Tail asymptotics for exponential functionals of subordinators and extinction times of self-similar fragmentation processes

Bénédicte Haas, Université Sorbonne Paris Nord UK Easter Probability Meeting

Exponential functional of subordinators

 $(\xi_r, r \ge 0)$: subordinator, i.e. an increasing Lévy process, with no drift and no killing Distribution characterized by its Laplace exponent

$$\phi(x) = \int_0^\infty (1 - \exp(-xu))\pi(\mathrm{d} u), x \ge 0$$

where $\int_0^\infty (1 \wedge u) \pi(du) < \infty$ (then: $\mathbb{E}[\exp(-x\xi_r)] = \exp(-r\phi(x)), \forall r, x \ge 0$)

Exponential functional of ξ :

 $I=\int_0^\infty \exp(-\xi_r)\mathrm{d}r$

Exponential functional of subordinators

 $(\xi_r, r \ge 0)$: subordinator, i.e. an increasing Lévy process, with no drift and no killing Distribution characterized by its Laplace exponent

$$\phi(x) = \int_0^\infty (1 - \exp(-xu))\pi(\mathrm{d} u), x \ge 0$$

where $\int_0^\infty (1 \wedge u) \pi(du) < \infty$ (then: $\mathbb{E}[\exp(-x\xi_r)] = \exp(-r\phi(x)), \forall r, x \ge 0$)

Exponential functional of ξ :

$$I = \int_0^\infty \exp(-\xi_r) \mathrm{d}r$$

Such random variables:

- are involved in the description of various processes ranging from the analysis of algorithms to coagulation or fragmentation processes
- correspond to the extinction times of non-increasing, non-negative self-similar Markov processes (by Lamperti's transformation)

Survey: Bertoin-Yor 05 + many papers since then.

Moments and density

 ξ : subordinator of Laplace exponent $\phi(x) = \int_0^\infty (1 - \exp(-xu))\pi(du)$

 $I = \int_0^\infty \exp(-\xi_r) \mathrm{d}r$

Proposition (Carmona-Petit-Yor 97) For all $k \in \mathbb{N}$, $\mathbb{E}[I^k] = \frac{k!}{\phi(1) \dots \phi(k)}$.

 \Rightarrow *I* has exponential moments ($\mathbb{E}[e^{aI}] < \infty$ for some a > 0)

Proposition (Carmona-Petit-Yor 97, Pardo-Rivero-Schaik 13)

I has a density on \mathbb{R}^*_+ , denoted by *k*, which satisfies

$$k(x) = \int_0^\infty \left(\int_x^{xe^v} k(y) \mathrm{d}y\right) \pi(\mathrm{d}v), \quad x > 0$$

On the logarithm of the tail of /

Let
$$\psi$$
 be the inverse of $x \mapsto x/\phi(x)$: $\frac{\psi(x)}{\phi(\psi(x))} = x$, for $x > x_{\psi}$

Theorem (Rivero 03)

If ϕ is regularly varying at ∞ with index $\gamma \in [0, 1)$, then:

$$\ln \mathbb{P}(l > t) \underset{t \to \infty}{\sim} -(1 - \gamma)\psi(t).$$

On the logarithm of the tail of /

Let
$$\psi$$
 be the inverse of $x \mapsto x/\phi(x)$: $\frac{\psi(x)}{\phi(\psi(x))} = x$, for $x > x_{\psi}$

Theorem (Rivero 03)

If ϕ is regularly varying at ∞ with index $\gamma \in [0, 1)$, then:

$$\ln \mathbb{P}(l > t) \; \underset{t \to \infty}{\sim} \; -(1 - \gamma)\psi(t).$$

Main hypothesis in the following (not restrictive at all!):

$$\limsup_{x \to \infty} \frac{\phi'(x)x}{\phi(x)} < 1 \tag{H}$$

Theorem (H.-Rivero 12)

Assume (H). Then

$$\ln \mathbb{P}(l > t) \underset{t \to \infty}{\sim} - \int_{x_{\psi}}^{t} \frac{\psi(r)}{r} \mathrm{d}r.$$

In some special cases when π is finite, Maulik-Zwart 06 *remove the logarithm*; e.g. when $\pi(0, u) = bu + o(u^{1+\delta})$ as $u \downarrow 0$ for some $b \ge 0, \delta > 0$, then

$$\mathbb{P}(l > t) \underset{t \to \infty}{\sim} c t^{\frac{p}{|\pi|}} \exp(-|\pi|t).$$

