Thick points of the planar GFF are totally disconnected for all $\gamma \neq \mathbf{0}$

Léonie Papon

Joint work with Juhan Aru and Ellen Powell

March 29, 2023

1/10

Definition of the Dirichlet GFF

Let $D \subset \mathbb{C}$ be an open and simply connected domain.

Let $D \subset \mathbb{C}$ be an open and simply connected domain.

Definition

The Gaussian free field in D with Dirichlet boundary conditions is a centered Gaussian process h indexed by smooth functions with compact support in D and whose covariance is given by, for f and g two such functions,

$$\mathbb{E}[(h,f)(h,g)] = \int_{D \times D} f(x) G_D(x,y) g(y) dx dy$$

where G_D is the Green function of (minus) the Laplacian in D with Dirichlet boundary conditions normalized such that $G_D(x, y) \sim \frac{-1}{2\pi} \log(|x - y|)$ when $x \to y$.

Thick points of the GFF

Let ρ_r^z be the uniform measure on the circle $\partial B(z, r)$ of radius r centered at z. The circle average process of h is

 $((h, \rho_r^z), z \in D, r > 0).$

Thick points of the GFF

Let ρ_r^z be the uniform measure on the circle $\partial B(z, r)$ of radius r centered at z. The circle average process of h is

$$((h, \rho_r^z), z \in D, r > 0).$$

It has a version which is almost surely Hölder continuous and, for $z \in D$,

 $((h, \rho_{e^{-t}}^z), t \ge 0)$ is a linear Brownian motion.

Thick points of the GFF

Let ρ_r^z be the uniform measure on the circle $\partial B(z, r)$ of radius r centered at z. The circle average process of h is

$$((h, \rho_r^z), z \in D, r > 0).$$

It has a version which is almost surely Hölder continuous and, for $z \in D$,

 $((h, \rho_{e^{-t}}^z), t \ge 0)$ is a linear Brownian motion.

Definition

Let $\gamma \in \mathbb{R}$. The set of γ -thick points of h is

$$\mathcal{T}_{\gamma}(h):=ig\{z\in D: \lim_{r
ightarrow 0}rac{\sqrt{2\pi}(h,
ho_r^z)}{\log 1/r}=\gammaig\}.$$

Known results about the geometry of the set of thick points

Theorem (Hu, Miller, Peres, 2010)

• for $|\gamma| > 2$, $\mathcal{T}_{\gamma}(h)$ is almost surely empty;

4/10

Known results about the geometry of the set of thick points

Theorem (Hu, Miller, Peres, 2010)

- for $|\gamma| > 2$, $\mathcal{T}_{\gamma}(h)$ is almost surely empty;
- for $\gamma \in [-2, 2]$, $\mathcal{T}_{\gamma}(h)$ has almost sure Hausdorff dimension $2 \gamma^2/2$;

4 / 10

Known results about the geometry of the set of thick points

Theorem (Hu, Miller, Peres, 2010)

• for $|\gamma| > 2$, $\mathcal{T}_{\gamma}(h)$ is almost surely empty;

• for $\gamma \in [-2,2]$, $\mathcal{T}_{\gamma}(h)$ has almost sure Hausdorff dimension $2 - \gamma^2/2$;

• $\mathcal{T}_{\gamma}(h)$ is conformally invariant, that is if $\varphi : D \to \tilde{D}$ is a conformal map, then almost surely for any $\gamma \in [-2, 2]$, $\varphi(\mathcal{T}_{\gamma}(h)) = \mathcal{T}_{\gamma}(\tilde{h})$ where \tilde{h} is a GFF with Dirichlet boundary conditions in \tilde{D} .

A set U is said to be totally disconnected if for each point $x \in U$, the connected component of x in U consists of just that point x.

A set U is said to be totally disconnected if for each point $x \in U$, the connected component of x in U consists of just that point x.

Theorem (Aru, P., Powell, 2022)

Let h be a GFF with Dirichlet boundary conditions in \mathbb{D} . Then almost surely for any $\gamma \in (0, 2]$, $\mathcal{T}_{\gamma}(h)$ is totally disconnected.

1. Use an alternative, but natural, definition of the thick points of h via the level-line coupling between h and a nested CLE₄ Γ .

1. Use an alternative, but natural, definition of the thick points of h via the level-line coupling between h and a nested CLE₄ Γ .

