t):=n^{H}\left(n^{H-1} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{H}\left(B_{\frac{i-1}{n}}^{H}-\lambda\right)\right)-L_{t}^{H}(\lambda) \int f(x) d x\right)
$$

and

$$
D_{n}(t):=n^{H}\left(n^{H} \int_{0}^{t} f\left(n^{H}\left(B_{s}^{H}-\lambda\right)\right) d s-L_{t}^{H}(\lambda) \int f(x) d x\right)
$$

converge in $L^{2}(\mathbb{P})$ to

$$
L_{t}^{(1, H)}(\lambda) \times \int y f(y) d y, \quad \text { as } n \rightarrow \infty
$$

Idea of the Proof

* The discrete-time setting is the most difficult to deal with.
* Substantial technical contribution: showing that

$$
\mathbb{E}\left[\left(C_{n}(t)-D_{n}(t)\right)^{2}\right] \rightarrow 0
$$

(with some uniformity). Techniques: Fourier Analysis, Malliavin Calculus.
\star Once this is done, we exploit the representation

$$
\begin{aligned}
& D_{n}(t)=n^{H}\left(n^{H} \int_{0}^{t} f\left(n^{H}\left(B_{s}^{H}-\lambda\right)\right) d s-L_{t}^{H}(\lambda) \int f(y) d y\right) \\
& =n^{H}\left(n^{H} \int L_{t}(x) f\left(n^{H}(x-\lambda)\right) d x-L_{t}^{H}(\lambda) \int f(y) d y\right) \\
& =n^{H}\left(\int_{\mathbb{R}} f(y)\left[L_{t}^{H}\left(\lambda+\frac{y}{n^{H}}\right)-L_{t}^{H}(\lambda)\right] d y\right) .
\end{aligned}
$$

Notation

\star To fix ideas, from now on we fix $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous, with compact support, and such that $\int f(x) d x=0$.
\star Then f admits a unique antiderivative F such that $F \in L^{1}$. We write

$$
\mu[F]:=\int F(x) d x=-\int x f(x) d x .
$$

Quantitative Versions: First Order

Theorem (Jaramillo, Nourdin \& Peccati, 2021)
For every $0<H<1 / 3$,
$\mathbb{E}\left[\left(n^{2 H-1} \sum_{i=1}^{\lfloor n t\rfloor} f\left(n^{H}\left(B_{\frac{i-1}{n}}-\lambda\right)\right)+L_{t}^{(1, H)}(\lambda) \mu[F]\right)^{2}\right] \leq \mathrm{Cn}^{-2 H \kappa}$,
for every $\kappa<\frac{1}{2}\left(\frac{1}{H}-3\right) \wedge \frac{1}{2}$, where C depends on t.
If $0<H<1 / 4$, then the convergence is uniform on compact intervals.

Quantitative Versions: Second Order

Theorem (Jaramillo, Nourdin \& Peccati, 2021)

Fix $0<H<1 / 5$ and assume that $\widetilde{F} \in L^{1}(\mathbb{R})$, where
$\widetilde{F}(x):=x F(x)$.
Then, for every $t>0$ and $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
\mathbb{E}\left[n ^ { H } \left(\left(n ^ { 2 H - 1 } \sum _ { i = 1 } ^ { \lfloor n t \rfloor } f \left(n ^ { H } \left(B_{\frac{i-1}{n}}\right.\right.\right.\right.\right. & \left.-\lambda))+L_{t}^{(1, H)}(\lambda) \mu[F]\right) \\
& \left.\left.-L_{t}^{(2, H)}(\lambda) \mu[\widetilde{F}]\right)^{2}\right] \leq C\left(n^{-2 H \kappa}\right)
\end{aligned}
$$

for every $\kappa<\frac{1}{2}\left(\frac{1}{H}-5\right) \wedge \frac{1}{2}$.
For $0<H<1 / 6$, the above convergence is uniform on compact intervals.

The General Picture

Our results deal with arbitrary derivatives. For instance, if $0<H<\frac{1}{2 \ell+1}$ and g is smooth and such that $\int g^{(i)}(x) d x=0$, for all $i=1, \ldots, \ell$,
$\left.\mathbb{E}\left[\left(n^{H(\ell+1)-1} \sum_{i=1}^{\lfloor n t\rfloor} g^{(\ell)} n^{H}\left(B_{\frac{i-1}{n}}-\lambda\right)\right)+(-1)^{1+\ell} L_{t}^{(\ell, H)}(\lambda) \mu[g]\right)^{2}\right]$

$$
\leq \mathrm{Cn}^{-2 Н \kappa \wedge \kappa}
$$

for every $\kappa \in\left(0, \frac{1}{2}\right)$ such that $H(1+2 \ell+2 \kappa)<1$.

Starting Point

\star Use Fourier inversion to write

$$
\begin{aligned}
& n^{a(\ell+1)-1} \sum_{i=2}^{\lfloor n t\rfloor} g^{(\ell)}\left(n^{a}\left(B_{\frac{i-1}{n}}-\lambda\right)\right) \\
& =\frac{1}{2 \pi n} \int_{\mathbb{R}^{2}} \sum_{i=2}^{\lfloor n t\rfloor}(\mathbf{i} \xi)^{\ell} e^{i \xi\left(B_{\frac{i-1}{}}^{n}-\lambda-\frac{y}{n^{a}}\right)} g(y) d y d \xi \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \sum_{i=2}^{\lfloor n t\rfloor} \int_{\frac{i-1}{n}}^{\frac{i}{n}}(\mathbf{i} \xi)^{\ell} e^{\mathbf{i} \xi\left(B_{\frac{i-1}{n}}^{n}-\lambda-\frac{y}{n^{a}}\right)} g(y) d s d y d \xi .
\end{aligned}
$$

