Rates on Yaglom's theorem for Galton-Watson processes in varying environment

UK Easter Probability Meeting

Natalia Cardona-Tobón (University of Göttingen)
Joint work with Arturo Jaramillo (CIMAT), Sandra Palau (UNAM)

March 31, 2023
Manchester

Galton-Watson processes in varying environment:

- Branching processes where the individuals reproduce independently of each other.
- All individuals in the same generation have the same offspring distribution but these distributions vary among generations.
- Critical regime: Yaglom's theorem

$$
\left\{\left.\frac{Z_{n}}{a_{n}} \right\rvert\, Z_{n}>0\right\} \xrightarrow{(d)} \mathbf{e}, \quad \text { as } n \rightarrow \infty
$$

Galton-Watson processes in varying environment:

- Branching processes where the individuals reproduce independently of each other.
- All individuals in the same generation have the same offspring distribution but these distributions vary among generations.
- Critical regime: Yaglom's theorem

$$
\left\{\left.\frac{Z_{n}}{a_{n}} \right\rvert\, Z_{n}>0\right\} \xrightarrow{(d)} \mathbf{e}, \quad \text { as } n \rightarrow \infty
$$

Main question:

What is the rate of convergence of the Yaglom's limit with respect to the Wasserstein distance d_{W} ?

$$
d_{W}\left(\left\{\left.\frac{Z_{n}}{a_{n}} \right\rvert\, Z_{n}>0\right\}, \mathbf{e}\right) \leq C f(n)
$$

Consider a collection $Q=\left\{q_{n}, n \geq 1\right\}$ of probability measures supported on $\mathbb{N}_{0}=\{0,1,2, \ldots\}$.

A Galton-Watson process $Z=\left\{Z_{n}: n \geq 0\right\}$ in the environment Q is a Markov chain defined recursively as follows:

$$
Z_{0}=1 \quad \text { and } \quad Z_{n}=\sum_{i=1}^{Z_{n-1}} \chi_{i}^{(n)}, \quad n \geq 1
$$

where $\left\{\chi_{i}^{(n)}: i, n \geq 1\right\}$ is a sequence of independent random variables satisfying

$$
\mathbb{P}\left(\chi_{i}^{(n)}=k\right)=q_{n}(k), \quad k \in \mathbb{N}_{0}, i, n \geq 1
$$

$\chi_{i}^{(n)}$ is the offspring of the i th individual in the $(n-1)$-th generation.

For every $n \geq 1$, denote by f_{n} the generating function associated with the reproduction law q_{n}, i.e.

$$
f_{n}(s):=\sum_{k=0}^{\infty} s^{k} q_{n}(k), \quad 0 \leq s \leq 1, n \geq 1
$$

By a recursive application of the branching property, we deduce

$$
\mathbb{E}\left[s^{Z_{n}}\right]=f_{1} \circ \cdots \circ f_{n}(s), \quad 0 \leq s \leq 1, n \geq 1
$$

For every $n \geq 1$, denote by f_{n} the generating function associated with the reproduction law q_{n}, i.e.

$$
f_{n}(s):=\sum_{k=0}^{\infty} s^{k} q_{n}(k), \quad 0 \leq s \leq 1, n \geq 1
$$

By a recursive application of the branching property, we deduce

$$
\mathbb{E}\left[s^{Z_{n}}\right]=f_{1} \circ \cdots \circ f_{n}(s), \quad 0 \leq s \leq 1, n \geq 1
$$

Let $\mu_{0}:=1$ and for any $n \geq 1$,

$$
\mu_{n}:=f_{1}^{\prime}(1) \cdots f_{n}^{\prime}(1), \quad \nu_{n}:=\frac{f_{n}^{\prime \prime}(1)}{f_{n}^{\prime}(1)^{2}} \quad \text { and } \quad \rho_{0, n}:=\sum_{k=0}^{n-1} \frac{\nu_{k+1}}{\mu_{k}} .
$$

The mean and the normalized second factorial moment of Z_{n} satisfy

$$
\mathbb{E}\left[Z_{n}\right]=\mu_{n}, \quad \text { and } \quad \frac{\mathbb{E}\left[Z_{n}\left(Z_{n}-1\right)\right]}{\mathbb{E}\left[Z_{n}^{2}\right]}=\rho_{0, n}
$$

Hypothesis in the environment: There exists $c>0$ such that

$$
\begin{equation*}
f_{n}^{\prime \prime \prime}(1) \leq c f_{n}^{\prime \prime}(1)\left(1+f_{n}^{\prime}(1)\right), \quad \text { for any } n \geq 1 \tag{A}
\end{equation*}
$$

This hypothesis is a rather mild condition. It is satisfied by the most common probability distributions.

