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Galton-Watson processes in varying environment:

Branching processes where the individuals reproduce independently of
each other.

All individuals in the same generation have the same offspring
distribution but these distributions vary among generations.

Critical regime: Yaglom’s theorem{
Zn

an

∣∣∣ Zn > 0

}
(d)−→ e, as n→∞.

Main question:

What is the rate of convergence of the Yaglom’s limit with respect
to the Wasserstein distance dW ?

dW

({
Zn

an

∣∣∣ Zn > 0

}
, e

)
≤ Cf(n)
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Consider a collection Q = {qn, n ≥ 1} of probability measures supported
on N0 = {0, 1, 2, . . .}.

A Galton-Watson process Z = {Zn : n ≥ 0} in the environment Q
is a Markov chain defined recursively as follows:

Z0 = 1 and Zn =

Zn−1∑
i=1

χ
(n)
i , n ≥ 1,

where {χ(n)
i : i, n ≥ 1} is a sequence of independent random variables

satisfying
P(χ

(n)
i = k) = qn(k), k ∈ N0, i, n ≥ 1.

χ
(1)
i ∼ q1

χ
(2)
i ∼ q2

χ
(3)
i ∼ q3

χ
(4)
i ∼ q4

χ
(n)
i is the offspring of the i-

th individual in the (n− 1)-th
generation.
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For every n ≥ 1, denote by fn the generating function associated with
the reproduction law qn, i.e.

fn(s) :=
∞∑

k=0

skqn(k), 0 ≤ s ≤ 1, n ≥ 1.

By a recursive application of the branching property, we deduce

E
[
sZn

]
= f1 ◦ · · · ◦ fn(s), 0 ≤ s ≤ 1, n ≥ 1,

Let µ0 := 1 and for any n ≥ 1,

µn := f ′1(1) · · · f ′n(1), νn :=
f ′′n (1)

f ′n(1)2
and ρ0,n :=

n−1∑
k=0

νk+1

µk
.

The mean and the normalized second factorial moment of Zn satisfy

E [Zn] = µn, and
E [Zn(Zn − 1)]

E [Z2
n]

= ρ0,n.
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Hypothesis in the environment: There exists c > 0 such that

f ′′′n (1) ≤ cf ′′n (1)(1 + f ′n(1)), for any n ≥ 1. (A)

This hypothesis is a rather mild condition. It is satisfied by the most
common probability distributions.

Critical regime:

ρ0,n →∞ and ρ0,nµn →∞ as n→∞.

In other words,

P(Zn > 0)→ 0 and E [Zn | Zn > 0]→∞, as n→∞.

Question: Is there a sequence {an, n ≥ 1} such that Zn/an conditioned on
{Zn > 0} converges to a random variable?
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The mean of the conditioned process is growing at rate 2(µnρ0,n)−1, i.e.

ĺım
n→∞

2

µnρ0,n
E[Zn | Zn > 0] = 1.

Theorem 1 (Kersting (2020), C.-T. and Palau (2021))

Let {Zn : n ≥ 0} be a critical GWVE that satisfies condition (A). Then{
2Zn

µnρ0,n

∣∣∣ Zn > 0

}
(d)−→ e, as n→∞,

where e is a standard exponential random variable.

In the constant environment case and in the critical regime, we have

µn = 1 and ρ0,n = σ2n, for any n ≥ 1

where σ2 := Var(Z1).
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In constant environment (µn = 1, ρ0,n = σ2n), Peköz and Röllin (2011)
showed

dW

({
2Zn

σ2n

∣∣∣ Zn > 0

}
, e

)
≤ C log(n)

n
.

In varying environment (ρ0,n →∞ and µnρ0,n →∞ as n→∞), we
pursuit a bound of the form

dW

({
2Zn

µnρ0,n

∣∣∣ Zn > 0

}
, e

)
≤ C(ψ(ρ0,nµn) + φ(ρ0,n)),

where ψ, φ continuously vanishing at infinity.

Trade-off between sharp and simple bounds valid for a reduced family of
Q and semi-explicit bounds valid for larger families of Q.
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Theorem 2 (C-T, Jaramillo, Palau (2023+))

Let {Zn : n ≥ 0} be a critical GWVE that satisfies condition (A). Assume
that there exists 0 < a ≤ A <∞ such that a ≤ f ′n(1) ≤ A for all n ≥ 1. If

∞∑
k=2

log(µkρ0,k)

∣∣∣∣ νk−1

µk−2
− νk
µk−1

∣∣∣∣ <∞.
Then, the following bound holds

dW

({
2Zn

µnρ0,n

∣∣∣ Zn > 0

}
, e

)
≤ C

(
log(µnρ0,n)

µnρ0,n
+

1

ρ0,n

)
,

where C > 0 is a constant independent of n.

In constant environment,

dW

({
2Zn

σ2n

∣∣∣ Zn > 0

}
, e

)
≤ C

(
log(σ2n)

σ2n
+

1

σ2n

)
≤ C̃ log(n)

n
.
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Theorem 3 (C-T, Jaramillo, Palau (2023+))

Let {Zn : n ≥ 0} be a critical GWVE that satisfies condition (A). Then,
the following bound holds

dW

({
2Zn

µnρ0,n

∣∣∣ Zn > 0

}
, e

)
≤ C

(
log(µnρ0,n)

µnρ0,n
+

rn
ρ0,n

)
,

where C > 0 is a constant independent of n and

rn :=

n−1∑
j=1

(
νj
µj−1

)2
1

(ρ0,n − ρ0,j)
(1 + f ′j(1)) +

νn
µn−1

(1 + f ′n(1)).
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Examples:

Poisson distributions with µn increasing linearly: Assume that
{qn : n ≥ 1} are Poisson(λn) such that

λ1 = 1 and λn =
n− 1

n
, n > 1.

It follows that

µn = n and ρ0,n ∼ log(n) as n→∞.

From Theorem 2, we have

dW

({
2Zn

µnρ0,n

∣∣∣ Zn > 0

}
, e

)
≤ C

(
log(n log(n))

n log(n)
+

1

log(n)

)
.
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Poisson distributions with µn decreasing exponentially:
Assume that {qn : n ≥ 1} are Poisson(λn) such that

λ1 = e−1 and λn =
exp(−

√
n)

exp(−
√
n− 1)

n > 1.

It follows that

µn = exp(−
√
n) and ρ0,n ∼ 2

√
n exp(

√
n) as n→∞.

From Theorem 2, we have

dW

({
2Zn

µnρ0,n

∣∣∣ Zn > 0

}
, e

)
≤ C log(

√
n)√
n

.



12/13

Linear fractional distributions: For each n ≥ 1, there exists
pn ∈ (0, 1) and an ∈ (0, 1], such that

qn(0) = 1− an and qn(k) = anpn(1− pn)k−1, k ≥ 1.

The random variable Zn conditioned on {Zn > 0} has a geometric
distribution, i.e.

P(Zn = k | Zn > 0) = p̂n(1− p̂n)k, where p̂n =
2

2 + µnρ0,n
.

Assume that µn and ρ0,n satisfy the criticality conditions. Then

dW

({
2Zn

µnρ0,n

∣∣∣ Zn > 0

}
, e

)
≤ C 1

µnρ0,n
.
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Thank you for your attention!
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