On the tail of /

k: density of I,
$$\psi$$
 defined by $\frac{\psi(x)}{\phi(\psi(x))} = x$

Theorem 1 (H. 22; Minchev-Savov 22)

Assume (H). Then there exists $c\in(0,\infty)$ such that

$$\mathbb{P}(l > t) = c \frac{t(\psi'(t))^{1/2}}{\psi(t)} \exp\left(-\int_{x_{\psi}+1}^{t} \frac{\psi(r)}{r} dr\right) \left(1 + O\left(\frac{1}{\psi(t)}\right)\right)$$

and

$$k(t) = c \left(\psi'(t)\right)^{1/2} \exp\left(-\int_{x_{\psi}+1}^{t} \frac{\psi(r)}{r} dr\right) \left(1 + O\left(\frac{1}{\psi(t)}\right)\right)$$

Remarks. Different methods of proof:

- Minchev-Savov 22 obtain an explicit expression of c and estimates of the derivatives of k.
- H.22 obtains the first order $O\left(\frac{1}{\psi(t)}\right)$ and possibility to get further orders by iterating the proof.

On the tail of /

k: density of I,
$$\psi$$
 defined by $\frac{\psi(x)}{\phi(\psi(x))} = x$

Theorem 1 (H. 22; Minchev-Savov 22)

Assume (H). Then there exists $c \in (0, \infty)$ such that

$$\mathbb{P}(l > t) = c \frac{t(\psi'(t))^{1/2}}{\psi(t)} \exp\left(-\int_{x_{\psi}+1}^{t} \frac{\psi(r)}{r} dr\right) \left(1 + O\left(\frac{1}{\psi(t)}\right)\right)$$

and

$$k(t) = c \left(\psi'(t)\right)^{1/2} \exp\left(-\int_{x_{\psi}+1}^{t} \frac{\psi(r)}{r} \mathrm{d}r\right) \left(1 + O\left(\frac{1}{\psi(t)}\right)\right)$$

Ex.1: Stable subordinators $\phi(x) = x^{\alpha}, 0 < \alpha < 1$, then

$$\mathbb{P}(l > t) \underset{t \to \infty}{\propto} t^{-\frac{\alpha}{2(1-\alpha)}} \exp\left(\left(-(1-\alpha)t^{\frac{1}{1-\alpha}}\right)\left(1+O\left(t^{-\frac{1}{1-\alpha}}\right)\right).$$

Ex.2: Gamma subordinator $\pi(du) = u^{-1}e^{-u}du$, then $\phi(x) = \ln(1+x)$ and $\mathbb{P}(l > t) \underset{t \to \infty}{\propto} \exp\left(-t\ln(t) - t\ln(\ln(t)) + t + O\left(\frac{t\ln(\ln(t))}{\ln(t)}\right)\right)$

On the tail of /

k: density of *I*,
$$\psi$$
 defined by $\frac{\psi(x)}{\phi(\psi(x))} = x$

Theorem 1 (H. 22; Minchev-Savov 22)

Assume (H). Then there exists $c \in (0, \infty)$ such that

$$\mathbb{P}(l > t) = c \frac{t(\psi'(t))^{1/2}}{\psi(t)} \exp\left(-\int_{x_{\psi}+1}^{t} \frac{\psi(r)}{r} dr\right) \left(1 + O\left(\frac{1}{\psi(t)}\right)\right)$$

and

$$k(t) = c \left(\psi'(t)\right)^{1/2} \exp\left(-\int_{x_{\psi}+1}^{t} \frac{\psi(r)}{r} \mathrm{d}r\right) \left(1 + O\left(\frac{1}{\psi(t)}\right)\right)$$

Ex.3: π **probability** such that $\pi(0, u) = \sum_{i=1}^{p} c_i u^{\gamma_i} + O(u^{1+\varepsilon})$ as $u \downarrow 0$ where $1/2 < \gamma_1 < \ldots < \gamma_{p-1} < \gamma_p = 1, \varepsilon > 0$, then:

$$\mathbb{P}(l > t) \underset{t \to \infty}{\propto} t^{c_p} \exp\left(-t + \sum_{i=1}^{p-1} \frac{c_i \Gamma(1 + \gamma_i)}{1 - \gamma_i} t^{1 - \gamma_i}\right)$$

