Dimers and Imaginary Geometry

Nathanaël Berestycki, University of Vienna

March 2023, Manchester. UK Easter probability meeting

Outline

1) Introduction to the dimer model

- Definition. Notion of height function. Boundary conditions.
- Statement of Kenyon's theorem; Kasteleyn theory.

2) Imaginary geometry approach

- Temperley's bijection;
- GFF / SLE coupling.
- Convergence of winding

3) Near-critical (massive) dimer model

- Definition, non Gaussian scaling limit
- Connection with massive SLE.
- Exact discrete Girsanov theorem on triangular lattice

1) The dimer model

The dimer model

Let G be a finite, planar, bipartite graph.
A dimer cover (or perfect matching): a set of edges (=dimers), such that each vertex is incident to exactly one dimer.

The dimer model with edge weights w_{e} :

$$
\mathbb{P}(\mathbf{m})=\frac{1}{Z} \prod_{e \in \mathbf{m}} w_{e} .
$$

Typically $w_{e} \equiv 1(\rightarrow$ critical! $)$

The dimer model as a random surface

Honeycomb lattice: lozenge tiling or a stack of cubes

Height function

Introduced by Thurston. Hence view as a random surface.
Note: depends on the choice of a reference frame.

Large scale behaviour?

The effect of boundary conditions is, however, not entirely trivial and will be discussed in more detail in a subsequent paper.
P. W. Kasteleyn, 1961

Temperleyan boundary conditions

Divide the vertices into black and white. Divide further into $B_{0}=\bullet, B_{1}=\times$ (and W_{0}, W_{1}).

Temperleyan: all corners are $B_{1}=\times$, and one corner is removed.

Scaling limit of height function

Theorem (Kenyon '99)

Let $\mathcal{D} \subset \mathbb{C}$ bounded domain, $\mathcal{D}^{\delta}=\mathcal{D} \cap \delta \mathbb{Z}^{2}$ with Temperleyan boundary conditions. Let h^{δ} be the associated height function. Then,

$$
h^{\delta}-\mathbb{E}\left(h^{\delta}\right) \rightarrow \frac{1}{\sqrt{\pi}} h_{\mathcal{D}}^{\mathrm{GFF}} \quad \text { as } \quad \delta \rightarrow 0,
$$

in distribution.

Main ingredients of the proof:

- Kasteleyn theory (exact solvability): dimer correlations are given by determinants of inverse Kasteleyn matrix,
- Asymptotic computation of inverse Kasteleyn matrix (discrete holomorphic + boundary conditions)
- Computation of moments

2) Imaginary Geometry

Uniform Spanning Tree

A spanning tree on a graph is a subset of edges covering each vertex and without cycles.

free boundary;

self-dual trees ;

wired boundary

Law

Orientation

Trees can be oriented towards a designated root ρ. For wired UST, $\rho=\partial V$.

For a weighted graph $G=(V, E), \partial$ a fixed vertex (the boundary).

$$
\mathbb{P}(T=t)=\frac{1}{Z} \prod_{e \in t} w_{e}
$$

for every tree. Z is the partition function.

Wilson's algorithm 1.

Loop-Erased Random Walk (LERW)

Wilson's algorithm 2.

Build wired UST by adding LERW iteratively.

The tree is naturally oriented towards the boundary.

Enumeration

For a weighted graph $G=(V, E), \partial$ a fixed vertex (the boundary).

$$
\mathbb{P}(T=t)=\frac{1}{Z} \prod_{e \in t} w_{e}
$$

for every tree. Z is the partition function.

Fact:

Matrix tree theorem: $Z=\operatorname{det}(D)$ where D is the discrete Laplacian of random walk killed at ∂.

Temperley's bijection

Bijection between dimers on $G \subset \mathbb{Z}^{2}$ and dual spanning trees on B_{0}, B_{1}-lattices.

If G has Temperleyan boundary conditions, the B_{0}-tree is wired and the B_{1}-tree is free.

Amazing feature

Let $h=$ height function.
Then $h(f)-h\left(f^{\prime}\right)=$ total winding of branch connecting f and f^{\prime} !

Temperley's bijection 1

Dimers on $\mathbb{Z}^{2} \cap D$, Temperleyan boundary conditions.

