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Exponential functional of subordinators

(ξr , r ≥ 0): subordinator, i.e. an increasing Lévy process, with no drift and no killing

Distribution characterized by its Laplace exponent

φ(x) =

∫ ∞
0

(1− exp(−xu))π(du), x ≥ 0

where
∫∞

0 (1 ∧ u)π(du) <∞ (then: E[exp(−xξr )] = exp(−rφ(x)), ∀r , x ≥ 0)

Exponential functional of ξ:

I =

∫ ∞
0

exp(−ξr )dr

Such random variables:

• are involved in the description of various processes ranging from the analysis of
algorithms to coagulation or fragmentation processes

• correspond to the extinction times of non-increasing, non-negative self-similar
Markov processes (by Lamperti’s transformation)

Survey: Bertoin-Yor 05 + many papers since then.
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Moments and density

ξ: subordinator of Laplace exponent φ(x) =
∫∞

0 (1− exp(−xu))π(du)

I =
∫∞

0 exp(−ξr )dr

Proposition (Carmona-Petit-Yor 97)

For all k ∈ N,

E[Ik ] =
k!

φ(1) . . . φ(k)
.

⇒ I has exponential moments (E
[
eaI
]
<∞ for some a > 0)

Proposition (Carmona-Petit-Yor 97, Pardo-Rivero-Schaik 13)

I has a density on R∗+, denoted by k , which satisfies

k(x) =

∫ ∞
0

(∫ xev

x
k(y)dy

)
π(dv), x > 0
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On the logarithm of the tail of I

Let ψ be the inverse of x 7→ x/φ(x): ψ(x)
φ(ψ(x))

= x , for x > xψ

Theorem (Rivero 03)

If φ is regularly varying at∞ with index γ ∈ [0, 1), then:

lnP(I > t) ∼
t→∞

−(1− γ)ψ(t).

Main hypothesis in the following (not restrictive at all!):

lim sup
x→∞

φ′(x)x
φ(x)

< 1 (H)

Theorem (H.-Rivero 12)

Assume (H). Then

lnP(I > t) ∼
t→∞

−
∫ t

xψ

ψ(r)

r
dr .

In some special cases when π is finite, Maulik-Zwart 06 remove the logarithm; e.g.
when π(0, u) = bu + o(u1+δ) as u ↓ 0 for some b ≥ 0, δ > 0, then

P(I > t) ∼
t→∞

c t
b
|π| exp(−|π|t).
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On the tail of I

k : density of I, ψ defined by ψ(x)
φ(ψ(x))

= x

Theorem 1 (H. 22; Minchev-Savov 22)

Assume (H). Then there exists c ∈ (0,∞) such that

P(I > t) = c
t(ψ′(t))1/2

ψ(t)
exp

(
−
∫ t

xψ+1

ψ(r)

r
dr

)(
1 + O

(
1
ψ(t)

))

and

k(t) = c
(
ψ′(t)

)1/2
exp

(
−
∫ t

xψ+1

ψ(r)

r
dr

)(
1 + O

(
1
ψ(t)

))
.

Remarks. Different methods of proof:

• Minchev-Savov 22 obtain an explicit expression of c and estimates of the
derivatives of k .

• H.22 obtains the first order O
(

1
ψ(t)

)
and possibility to get further orders by

iterating the proof.
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ψ′(t)

)1/2
exp

(
−
∫ t

xψ+1

ψ(r)

r
dr

)(
1 + O

(
1
ψ(t)

))
.

Ex.1: Stable subordinators φ(x) = xα, 0 < α < 1, then

P(I > t) ∝
t→∞

t−
α

2(1−α) exp
(

(−(1− α)t
1

1−α
)(

1 + O
(

t−
1

1−α
))

.

Ex.2: Gamma subordinator π(du) = u−1e−udu, then φ(x) = ln(1 + x) and

P(I > t) ∝
t→∞

exp

(
−t ln(t)− t ln(ln(t)) + t + O

(
t ln(ln(t))

ln(t)

))
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xψ+1

ψ(r)

r
dr

)(
1 + O

(
1
ψ(t)

))
.