Idea of proof: compare two integral equations

On the one hand, using that $\frac{\psi(x)}{\phi(\psi(x))} = x, x > x_{\psi}$, we have:

$$\frac{\psi(x)}{x} = \phi(\psi(x)) = \int_0^\infty \left(1 - \exp\left(-\frac{\psi(x)}{x}xv\right)\right) \pi(\mathrm{d}v), \quad \forall x > x_\psi. \tag{1}$$

On the other hand, setting $f(x) := -\ln \mathbb{P}(l > x)$ and using the equation satisfied by k, we get:

$$f'(x) = \int_0^\infty \left(1 - \exp\left(-\int_x^{xe^\nu} f'(u) \mathrm{d}u\right) \right) \pi(\mathrm{d}\nu), \quad \forall x > 0.$$
 (2)

<u>**Rk.:</u>** $\int_{x}^{xe^{v}} f'(u) du \approx xvf'(x)$ when $v \downarrow 0$ </u>

Equations (1) and (2) are "close". More precisely we have:

Proposition 1 (H.22)

Assume (**H**). Then as $x \to \infty$

$$f'(x) = \frac{\psi(x)}{x} + \frac{\psi'(x)}{\psi(x)} - \frac{1}{x} - \frac{\psi''(x)}{2\psi'(x)} + O\left(\frac{\psi'(x)}{(\psi(x))^2}\right)$$

Which immediately implies the estimates on $\mathbb{P}(l > t)$ and k(t) as $t \to \infty$.

Application to the tails of extinction times of self-similar fragmentations Describe the evolution of masses of particles that split repeatedly as time goes on:

- each particle is characterized by a mass $m \in (0, 1]$
- each particle of mass *m* splits in particles of masses (*ms_k*)_{k∈N}, where (*s_k*)_{k∈N} ∈ S[↓] := {(*s_i*)_{*i*≥1} : *s*₁ ≥ *s*₂ ≥ *s*₃...; ∑_{*i*=1}[∞] *s_i* = 1} at rate

$m^{lpha}\nu(\mathrm{d}\mathbf{S})$

where $\alpha \in \mathbb{R}$ and ν is a measure on S^{\downarrow} such that $\int_{S^{\downarrow}} (1 - s_1)\nu(d\mathbf{s}) < \infty$

- different particles evolve independently (branching property)
- the process starts from a unique particle, of mass 1

<u>First ref.</u>: Kolmogorov 41, Filippov 61, Brennan and Durrett 86-87, Bertoin 01-02 Many studies on those models since 2000+.

Self-similar fragmentations

Describe the evolution of masses of particles that split repeatedly as time goes on:

- each particle is characterized by a mass $m \in (0, 1]$
- each particle of mass *m* splits in particles of masses $(ms_k)_{k \in \mathbb{N}}$, where $(s_k)_{k \in \mathbb{N}} \in S^{\downarrow} := \{(s_i)_{i \geq 1} : s_1 \geq s_2 \geq s_3 \dots; \sum_{i=1}^{\infty} s_i = 1\}$ at rate

$m^{\alpha}\nu(d\mathbf{s})$

where $\alpha \in \mathbb{R}$ and ν is a measure on S^{\downarrow} such that $\int_{S^{\downarrow}} (1 - s_1) \nu(d\mathbf{s}) < \infty$

- different particles evolve independently (branching property)
- the process starts from a unique particle, of mass 1

Hypotheses: $\alpha < 0$ and $\nu(S^{\downarrow}) > 0 \Rightarrow$ very small objects split very quickly!

Let ζ be the first time at which the entire initial mass is reduced to an amount of 0-mass particles.

Proposition (Filippov 61, McGrady & Ziff 87, Bertoin 02)

The extinction time ζ is finite almost surely.

Main result: Precise estimate for $\mathbb{P}(\zeta > t)$

The parameters $\alpha < 0$ and ν are fixed; ζ : corresponding extinction time.

Two functions: we let for x large enough

$$\phi(x) = \int_{S^{\downarrow}} (1 - s_1^{x+1}) \nu(\mathrm{d}\mathbf{s}) \quad \text{and} \quad \psi: \quad \frac{\psi(x)}{\phi(\psi(x))} = x$$

Main hypothesis:

$$\limsup_{x \to \infty} \frac{\phi'(x)x}{\phi(x)} < 1 \tag{H}$$

Main result: Precise estimate for $\mathbb{P}(\zeta > t)$

The parameters $\alpha < 0$ and ν are fixed; ζ : corresponding extinction time.