Temperley's bijection 2

Orient dimers black \rightarrow white (just $B_{0}=\bullet$ for now)

Temperley's bijection 3

Double each oriented dimer to get spanning tree on B_{0} lattice (wired boundary conditions).

Temperley's bijection 4

On B_{1} lattice, get dual (free boundary conditions) spanning tree.

Remarks

- The bijection is local.
- Temperleyan boundary conditions \Rightarrow wired/free boundary conditions for trees.
- If $w_{e} \equiv 1$ then $\left(\mathcal{T}, \mathcal{T}^{\dagger}\right)$ uniform.
- More generally, in weighted setup, if w_{e} are weights on the dimer graph,

$$
\mathbb{P}\left(\left(\mathcal{T}, \mathcal{T}^{\dagger}\right)=\left(\mathbf{t}, \mathbf{t}^{\dagger}\right)\right) \propto \prod_{e \in \mathfrak{t}} w_{e / 2} \prod_{e^{\dagger} \in \mathbf{t}^{\dagger}} w_{e^{\dagger} / 2}
$$

If $w_{e^{\dagger}} \equiv 1$, we can just sample \mathcal{T} from Wilson's algorithm; this determines \mathcal{T}^{\dagger} by duality and then a dimer configuration by Temperley's bijection.

Winding in UST

Question

How much do branches wind in a wired UST?
For a face f, let γ_{f} be a path from f to ∂D which follows the UST. Let $h^{\# \delta}(f)=$ total winding of $\gamma_{f}(=$ height function).

Theorem (B.-Laslier-Ray (2020))

Let $G^{\# \delta}$ be a sequence of graphs embedded in \mathbb{R}^{2}. Assume (\star). Let D be simply connected with ∂D locally connected.

$$
h^{\# \delta}-\mathbb{E}\left(h^{\# \delta}\right) \underset{\delta \rightarrow 0}{\longrightarrow} \frac{1}{\chi} h_{\mathrm{GFF}},
$$

the Gaussian free field (Dirichlet boundary conditions); $\chi=1 / \sqrt{2}$.
Note: $\mathbb{E}\left(h^{\# \delta}\right)$ itself is not universal, only fluctuations!

Robustness

We recover Kenyon's result, + much more:

- Balanced random environments!(BLR 2020)
- General domains with purely liquid phases (Laslier 2022)
- Riemann Surfaces (BLR 2021, 2022)
- Near-critical (massive) cases (B. Haunschmid-Sibitz 2022). See tomorrow.

Still requires nice boundary conditions so that Temperley's bijection applies.

Scaling limit of Uniform Spanning Tree

Theorem (Lawler, Schramm, Werner '03, Schramm '00)

$D \subset \mathbb{C}$ simply connected

- Uniform spanning tree on $D \cap \delta \mathbb{Z}^{2} \rightarrow$ "A continuum tree" (continuum uniform spanning tree).
- Branches of the continuum tree are (radial) SLE 2 curves.

The continuum tree can be obtained by performing Wilson's algorithm in the continuum.

Universality

Yadin-Yehudayoff 2010: assuming convergence of SRW to BM, LERW converges to SLE_{2}.

Schramm-Loewner-Evolution (SLE)

Oded Schramm 1961-2008

Familly of curves in (D, a, o) with $a \in \partial D, o \in D$.

Domain Markov property

Given $\gamma[0, t]$, law of future?
$\gamma[t, \infty)=\operatorname{curve}\left(D_{t}, \gamma_{t}, o\right)$.

Theorem (Schramm)

Suppose γ satisfies Domain Markov + Conformal invariance.
Then γ is $S L E_{\kappa}$ for some $\kappa \geq 0$.