Ex.3: π probability such that π(0, u) =
∑p

i=1 ci uγi + O(u1+ε) as u ↓ 0 where
1/2 < γ1 < . . . < γp−1 < γp = 1, ε > 0, then:

P(I > t) ∝
t→∞

tcp exp

−t +

p−1∑
i=1

ci Γ(1 + γi )

1− γi
t1−γi


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Idea of proof: compare two integral equations

On the one hand, using that ψ(x)
φ(ψ(x))

= x , x > xψ , we have:

ψ(x)

x
= φ(ψ(x)) =

∫ ∞
0

(
1− exp

(
−
ψ(x)

x
xv
))

π(dv), ∀x > xψ . (1)

On the other hand, setting f (x) := − lnP(I > x) and using the equation satisfied by k ,
we get:

f ′(x) =

∫ ∞
0

(
1− exp

(
−
∫ xev

x
f ′(u)du

))
π(dv), ∀x > 0. (2)

Rk.:
∫ xev

x f ′(u)du ≈ xvf ′(x) when v ↓ 0
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Idea of proof: compare two integral equations

Equations (1) and (2) are "close". More precisely we have:

Proposition 1 (H.22)

Assume (H). Then as x →∞

f ′(x) =
ψ(x)

x
+
ψ′(x)

ψ(x)
−

1
x
−
ψ′′(x)

2ψ′(x)
+ O

(
ψ′(x)

(ψ(x))2

)

Which immediately implies the estimates on P(I > t) and k(t) as t →∞.
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Application to the tails of

extinction times of self-similar

fragmentations



Self-similar fragmentations

Describe the evolution of masses of particles that split repeatedly as time goes on:

• each particle is characterized by a mass m ∈ (0, 1]

• each particle of mass m splits in particles of masses (msk )k∈N, where
(sk )k∈N ∈ S↓ :=

{
(si )i≥1 : s1 ≥ s2 ≥ s3 . . . ;

∑∞
i=1 si = 1

}
at rate

mαν(ds)

where α ∈ R and ν is a measure on S↓ such that
∫
S↓ (1− s1)ν(ds) <∞

• different particles evolve independently (branching property)

• the process starts from a unique particle, of mass 1

First ref.: Kolmogorov 41, Filippov 61, Brennan and Durrett 86-87, Bertoin 01-02

Many studies on those models since 2000+.
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where α ∈ R and ν is a measure on S↓ such that
∫
S↓ (1− s1)ν(ds) <∞

• different particles evolve independently (branching property)

• the process starts from a unique particle, of mass 1

Hypotheses: α < 0 and ν(S↓) > 0⇒ very small objects split very quickly!

Let ζ be the first time at which the entire initial mass is reduced to an amount of 0-mass
particles.

Proposition (Filippov 61, McGrady & Ziff 87, Bertoin 02)

The extinction time ζ is finite almost surely.
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Main result: Precise estimate for P(ζ > t)

The parameters α < 0 and ν are fixed; ζ: corresponding extinction time.

Two functions: we let for x large enough

φ(x) =

∫
S↓

(1− sx+1
1 )ν(ds) and ψ :

ψ(x)

φ(ψ(x))
= x

Main hypothesis:

lim sup
x→∞

φ′(x)x
φ(x)

< 1 (H)

Theorem 2 (H. 22)

Assume (H). Then

P(ζ > t) �
(
ψ(|α|t)

t

) 1
|α|−1 (

ψ′(|α|t)
) 1

2 exp

(
−
∫ t

1

ψ(|α|r)

|α|r
dr
)

where for positive functions f , g, f (t) � g(t) means there exists a, b > 0 such that
a · g(t) ≤ f (t) ≤ b · g(t) for t large enough.
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Examples with finite splitting rates

Here ψ(x) ∼
x→∞

ν(S↓)x , hence
∫ t

1
ψ(|α|r)
|α|r dr = ν(S↓)t + o(t).

Ex.1: Fragmentations into k identical pieces. A fragment of size m splits into k
fragments of same sizes m/k . For all indices of self-similarity α < 0:

P(ζ > t) ∼
t→∞

c exp(−t)

for some c ∈ (0,∞).

Ex.2: Uniform fragmentation. A fragment of size m splits into two fragments of sizes
mU,m(1− U), where U is uniform on [0, 1]. For all indices of self-similarity α < 0:

P(ζ > t) � t
2
|α| exp(−t).
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Examples with finite splitting rates

Ex.3: Beta fragmentations. A fragment of size m splits into two fragments of sizes
mB,m(1− B), where B ∼Beta(a, b), b ≥ a > 0 (density on (0, 1) proportional to
xa−1(1− x)b−1). For all indices of self-similarity α < 0:

P(ζ > t) �



exp(−t) if b ≥ a > 1

t
1
|α| exp(−t) if b > a = 1

t
2
|α| exp(−t) if b = a = 1

exp
(
−t + Γ(a)

(1−a)|α|a t1−a
)

if b > 1 > a > 1/2

t
1
|α| exp

(
−t + Γ(a)

(1−a)|α|a t1−a
)

if 1 = b ≥ a > 1/2

exp
(
−t + Γ(a)

(1−a)|α|a t1−a + Γ(b)
(1−b)|α|b t1−b

)
if 1 > b ≥ a > 1/2.