Hypothesis in the environment: There exists $c>0$ such that

$$
\begin{equation*}
f_{n}^{\prime \prime \prime}(1) \leq c f_{n}^{\prime \prime}(1)\left(1+f_{n}^{\prime}(1)\right), \quad \text { for any } n \geq 1 \tag{A}
\end{equation*}
$$

This hypothesis is a rather mild condition. It is satisfied by the most common probability distributions.

Critical regime:

$$
\rho_{0, n} \rightarrow \infty \quad \text { and } \quad \rho_{0, n} \mu_{n} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty
$$

In other words,

$$
\mathbb{P}\left(Z_{n}>0\right) \rightarrow 0 \quad \text { and } \quad \mathbb{E}\left[Z_{n} \mid Z_{n}>0\right] \rightarrow \infty, \quad \text { as } \quad n \rightarrow \infty
$$

Question: Is there a sequence $\left\{a_{n}, n \geq 1\right\}$ such that Z_{n} / a_{n} conditioned on $\left\{Z_{n}>0\right\}$ converges to a random variable?

The mean of the conditioned process is growing at rate $2\left(\mu_{n} \rho_{0, n}\right)^{-1}$, i.e.

$$
\lim _{n \rightarrow \infty} \frac{2}{\mu_{n} \rho_{0, n}} \mathbb{E}\left[Z_{n} \mid Z_{n}>0\right]=1
$$

Theorem 1 (Kersting (2020), C.-T. and Palau (2021))
Let $\left\{Z_{n}: n \geq 0\right\}$ be a critical GWVE that satisfies condition (A). Then

$$
\left\{\left.\frac{2 Z_{n}}{\mu_{n} \rho_{0, n}} \right\rvert\, Z_{n}>0\right\} \xrightarrow{(d)} e, \quad \text { as } n \rightarrow \infty
$$

where e is a standard exponential random variable.

In the constant environment case and in the critical regime, we have

$$
\mu_{n}=1 \quad \text { and } \quad \rho_{0, n}=\sigma^{2} n, \quad \text { for any } \quad n \geq 1
$$

where $\sigma^{2}:=\operatorname{Var}\left(Z_{1}\right)$.

In constant environment ($\mu_{n}=1, \rho_{0, n}=\sigma^{2} n$), Peköz and Röllin (2011) showed

$$
d_{W}\left(\left\{\left.\frac{2 Z_{n}}{\sigma^{2} n} \right\rvert\, Z_{n}>0\right\}, \mathbf{e}\right) \leq C \frac{\log (n)}{n}
$$

In varying environment $\left(\rho_{0, n} \rightarrow \infty\right.$ and $\mu_{n} \rho_{0, n} \rightarrow \infty$ as $\left.n \rightarrow \infty\right)$, we pursuit a bound of the form

$$
d_{W}\left(\left\{\left.\frac{2 Z_{n}}{\mu_{n} \rho_{0, n}} \right\rvert\, Z_{n}>0\right\}, \mathbf{e}\right) \leq C\left(\psi\left(\rho_{0, n} \mu_{n}\right)+\phi\left(\rho_{0, n}\right)\right)
$$

where ψ, ϕ continuously vanishing at infinity.

Trade-off between sharp and simple bounds valid for a reduced family of Q and semi-explicit bounds valid for larger families of Q.

Theorem 2 (C-T, Jaramillo, Palau (2023+))

Let $\left\{Z_{n}: n \geq 0\right\}$ be a critical GWVE that satisfies condition (A). Assume that there exists $0<a \leq A<\infty$ such that $a \leq f_{n}^{\prime}(1) \leq A$ for all $n \geq 1$. If

$$
\sum_{k=2}^{\infty} \log \left(\mu_{k} \rho_{0, k}\right)\left|\frac{\nu_{k-1}}{\mu_{k-2}}-\frac{\nu_{k}}{\mu_{k-1}}\right|<\infty
$$

Then, the following bound holds

$$
d_{W}\left(\left\{\left.\frac{2 Z_{n}}{\mu_{n} \rho_{0, n}} \right\rvert\, Z_{n}>0\right\}, \boldsymbol{e}\right) \leq C\left(\frac{\log \left(\mu_{n} \rho_{0, n}\right)}{\mu_{n} \rho_{0, n}}+\frac{1}{\rho_{0, n}}\right)
$$

where $C>0$ is a constant independent of n.