Figure 1: Simulation of non-nested CLE₄ by David Wilson

Léonie Papon

UK Easter probability meeting

1. Use an alternative, but natural, definition of the thick points of h via the level-line coupling between h and a nested CLE₄ Γ . Conditionally on $\Gamma^{(n)}$,

$$\begin{split} h &= \sum_{\ell \in \Gamma^{(n)}} h_{\ell} + H, \quad \text{where} \quad H_{|\operatorname{Int}(\ell)} = \sum_{j=1}^{n} \xi_{\ell(j)}, \\ \text{with} \quad \operatorname{Int}(\ell) \subset \operatorname{Int}(\ell(n-1)) \subset \cdots \subset \operatorname{Int}(\ell(1)) \quad \text{and} \\ \mathbb{P}(\xi_{j} = -2\lambda) = \mathbb{P}(\xi_{j} = 2\lambda) = \frac{1}{2}, \quad (\xi_{j})_{j} \text{ independent}, \quad \lambda = \sqrt{\pi/8}. \end{split}$$

1. Use an alternative, but natural, definition of the thick points of h via the level-line coupling between h and a nested CLE₄ Γ . Conditionally on $\Gamma^{(n)}$,

$$\begin{split} h &= \sum_{\ell \in \Gamma^{(n)}} h_{\ell} + H, \quad \text{where} \quad H_{|\operatorname{Int}(\ell)} = \sum_{j=1}^{n} \xi_{\ell(j)}, \\ \text{with} \quad \operatorname{Int}(\ell) \subset \operatorname{Int}(\ell(n-1)) \subset \cdots \subset \operatorname{Int}(\ell(1)) \quad \text{and} \\ \mathbb{P}(\xi_{j} = -2\lambda) = \mathbb{P}(\xi_{j} = 2\lambda) = \frac{1}{2}, \quad (\xi_{j})_{j} \text{ independent}, \quad \lambda = \sqrt{\pi/8}. \end{split}$$

For $z \in \mathbb{D}$ and r > 0, denote by I(z, r) the generation of the first loop intersecting B(z, r). For $\gamma \in \mathbb{R}$, we define

$$\Phi_{\gamma}(h) := \{z \in \mathbb{D} : \lim_{r \to 0} \frac{H_{l(z,r)-1}(z)}{-\log r} = \frac{\gamma}{\sqrt{2\pi}}\}.$$

1. Use an alternative, but natural, definition of the thick points of h via the level-line coupling between h and a nested $\text{CLE}_4 \ \Gamma$. For $\gamma \in \mathbb{R} \setminus \{0\}$, denoting $\Phi_{\gamma}(h)$ this set of thick points, we show the following.

1. Use an alternative, but natural, definition of the thick points of h via the level-line coupling between h and a nested $\text{CLE}_4 \ \Gamma$. For $\gamma \in \mathbb{R} \setminus \{0\}$, denoting $\Phi_{\gamma}(h)$ this set of thick points, we show the following.

Theorem (Aru, P., Powell, 2022)

Let h be a GFF in \mathbb{D} with Dirichlet boundary conditions. Then, with probability one, $\mathcal{T}_{\gamma}(h) = \Phi_{\gamma}(h)$ for every $\gamma \in [-2, 2] \setminus \{0\}$.

Recalling the definition of $\Phi_{\gamma}(h)$

$$\Phi_{\gamma}(h) = \{z \in \mathbb{D} : \lim_{r \to 0} \frac{H_{I(z,r)-1}(z)}{-\log r} = \frac{\gamma}{\sqrt{2\pi}}\},$$

we can see that, roughly speaking, for $\gamma \in [-2, 2] \setminus \{0\}$, the points in $\Phi_{\gamma}(h)$ should be points in $\mathbb{D} \setminus \Gamma$, where Γ is the nested CLE_4 in \mathbb{D} coupled to h as its level lines. So the question becomes:

is $\mathbb{D} \setminus \Gamma$ almost surely totally disconnected?

Recalling the definition of $\Phi_{\gamma}(h)$

$$\Phi_{\gamma}(h) = \{z \in \mathbb{D} : \lim_{r \to 0} \frac{H_{I(z,r)-1}(z)}{-\log r} = \frac{\gamma}{\sqrt{2\pi}}\},$$

we can see that, roughly speaking, for $\gamma \in [-2, 2] \setminus \{0\}$, the points in $\Phi_{\gamma}(h)$ should be points in $\mathbb{D} \setminus \Gamma$, where Γ is the nested CLE_4 in \mathbb{D} coupled to h as its level lines. So the question becomes:

is $\mathbb{D} \setminus \Gamma$ almost surely totally disconnected?

Theorem (Aru, P., Powell, 2022)

Let Γ be a nested CLE₄ in \mathbb{D} . Then the complement of Γ , i.e., the complement in \mathbb{D} of the union of all loops in Γ , is almost surely totally disconnected.

 The set of thick points of a weighted nesting CLE_κ field with κ ∈ (8/3, 4] and distribution μ having 0 mean and finite second moment is almost surely totally disconnected.

- The set of thick points of a weighted nesting CLE_κ field with κ ∈ (8/3, 4] and distribution μ having 0 mean and finite second moment is almost surely totally disconnected.
- Application to a certain class of local sets of the GFF.

- The set of thick points of a weighted nesting CLE_κ field with κ ∈ (8/3, 4] and distribution μ having 0 mean and finite second moment is almost surely totally disconnected.
- Application to a certain class of local sets of the GFF.
- Application to supercritical LQG metrics.