If a (and possibly b) is smaller than 1/2, there will be additional terms.
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Examples with infinite splitting rates

Ex.4: Aldous’ beta-splitting models. Those are scaling limits of discrete models
introduced by Aldous 96 to interpolate between some phylogenetic trees.

Parametrized by β ∈ (−2,−1); binary splitting (ν(s1 + s2 < 1) = 0) and

ν(s1 ∈ du) =
−β − 1

Γ(2 + β)
(u(1− u))β , u ∈ (1/2, 1) and α = 1 + β.

Then for β ∈ (−2,−3/2]:

P(ζ > t) � t
−2β−1
2(β+2) exp

(
−aβ t

1
β+2 + bβ t

)
where aβ = (−β − 1)

−β−1
β+2 (β + 2) and bβ = (2β+3)Γ(β+2)

(β+2)Γ(2β+4)
.

For β ∈ (−3/2, 1): additional power terms in the exponential.

Ex.5: Applications to random rooted real trees. Gives/retrieves some precise
estimates for the tails of heights of some random real trees. E.g. the Brownian tree, the
stable Lévy trees, Ford’s phylogenetic trees, etc.
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Outline of the proof of Theorem 2

An intermediate tool: the extinction time of a typical point, denoted by I

Proposition (Bertoin 02)

I =

∫ ∞
0

exp(αξt )dt

where ξ is a subordinator with Laplace exponent φ̄(x) =
∫
S(1−

∑
i sx+1

i )ν(ds).

Rk.: φ̄(x) = φ(x) + O(2−x ) as x →∞.

Connections between the tails of ζ and I?

Proposition 2 (H. 22)

Assume (H). Then,

P(ζ > t) �
(
ψ(|α|t)

t

) 1
|α|
· P(I > t)
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Some hints to prove Proposition 2

Step 1. Connections with moments of typical fragments: U1,U2 i.i.d uniform on
(0, 1), Λ(i)(t): mass of the fragment containing Ui at time t , i = 1, 2

Proposition

There exists c ∈ (0,∞) such that for all t large enough

E [Λ(1)(t)]2

E [Λ(1)(t)Λ(2)(t)]
≤ P(ζ > t) ≤ c

(
ψ(|α|t)

t

) 2
|α|

E [Λ(1)(t)]

Idea: Introduce S(t) :=
∑

i≥1(Fi (t))2 and use the first and second moments methods.

Step 2. Asymptotics of moments of 1 and 2 typical fragments.

Proposition

For all a > 0 there exists a constant c ∈ (0,∞) such that

E
[
Λa

(1)(t)
]
∼

t→∞
c
(

t
ψ(|α|t)

) a
|α|

P(I > t)

Proposition

For all a, b > 0,

E
[
Λa

(1)(t)Λb
(2)(t)

]
�
(

t
ψ(|α|t)

) a+b+1
|α|

P(I > t).

UK Easter Probability Meeting 13 / 14



Some hints to prove Proposition 2

Step 1. Connections with moments of typical fragments: U1,U2 i.i.d uniform on
(0, 1), Λ(i)(t): mass of the fragment containing Ui at time t , i = 1, 2

Proposition

There exists c ∈ (0,∞) such that for all t large enough

E [Λ(1)(t)]2

E [Λ(1)(t)Λ(2)(t)]
≤ P(ζ > t) ≤ c

(
ψ(|α|t)

t

) 2
|α|

E [Λ(1)(t)]

Step 2. Asymptotics of moments of 1 and 2 typical fragments.

Proposition

For all a > 0 there exists a constant c ∈ (0,∞) such that

E
[
Λa

(1)(t)
]
∼

t→∞
c
(

t
ψ(|α|t)

) a
|α|

P(I > t)

Proposition

For all a, b > 0,

E
[
Λa

(1)(t)Λb
(2)(t)

]
�
(

t
ψ(|α|t)

) a+b+1
|α|

P(I > t).

UK Easter Probability Meeting 13 / 14



A conjecture

Let F(t) be the decreasing sequence of masses of particles present at time t , ∀t ≥ 0.

Yaglom limit of the process F conditioned on non-extinction?

Probably:

F(t)
(
ψ(|α|t)

t

) 1
|α|
| ζ > t converges in distribution in `1 to a non-trivial limit.
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