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Gibbs point processes

» (X, X) Borel space with o-finite measure A
» ¢ Gibbs point process with Papangelou intensity (Pl) & if

E [ / f(x,g)f(dx)] _ / E[F(x,€ + 0, )r(x, )] A(dx), £ > 0.

» Hamiltonian H: N x N — (—o0, 0] (based on k) defined by

H(p, ) == —log km(x1y -y Xm, ), if =0 + -+ + 0x,,

where we define recursively

K“m+1(X17"'aXm+1’/JJ)
= K(Xm+1aﬂ + 5)(1 + 4+ 6Xm)’<'m(X1a cee 7Xm7,u)7 m 2> 1.



Assumptions on the Pl

Assume

k(x, p) < a for some aw > 0 (DOM),
R(x; 1) = K(x; C(x; 1)) (LOC),

where

C(x,p) = Z 1{y # x} 1{x and y are connected via p} d,
yEH

is the connected component of x in u wrt some symmetric relation
~ on X.

Examples: Strauss process, Area interaction model,
Widom-Rowlinson model, Continuum random cluster model



Disagreement coupling

Let
» )\ diffuse and o-finite
> W e X with A(W) < o

» ) € Ny boundary condition
Put

Ew.ap(x, 1) = 1{x € W}k(x, pU).

Theorem. (Last-0. 22)
We find Gibbs processes &, & on W with Pl Ky 4, Ky such that
» Every point in EAE is connected via £ U to ¢ U,

» There is a Poisson process 1 with intensity measure aA(- N W)
such that

supp(§ UE') Csupp(n) as.



Poisson process approximation via Stein's method

Assume that:

» [ finite point process with intensity measure K

» For K-a.a. x € X, let ', 9 I and let ™™ be a reduced Palm
version of I at x

> ( finite Poisson process with intensity measure L

Then
» (Barbour—Brown 92):

ar(r.0) < dry(K,L) + [ BTAP)()K(d).
» (Bobrowski—Schulte—Yogeshwaran 22):

dka(T.0) < dry(K.L) + 2 / BT A)(X) K(dx).



Poisson approximation of Gibbs functionals

Let X:=R? x Y and A := A ® Q. For compact W C RY consider

M= Z g(Xaraé)é(X,r)v

(x,r)eeNWxyY
where g: X x N — {0, 1} satisfies
gx,rop)=g(x,r,uNRy), (x,r,p)€ RY x Y x N,
with R, := (x + R) x Y for some Borel set R C RY.

Lemma. The reduced Palm process &% of ¢ at (x,r) wrt [ is a
Gibbs process with Pl

(X> ry g+ 5(y,s)).

g
K" (y, s, = Ky, s, + O(x,r
(y :u’) (.y H (x, )) g(x, nu)



Theorem. (Last-0. 22) Let RC S, S¢:=(x+S) x Y and let ¢
be a finite Poisson process on X. Then

dKR(F,C) < dTv(E[r],E[C]) + T1+ T+ T3,

where

Ti=2 [ Blelxr Onter O Ele(y. s, On(y.5.)]
x 1{Sc NS, # 0} d(x,y) Q*(d(r,s)),

Ty =2 //WXW E[g(Xa r,§+ 6(y,s))g()/7 s, &+ 5(x,r))"{2((xa I’), (Ya 5)7 f)]
x 1{Sc NS, # 0} d(x,y) Q*(d(r,s)),

T3 =202 /W » 1{S, NS, = 0} P(R, « = (W + S)°UR,)d(x,y),

where 7 is a Poisson process on X with intensity measure aly ® Q.



Interpretation of P(Ry +— (W + S)°UR,)

-

22x+R)<—>(W+S)C W*N
)

W
r+ R

y+ R
(z+R) — (y+R) @

o




Normal approximation of Gibbs functionals

Now assume
» Y := [0, rp] for some rp > 0
>(Xar)fv(ng) ~ HX—yHSI’—i—S

» r(x, 1) < a < ac(rn) critical intensity for Poisson Boolean
percolation with radius rg

> g : X x N — R translation invariant
» |W,| = oo as n— oo

Consider

M= Y g(x,r&dxrn and  Hy:=T(W, xY).
(x,r)eg

Aim: Show that H:/;if?:") — N(0,1) under conditions on g and &.



Normal approximation of Gibbs functionals

Chen—Réllin—Xia (2021): dK(&%,N(O, 1)) can be bounded

using a coupling of I with Palm versions ', x € X.

Difficulty: Disagreement coupling uses different version of I for
each x € XI

Theorem. (Hirsch—0O.-Svane 23) Assume that g together with
¢ satisfy conditions on moments, variance lower bounds and
exponential stabilization. Then

H, —EH, log |W,|?
di [ 22200 ar0,1) ) < o[ 22200 )
K( Var(H,) ( )) ( NIA )

where di (X, Y) 1= sup,cp [P(X < u) — P(Y < u)| Kolmogorov
distance.



Open and related problems

» What happens beyond the critical threshold/at criticality?

» Disagreement coupling for Gibbs processes not satisfying

(LOC)?



G. Last and MO (2022+). Disagreement coupling of
Gibbs processes with an application to Poisson approxi-
mation. To appear in Ann. Appl. Probab.

C. Hirsch, MO and A. M. Svane (2023+). Normal ap-

proximation for Gibbs processes via disagreement cou-
plings. In preparation.

Thank youl!