Two functions: we let for x large enough

$$\phi(x) = \int_{S^{\downarrow}} (1 - s_1^{x+1}) \nu(\mathrm{d}\mathbf{s}) \quad \text{and} \quad \psi: \quad \frac{\psi(x)}{\phi(\psi(x))} = x$$

Main hypothesis:

$$\limsup_{x \to \infty} \frac{\phi'(x)x}{\phi(x)} < 1 \tag{H}$$

Theorem 2 (H. 22) Assume (H). Then $\mathbb{P}(\zeta > t) \asymp \left(\frac{\psi(|\alpha|t)}{t}\right)^{\frac{1}{|\alpha|}-1} \left(\psi'(|\alpha|t)\right)^{\frac{1}{2}} \exp\left(-\int_{1}^{t} \frac{\psi(|\alpha|r)}{|\alpha|r} dr\right)$ where for positive functions $f, g, f(t) \asymp g(t)$ means there exists a, b > 0 such that

 $a \cdot g(t) \leq f(t) \leq b \cdot g(t)$ for t large enough.

Here $\psi(x) \underset{x \to \infty}{\sim} \nu(S^{\downarrow})x$, hence $\int_{1}^{t} \frac{\psi(|\alpha|r)}{|\alpha|r} dr = \nu(S^{\downarrow})t + o(t)$.

Ex.1: Fragmentations into *k* **identical pieces.** A fragment of size *m* splits into *k* fragments of same sizes m/k. For all indices of self-similarity $\alpha < 0$:

 $\mathbb{P}(\zeta > t) \stackrel{\sim}{_{t o \infty}} \operatorname{cexp}(-t)$

for some $c \in (0, \infty)$.

Ex.2: Uniform fragmentation. A fragment of size *m* splits into two fragments of sizes mU, m(1 - U), where *U* is uniform on [0, 1]. For all indices of self-similarity $\alpha < 0$:

$$\mathbb{P}(\zeta > t) \asymp t^{\frac{2}{|\alpha|}} \exp(-t).$$

Ex.3: Beta fragmentations. A fragment of size *m* splits into two fragments of sizes $\overline{mB, m(1 - B)}$, where $B \sim \text{Beta}(a, b), b \ge a > 0$ (density on (0, 1) proportional to $x^{a-1}(1 - x)^{b-1}$). For all indices of self-similarity $\alpha < 0$:

$$\mathbb{P}(\zeta > t) \ \approx \begin{cases} \exp(-t) & \text{if } b \ge a > 1 \\ t^{\frac{1}{|\alpha|}} \exp(-t) & \text{if } b > a = 1 \\ t^{\frac{2}{|\alpha|}} \exp(-t) & \text{if } b = a = 1 \\ \exp\left(-t + \frac{\Gamma(a)}{(1-a)|\alpha|^{s}}t^{1-a}\right) & \text{if } b > 1 > a > 1/2 \\ t^{\frac{1}{|\alpha|}} \exp\left(-t + \frac{\Gamma(a)}{(1-a)|\alpha|^{s}}t^{1-a}\right) & \text{if } 1 = b \ge a > 1/2 \\ \exp\left(-t + \frac{\Gamma(a)}{(1-a)|\alpha|^{s}}t^{1-a} + \frac{\Gamma(b)}{(1-b)|\alpha|^{b}}t^{1-b}\right) & \text{if } 1 > b \ge a > 1/2. \end{cases}$$

If a (and possibly b) is smaller than 1/2, there will be additional terms.

Examples with infinite splitting rates

Ex.4: Aldous' beta-splitting models. Those are scaling limits of discrete models introduced by Aldous 96 to interpolate between some phylogenetic trees.

Parametrized by $\beta \in (-2, -1)$; binary splitting ($\nu(s_1 + s_2 < 1) = 0$) and

$$\nu(s_1 \in \mathrm{d} u) = \frac{-\beta - 1}{\Gamma(2 + \beta)} (u(1 - u))^{\beta}, u \in (1/2, 1) \quad \text{and} \quad \alpha = 1 + \beta.$$

Then for $\beta \in (-2, -3/2]$:

$$\mathbb{P}(\zeta > t) \ \asymp \ t^{\frac{-2\beta-1}{2(\beta+2)}} \exp\left(-a_{\beta}t^{\frac{1}{\beta+2}} + b_{\beta}t\right)$$

where $a_{\beta} = (-\beta - 1)^{\frac{-\beta-1}{\beta+2}} (\beta + 2)$ and $b_{\beta} = \frac{(2\beta+3)\Gamma(\beta+2)}{(\beta+2)\Gamma(2\beta+4)}$.