Schramm-Loewner Evolution (SLE)

$g_{t}=$ conformal map which removes $\gamma(0, t]$.

$$
\frac{\partial g_{t}(z)}{\partial t}=g_{t}(z) \frac{\xi_{t}+g_{t}(z)}{\xi_{t}-g_{t}(z)}, \quad z \in \mathbb{D} \backslash \gamma[0, t]
$$

$$
\xi_{=} \exp \left(i \sqrt{\kappa} B_{t}\right)=\text { driving function. }
$$

Imaginary Geometry

Dubédat, Miller-Sheffield: "flow lines of GFF/ χ are SLE $_{\kappa}$ curves", provided:

$$
\chi=\frac{2}{\sqrt{\kappa}}-\frac{\sqrt{\kappa}}{2} .
$$

Meaning: coupling $(h, \eta), h=\mathrm{GFF}, \eta=\operatorname{SLE}_{\kappa}$:

Take-home message

"Values" of h / χ along curve record "winding" of SLE κ (in sense of $\arg g^{\prime}$).

Imaginary geometry

Recall:

Take-home message

"Values" of h / χ along curve record "winding" of SLE $_{\kappa}$ (in sense of $\arg g^{\prime}$).

Two parts:

Part I: winding of continuum UST
Part II: making the diagramme commute

Intrinsic vs. topological winding of a path

Let $\gamma:[0,1] \rightarrow \mathbb{C}$ smooth, simple curve. Let

$$
W(\gamma, z)=\text { topological winding around } z
$$

and let

$$
\begin{aligned}
W_{\text {int }}(\gamma) & =\text { intrinsic winding of } \gamma=\int_{0}^{1} \arg \gamma^{\prime}(s) d s \\
& =\frac{\pi}{2}(\# \text { left turns }-\# \text { right turns in discrete }) .
\end{aligned}
$$

Lemma

$W_{\text {int }}(\gamma)=W(\gamma, a)+W(\gamma, b)$ where $a=\gamma(0), b=\gamma(1)$.
As a result this is well defined even for non-smooth paths, and is essentially continuous!

3) Near-critical dimer model

Makarov-Smirnov (2009):
The key property of SLE is its conformal invariance, which is expected in $2 D$ lattice models only at criticality, and the question naturally arises: Can SLE success be replicated for off-critical models? In most off-critical cases to obtain a non-trivial scaling limit one has to adjust some parameter [...], sending it at an appropriate speed to the critical value. Such limits lead to massive field theories...,

Biperiodic setup

Choose $s_{i}=1+c_{i} \delta$, where $\delta=$ mesh size. Gasesous/Liquid boundary...

Massive Laplacian

Let $K=$ Kasteleyn matrix, $D=K K^{*}$. Then D is (essentially) a massive Laplacian:

$$
D(b, b)=-\sum_{i=1}^{4} s_{i}^{2}
$$

but

$$
\sum_{b^{\prime}} D\left(b, b^{\prime}\right)=2 s_{2} s_{4}+2 s_{1} s_{3}<|D(b, b)|
$$

by AM-GM.

Describes a massive walk (fixed killing probability).

Natural guess:

Scaling limit = Massive GFF?

$$
\mathbb{E}[h(x) h(y)]=\int_{0}^{\infty} e^{-m^{2} t} p_{t}(x, y) d t
$$

Negative answer

Unfortunately this guess is wrong.

Theorem (Chhita, 2012)

Limiting moments of height function can be computed; no Wick rule so non Gaussian!

New results for near-critical dimers

With Levi Haunschmid-Sibitz (2022) we prove:

- Exact connection with Makarov and Smirnov's massive $S_{2} E_{2}$ (and with massive Laplacian).
- Existence and universality of scaling limit of height function in Temperleyan domains
- Conformal covariance of scaling limit

Scaling limit of Temperleyan tree

Consider off-critical dimer model on square with $s_{i}=1+c_{i} \delta$.
Let $\mathcal{T}=$ Temperleyan B_{0}-tree.

$$
\mathbb{P}(\mathcal{T}=\mathbf{t}) \propto \prod_{v \in B_{0}} s_{v}(\mathbf{t})
$$

where $s_{v}(\mathbf{t}) \in\left\{s_{1}, \ldots, s_{4}\right\}$ depending on the direction of the unique outgoing edge from v in \mathbf{t}.

Wilson's algorithm

The branch connecting z to ∂D is LERW for the random walk on B_{0} with jump probabilities $\left(s_{i}\right)_{i=1}^{4}$.