* Exploiting the Fourier representation of $L_{t}^{(\ell)}(\lambda)$,

Starting Point

\star Use Fourier inversion to write

$$
\begin{aligned}
& n^{a(\ell+1)-1} \sum_{i=2}^{\lfloor n t\rfloor} g^{(\ell)}\left(n^{a}\left(B_{\frac{i-1}{n}}-\lambda\right)\right) \\
& =\frac{1}{2 \pi n} \int_{\mathbb{R}^{2}} \sum_{i=2}^{\lfloor n t\rfloor}(\mathbf{i} \xi)^{\ell} e^{\mathbf{i} \xi\left(B_{\frac{i-1}{}}^{n}-\lambda-\frac{y}{n^{a}}\right)} g(y) d y d \xi \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \sum_{i=2}^{\lfloor n t\rfloor} \int_{\frac{i-1}{n}}^{\frac{i}{n}}(\mathbf{i} \xi)^{\ell} e^{\mathbf{i} \xi\left(B_{\frac{i-1}{n}}^{n}-\lambda-\frac{y}{n^{a}}\right)} g(y) d s d y d \xi
\end{aligned}
$$

\star Exploiting the Fourier representation of $L_{t}^{(\ell)}(\lambda)$,

$$
\begin{aligned}
& n^{a(\ell+1)-1} \sum_{i=2}^{\lfloor n t\rfloor} g^{(\ell)}\left(n^{a}\left(B_{\frac{i-1}{n}}-\lambda\right)\right)-\mu[g] L_{t}^{(\ell)}(\lambda) \\
& \approx \frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \sum_{i=2}^{\lfloor n t\rfloor} \int_{\frac{i-1}{n}}^{\frac{i}{n}}(\mathbf{i} \xi)^{\ell}\left(e^{\mathbf{i} \xi\left(B_{\frac{i-1}{n}}-\lambda-\frac{y}{n^{a}}\right)}-e^{\mathbf{i} \xi\left(B_{s}-\lambda\right)}\right) g(y) d s d y d \xi
\end{aligned}
$$

Opening

\star Critical case $H=\frac{1}{3}$ in the discrete-time setting.

* Tightness.
* "Third order results", e.g. in the range $\frac{1}{5}<H<\frac{1}{3}$.
* Inclusion of fractional noise (Podolskij \& Rosenbaum, 2017)
* Arbitrary dimension.
* General Gaussian processes/fields.
* Non-Gaussian fields (see Amorino, Jaramillo \& Podolskij $(2022,2023)$).

Opening

\star Critical case $H=\frac{1}{3}$ in the discrete-time setting. \star Tightness.

* "Third order results", e.g. in the range $\frac{1}{5}<H<\frac{1}{3}$.
* Inclusion of fractional noise (Podolskij \& Rosenbaum, 2017)
* Arbitrary dimension.
* General Gaussian processes/fields.
* Non-Gaussian fields (see Amorino, Jaramillo \& Podolskij (2022, 2023)).

Opening

\star Critical case $H=\frac{1}{3}$ in the discrete-time setting.
\star Tightness.

* "Third order results", e.g. in the range $\frac{1}{5}<H<\frac{1}{3}$.
* Inclusion of fractional noise (Podolskij \& Rosenbaum, 2017)
* Arbitrary dimension.
* General Gaussian processes/fields.

夫 Non-Gaussian fields (see Amorino, Jaramillo \& Podolskij $(2022,2023)$).

Opening

\star Critical case $H=\frac{1}{3}$ in the discrete-time setting.
\star Tightness.

* "Third order results", e.g. in the range $\frac{1}{5}<H<\frac{1}{3}$.
* Inclusion of fractional noise (Podolskij \& Rosenbaum, 2017)
* Arbitrary dimension.
* General Gaussian processes/fields.
* Non-Gaussian fields (see Amorino, Jaramillo \& Podolskij (2022, 2023)).

Opening

\star Critical case $H=\frac{1}{3}$ in the discrete-time setting.
\star Tightness.

* "Third order results", e.g. in the range $\frac{1}{5}<H<\frac{1}{3}$.
* Inclusion of fractional noise (Podolskij \& Rosenbaum, 2017)
\star Arbitrary dimension.
* General Gaussian processes/fields.
* Non-Gaussian fields (see Amorino, Jaramillo \& Podolskij $(2022,2023)$).

Opening

\star Critical case $H=\frac{1}{3}$ in the discrete-time setting.
\star Tightness.

* "Third order results", e.g. in the range $\frac{1}{5}<H<\frac{1}{3}$.
* Inclusion of fractional noise (Podolskij \& Rosenbaum, 2017)
\star Arbitrary dimension.
* General Gaussian processes/fields.
* Non-Gaussian fields (see Amorino, Jaramillo \& Podolskij $(2022,2023)$).

OpENING

\star Critical case $H=\frac{1}{3}$ in the discrete-time setting.

* Tightness.
* "Third order results", e.g. in the range $\frac{1}{5}<H<\frac{1}{3}$.
* Inclusion of fractional noise (Podolskij \& Rosenbaum, 2017)
\star Arbitrary dimension.
* General Gaussian processes/fields.
\star Non-Gaussian fields (see Amorino, Jaramillo \& Podolskij (2022, 2023)).

REFERENCES

1. A. Jaramillo, I. Nourdin and G. Peccati (2021). Approximation of fractional local times: zero energy and derivatives. Ann. App. Probab., 31(5), 2143-2191
2. A. Jaramillo, I. Nourdin, D. Nualart and G. Peccati (2023). Limit theorems for additive functionals of the fractional Brownian motion. Ann. Probab., to appear.

THANK YOU FOR YOUR ATTENTION!

