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Gibbs point processes

▶ (X,X ) Borel space with σ-finite measure λ
▶ ξ Gibbs point process with Papangelou intensity (PI) κ if

E
[∫

f (x , ξ) ξ(dx)

]
=

∫
E [f (x , ξ + δx)κ(x , ξ)] λ(dx), f ≥ 0.

▶ Hamiltonian H : N× N→ (−∞,∞] (based on κ) defined by

H(µ, ψ) :=


0, if µ(X) = 0,
− log κm(x1, . . . , xm, ψ), if µ = δx1 + · · ·+ δxm ,

∞, if µ(X) =∞,

where we define recursively

κm+1(x1, . . . , xm+1, µ)

:= κ(xm+1, µ+ δx1 + · · ·+ δxm)κm(x1, . . . , xm, µ), m ≥ 1.



Assumptions on the PI

Assume

κ(x , µ) ≤ α for some α > 0 (DOM),
κ(x , µ) = κ(x ,C (x , µ)) (LOC),

where

C (x , µ) :=
∑
y∈µ

1{y ̸= x} 1{x and y are connected via µ} δy

is the connected component of x in µ wrt some symmetric relation
∼ on X.

Examples: Strauss process, Area interaction model,
Widom-Rowlinson model, Continuum random cluster model



Disagreement coupling

Let
▶ λ diffuse and σ-finite
▶ W ∈ X with λ(W ) <∞
▶ ψ ∈ NW c boundary condition

Put
κW ,ψ(x , µ) := 1{x ∈W }κ(x , µ ∪ ψ).

Theorem. (Last–O. 22)
We find Gibbs processes ξ, ξ′ on W with PI κW ,ψ, κW ,ψ′ such that
▶ Every point in ξ∆ξ′ is connected via ξ ∪ ξ′ to ψ ∪ ψ′.
▶ There is a Poisson process η with intensity measure αλ(· ∩W )

such that
supp(ξ ∪ ξ′) ⊂ supp(η) a.s.



Poisson process approximation via Stein’s method

Assume that:
▶ Γ finite point process with intensity measure K

▶ For K -a.a. x ∈ X, let Γx
d
= Γ and let Γx be a reduced Palm

version of Γ at x
▶ ζ finite Poisson process with intensity measure L

Then
▶ (Barbour–Brown 92):

dTV(Γ, ζ) ≤ dTV (K, L) +
∫

E(Γx∆Γx)(X)K(dx).

▶ (Bobrowski–Schulte–Yogeshwaran 22):

dKR(Γ, ζ) ≤ dTV (K, L) + 2
∫

E(Γx∆Γx)(X)K(dx).



Poisson approximation of Gibbs functionals

Let X := Rd ×Y and λ := λd ⊗Q. For compact W ⊂ Rd consider

Γ :=
∑

(x ,r)∈ξ∩W×Y

g(x , r , ξ) δ(x ,r),

where g : X× N→ {0, 1} satisfies

g(x , r , µ) = g(x , r , µ ∩ Rx), (x , r , µ) ∈ Rd × Y× N,

with Rx := (x + R)× Y for some Borel set R ⊂ Rd .

Lemma. The reduced Palm process ξx ,r ,Γ of ξ at (x , r) wrt Γ is a
Gibbs process with PI

κx ,r (y , s, µ) := κ(y , s, µ+ δ(x ,r))
g(x , r , µ+ δ(y ,s))

g(x , r , µ)
.



Theorem. (Last–O. 22) Let R ⊂ S , Sx := (x + S)× Y and let ζ
be a finite Poisson process on X. Then

dKR(Γ, ζ) ≤ dTV(E[Γ],E[ζ]) + T1 + T2 + T3,

where

T1 =2
∫∫

W×W
E[g(x , r , ξ)κ(x , r , ξ)]E[g(y , s, ξ)κ(y , s, ξ)]

× 1{Sx ∩ Sy ̸= ∅} d(x , y)Q2(d(r , s)),

T2 =2
∫∫

W×W
E[g(x , r , ξ + δ(y ,s))g(y , s, ξ + δ(x ,r))κ2((x , r), (y , s), ξ)]

× 1{Sx ∩ Sy ̸= ∅} d(x , y)Q2(d(r , s)),

T3 =2α2
∫
W×W

1{Sx ∩ Sy = ∅}P(Rx
η←→ (W + S)c ∪ Ry ) d(x , y),

where η is a Poisson process on X with intensity measure αλd ⊗Q.



Interpretation of P(Rx
η←→ (W + S)c ∪ Ry)



Normal approximation of Gibbs functionals

Now assume
▶ Y := [0, r0] for some r0 > 0
▶ (x , r) ∼ (y , s) ⇔ ∥x − y∥ ≤ r + s

▶ κ(x , µ) ≤ α < αc(r0) critical intensity for Poisson Boolean
percolation with radius r0

▶ g : X× N→ R translation invariant
▶ |Wn| → ∞ as n→∞

Consider

Γ :=
∑

(x ,r)∈ξ

g(x , r , ξ)δ(x ,r) and Hn := Γ(Wn × Y).

Aim: Show that Hn−EHn√
Var(Hn)

→ N (0, 1) under conditions on g and ξ.



Normal approximation of Gibbs functionals

Chen–Röllin–Xia (2021): dK
(

Hn−EHn√
Var(Hn)

,N (0, 1)
)

can be bounded

using a coupling of Γ with Palm versions Γx , x ∈ X.

Difficulty: Disagreement coupling uses different version of Γ for
each x ∈ X!

Theorem. (Hirsch–O.–Svane 23) Assume that g together with
ξ satisfy conditions on moments, variance lower bounds and
exponential stabilization. Then

dK

(
Hn − EHn√

Var(Hn)
,N (0, 1)

)
≤ O

(
log |Wn|a√
|Wn|

)
,

where dK(X ,Y ) := supu∈R |P(X ≤ u)− P(Y ≤ u)| Kolmogorov
distance.



Open and related problems

▶ What happens beyond the critical threshold/at criticality?

▶ Disagreement coupling for Gibbs processes not satisfying
(LOC)?
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