For $\beta \in (-3/2, 1)$: additional power terms in the exponential.

Examples with infinite splitting rates

Ex.4: Aldous' beta-splitting models. Those are scaling limits of discrete models introduced by Aldous 96 to interpolate between some phylogenetic trees.

Parametrized by $\beta \in (-2, -1)$; binary splitting ($\nu(s_1 + s_2 < 1) = 0$) and

$$\nu(s_1 \in \mathrm{d} u) = \frac{-\beta - 1}{\Gamma(2 + \beta)} (u(1 - u))^{\beta}, u \in (1/2, 1) \quad \text{and} \quad \alpha = 1 + \beta.$$

Then for $\beta \in (-2, -3/2]$:

$$\mathbb{P}(\zeta > t) \ \asymp \ t^{\frac{-2\beta-1}{2(\beta+2)}} \exp\left(-a_{\beta}t^{\frac{1}{\beta+2}} + b_{\beta}t\right)$$

where $a_{\beta} = (-\beta - 1)^{\frac{-\beta - 1}{\beta + 2}} (\beta + 2)$ and $b_{\beta} = \frac{(2\beta + 3)\Gamma(\beta + 2)}{(\beta + 2)\Gamma(2\beta + 4)}$.

For $\beta \in (-3/2, 1)$: additional power terms in the exponential.

Ex.5: Applications to random rooted real trees. Gives/retrieves some precise estimates for the tails of heights of some random real trees. E.g. the Brownian tree, the stable Lévy trees, Ford's phylogenetic trees, etc.

Outline of the proof of Theorem 2

An intermediate tool: the extinction time of a typical point, denoted by I

Proposition (Bertoin 02)

 $I = \int_0^\infty \exp(\alpha \xi_t) \mathrm{d}t$

where ξ is a subordinator with Laplace exponent $\bar{\phi}(x) = \int_{\mathcal{S}} (1 - \sum_{i} s_{i}^{x+1}) \nu(d\mathbf{s})$.

<u>Rk.</u>: $\overline{\phi}(x) = \phi(x) + O(2^{-x})$ as $x \to \infty$.

Connections between the tails of ζ and *I*?

Outline of the proof of Theorem 2

An intermediate tool: the extinction time of a typical point, denoted by I

Proposition (Bertoin 02)

 $I = \int_0^\infty \exp(\alpha \xi_t) \mathrm{d}t$

where ξ is a subordinator with Laplace exponent $\overline{\phi}(x) = \int_{\mathcal{S}} (1 - \sum_{i} s_{i}^{x+1}) \nu(d\mathbf{s})$.

<u>Rk.</u>: $\overline{\phi}(x) = \phi(x) + O(2^{-x})$ as $x \to \infty$.

Connections between the tails of ζ and *I*?

Proposition 2 (H. 22)

Assume (**H**). Then,

$$\mathbb{P}(\zeta > t) \asymp \left(\frac{\psi(|\alpha|t)}{t}\right)^{\frac{1}{|\alpha|}} \cdot \mathbb{P}(l > t)$$

Some hints to prove Proposition 2

Step 1. Connections with moments of typical fragments: U_1 , U_2 i.i.d uniform on $\overline{(0, 1)}$, $\Lambda_{(i)}(t)$: mass of the fragment containing U_i at time t, i = 1, 2

Proposition

There exists $c \in (0, \infty)$ such that for all *t* large enough

$$\frac{\mathbb{E}\left[\Lambda_{(1)}(t)\right]^2}{\mathbb{E}\left[\Lambda_{(1)}(t)\Lambda_{(2)}(t)\right]} \leq \mathbb{P}(\zeta > t) \leq c \left(\frac{\psi(|\alpha|t)}{t}\right)^{\frac{2}{|\alpha|}} \mathbb{E}\left[\Lambda_{(1)}(t)\right]$$

Idea: Introduce $S(t) := \sum_{i>1} (F_i(t))^2$ and use the first and second moments methods.