In constant environment,

$$
d_{W}\left(\left\{\left.\frac{2 Z_{n}}{\sigma^{2} n} \right\rvert\, Z_{n}>0\right\}, \mathbf{e}\right) \leq C\left(\frac{\log \left(\sigma^{2} n\right)}{\sigma^{2} n}+\frac{1}{\sigma^{2} n}\right) \leq \tilde{C} \frac{\log (n)}{n}
$$

Theorem 3 (C-T, Jaramillo, Palau (2023+))

Let $\left\{Z_{n}: n \geq 0\right\}$ be a critical $G W V E$ that satisfies condition (A). Then, the following bound holds

$$
d_{W}\left(\left\{\left.\frac{2 Z_{n}}{\mu_{n} \rho_{0, n}} \right\rvert\, Z_{n}>0\right\}, \boldsymbol{e}\right) \leq C\left(\frac{\log \left(\mu_{n} \rho_{0, n}\right)}{\mu_{n} \rho_{0, n}}+\frac{r_{n}}{\rho_{0, n}}\right)
$$

where $C>0$ is a constant independent of n and

$$
r_{n}:=\sum_{j=1}^{n-1}\left(\frac{\nu_{j}}{\mu_{j-1}}\right)^{2} \frac{1}{\left(\rho_{0, n}-\rho_{0, j}\right)}\left(1+f_{j}^{\prime}(1)\right)+\frac{\nu_{n}}{\mu_{n-1}}\left(1+f_{n}^{\prime}(1)\right) .
$$

Examples:

- Poisson distributions with μ_{n} increasing linearly: Assume that $\left\{q_{n}: n \geq 1\right\}$ are Poisson $\left(\lambda_{n}\right)$ such that

$$
\lambda_{1}=1 \quad \text { and } \quad \lambda_{n}=\frac{n-1}{n}, \quad n>1 .
$$

It follows that

$$
\mu_{n}=n \quad \text { and } \quad \rho_{0, n} \sim \log (n) \quad \text { as } \quad n \rightarrow \infty
$$

From Theorem 2, we have

$$
d_{W}\left(\left\{\left.\frac{2 Z_{n}}{\mu_{n} \rho_{0, n}} \right\rvert\, Z_{n}>0\right\}, \mathbf{e}\right) \leq C\left(\frac{\log (n \log (n))}{n \log (n)}+\frac{1}{\log (n)}\right)
$$

- Poisson distributions with μ_{n} decreasing exponentially: Assume that $\left\{q_{n}: n \geq 1\right\}$ are $\operatorname{Poisson}\left(\lambda_{n}\right)$ such that

$$
\lambda_{1}=e^{-1} \quad \text { and } \quad \lambda_{n}=\frac{\exp (-\sqrt{n})}{\exp (-\sqrt{n-1})} \quad n>1
$$

It follows that

$$
\mu_{n}=\exp (-\sqrt{n}) \quad \text { and } \quad \rho_{0, n} \sim 2 \sqrt{n} \exp (\sqrt{n}) \quad \text { as } \quad n \rightarrow \infty
$$

From Theorem 2, we have

$$
d_{W}\left(\left\{\left.\frac{2 Z_{n}}{\mu_{n} \rho_{0, n}} \right\rvert\, Z_{n}>0\right\}, \mathbf{e}\right) \leq C \frac{\log (\sqrt{n})}{\sqrt{n}}
$$

- Linear fractional distributions: For each $n \geq 1$, there exists $p_{n} \in(0,1)$ and $a_{n} \in(0,1]$, such that

$$
q_{n}(0)=1-a_{n} \quad \text { and } \quad q_{n}(k)=a_{n} p_{n}\left(1-p_{n}\right)^{k-1}, \quad k \geq 1
$$

The random variable Z_{n} conditioned on $\left\{Z_{n}>0\right\}$ has a geometric distribution, i.e.

$$
\mathbb{P}\left(Z_{n}=k \mid Z_{n}>0\right)=\widehat{p}_{n}\left(1-\widehat{p}_{n}\right)^{k}, \quad \text { where } \quad \widehat{p}_{n}=\frac{2}{2+\mu_{n} \rho_{0, n}}
$$

Assume that μ_{n} and $\rho_{0, n}$ satisfy the criticality conditions. Then

$$
d_{W}\left(\left\{\left.\frac{2 Z_{n}}{\mu_{n} \rho_{0, n}} \right\rvert\, Z_{n}>0\right\}, \mathbf{e}\right) \leq C \frac{1}{\mu_{n} \rho_{0, n}}
$$

Thank you for your attention!

- G. Kersting. A unifying approach to branching processes in a varying environment. J. Appl. Probab. 57.1, 2019.
- E. A. Peköz and A. Rölin. New rates for exponential approximation and the theorems of Rényi and Yaglom. Ann. Probab., 39(2):587-608, 2011.
- N. Cardona-Tobón, A. Jaramillo and S. Palau. Rates on Yaglom's theorem in varying environment (in prepar.)