Some hints to prove Proposition 2

Step 1. Connections with moments of typical fragments: U_1 , U_2 i.i.d uniform on $\overline{(0, 1)}$, $\Lambda_{(i)}(t)$: mass of the fragment containing U_i at time t, i = 1, 2

Proposition

There exists $c \in (0, \infty)$ such that for all *t* large enough

$$\frac{\mathbb{E}\left[\Lambda_{(1)}(t)\right]^{2}}{\mathbb{E}\left[\Lambda_{(1)}(t)\Lambda_{(2)}(t)\right]} \leq \mathbb{P}(\zeta > t) \leq c \left(\frac{\psi(|\alpha|t)}{t}\right)^{\frac{2}{|\alpha|}} \mathbb{E}\left[\Lambda_{(1)}(t)\right]^{\frac{2}{|\alpha|}}$$

Step 2. Asymptotics of moments of 1 and 2 typical fragments.

Proposition

For all a > 0 there exists a constant $c \in (0, \infty)$ such that

$$\mathbb{E}\left[\Lambda^{a}_{(1)}(t)\right] \underset{t \to \infty}{\sim} c\left(\frac{t}{\psi(|\alpha|t)}\right)^{\frac{a}{|\alpha|}} \mathbb{P}(l > t)$$

Proposition

For all a, b > 0,

$$\mathbb{E}\left[\Lambda^{a}_{(1)}(t)\Lambda^{b}_{(2)}(t)\right] \asymp \left(\frac{t}{\psi(|\alpha|t)}\right)^{\frac{a+b+i}{|\alpha|}} \mathbb{P}(l>t).$$

Let F(t) be the decreasing sequence of masses of particles present at time $t, \forall t \ge 0$.

Yaglom limit of the process F conditioned on non-extinction?

Let F(t) be the decreasing sequence of masses of particles present at time t, $\forall t \ge 0$.

Yaglom limit of the process F conditioned on non-extinction?

Probably:

 $F(t)\left(\frac{\psi(|\alpha|t)}{t}\right)^{\frac{1}{|\alpha|}} |\zeta > t \quad \text{converges in distribution in } \ell_1 \text{ to a non-trivial limit.}$

Main references

□ On exponential functionals of Lévy processes:

- J. Bertoin and M. Yor, *Exponential functionals of Lévy processes*, Probability Surveys, 2 (2005)
- P. Carmona, F. Petit, and M. Yor, On the distribution and asymptotic results for exponential functionals of Lévy processes, Rev. Mat. Iberoamericana, Madrid, 1997
- B. Haas, Precise asymptotics for the density and the upper tail of exponential functionals of subordinators, to appear in Séminaire de Probabilités
- B. Haas and V. Rivero, Quasi-stationary distributions and Yaglom limits of self-similar Markov processes, Stochastic Process. Appl., 122 (2012)
- K. Maulik and B. Zwart, *Tail asymptotics for exponential functionals of Lévy processes*, Stochastic Process. Appl., 116 (2006)
- M. Minchev and M. Savov, Asymptotic of densities of exponential functionals of subordinators, Preprint – arXiv:2104.05381
- J. C. Pardo, V. Rivero, and K. van Schaik, *On the density of exponential functionals of Lévy processes*, Bernoulli, 19 (2013)
- V. Rivero, A law of iterated logarithm for increasing self-similar Markov processes, Stoch. Stoch. Rep., 75 (2003)

Main references

On fragmentation models and the existence of shattering:

- J. Banasiak, W. Lamb, On the application of substochastic semigroup theory to fragmentation models with mass loss, J. Maths. Anal. and Appl., 284 (2003)
- J. Bertoin, *Random fragmentation and coagulation processes*, vol. 102 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2006
- A.N. Kolmogorov, Uber das logarithmisch normale Verteilungsgesetz der Dimensionender Teilchen bei Zerstückelung, C.R. Acad. Sci. U.R.S.S., 31 (1941)
- A. Filippov, On the distribution of the sizes of particles which undergo splitting, Theory Probab. Appl., 6 (1961)
- E.D. McGrady, R.M. Ziff, "Shattering" transition in fragmentation, Phys. Rev. Lett., 58 (1987)

On the tail of the random variables ζ :

- T. Duquesne, M. Wang, Decomposition of Lévy trees along their diameter, Ann. IHP 53 (2017)
- B. Haas, *Loss of mass in deterministic and random fragmentations*, Stochastic Process. Appl., 106 (2003)
- B. Haas, *Tail asymptotics for extinction times of self-similar fragmentations*, To appear in Ann. IHP
- D.P. Kennedy, *The distribution of the maximum Brownian excursion*, J. Appl. Probab., 13 (1976)