The random walk itself converges to BM with drift Δ,

$$
\Delta=\frac{1}{4}\left(c_{1}+c_{2} i+c_{3} i^{2}+c_{4} i^{3}\right)
$$

But what is the scaling limit of LERW?

Connection with massive SLE_{2}

Suppose

$$
c_{1}+c_{3}=c_{2}+c_{4}=0
$$

Theorem 1 (B.-Haunschmid)

Let $z \in \Omega$. Let $\gamma^{\delta}=$ path in Temperleyan tree to $\partial \Omega, Y_{\delta}=$ endpoint. Then conditionally on $Y_{\delta}=y_{\delta}$,

$$
\gamma^{\delta} \rightarrow \mathrm{mSLE}_{2}
$$

where mass $m=\|\Delta\|$.

Massive SLE $_{2}$

Consider random walk killed with probability $m^{2} \delta^{2}$ at each step.
Condition to leave Ω without dying. What is scaling limit of LERW?

Theorem (Makarov-Smirnov (2009), Chelkak-Wan (2019))

massive LERW converges to "massive SLE_{2} "
Described by Loewner's equation with driving function:

$$
d \xi_{t}=\sqrt{2} d B_{t}+2 \lambda_{t} d t
$$

with

$$
\lambda_{t}=\left.\frac{\partial}{\partial w} \log \frac{P_{\Omega_{t}}^{(m)}(z, w)}{P_{\Omega_{t}}^{(0)}(z, w)}\right|_{w=\gamma(t)}
$$

[$m=0$: Lawler-Schramm-Werner 2002]

Additional remarks

- Unconditional convergence also holds, then global Radon-Nikodym derivative:

$$
\frac{\mathrm{dP}}{\mathrm{~d} \mathrm{mSLE}_{2}}(\gamma)=\exp (2\langle Y-z, \Delta\rangle)
$$

where $Y=$ exit point.

- Exact same statement for hexagonal lattice $a_{i}=1+c_{i} \delta$,

$$
\Delta=\frac{1}{3}\left(c_{1}+c_{2} \tau+c_{3} \tau^{2}\right) .
$$

Convergence of height function

Corollary (B.-Haunschmid)

The Temperleyan tree \mathcal{T}_{δ} has a scaling limit (in Schramm topology); the limit law depends only on Δ and so is the same for hexagonal and square lattice cases.

Proof: Wilson's algorithm.

Corollary (B.-Haunschmid)

The height function of near-critical dimers in Temperleyan domains converge to the same scaling limit.

Proof: "imaginary geometry approach" by B.-Laslier-Ray (2020-2022).

Conformal covariance

Conformal covariance:

Image under conformal map preserved, up to power α of derivative of conformal map.
($\alpha=0$ means conformal invariance.)
This requires allowing for general vector field $\Delta: \Omega \rightarrow \mathbb{R}^{2} \equiv \mathbb{C}$.

Generalised near-critical dimers

At each point $z \in B_{0}$, assign weights $s_{i}=1+c_{i} \delta$, with $c_{1}+c_{3}=0, c_{2}+c_{4}=0$,

$$
\frac{1}{4}\left(c_{1}+c_{2} i+c_{3} i^{2}+c_{4} i^{3}\right)=\Delta
$$

Any drift vector can be encoded in this way.

Conformal covariance

Theorem 3. (B.-Haunschmid)

The loop-erased random walk has a scaling limit.
Hence the height function has a scaling limit, call it $h^{(\Delta) ; \Omega}$.

Theorem 4. (B.-Haunschmid)

Let $\phi: \tilde{\Omega} \rightarrow \Omega$ be a conformal map (with bounded derivative). In law,

$$
h^{(\Delta) ; \Omega} \circ \phi=h^{(\tilde{\Delta}) ; \tilde{\Omega}}
$$

where at a point $w \in \tilde{\Omega}$,

$$
\tilde{\Delta}(w)=\overline{\phi^{\prime}(w)} \cdot \Delta(\phi(w))
$$

Discrete Girsanov on triangular lattice \mathbb{T}.

Directed triangular lattice \mathbb{T}

$$
\text { if } \tau=e^{2 i \pi / 3}
$$

$$
\mathbb{Q}\left(x, x+\tau^{k-1}\right)=\frac{e^{\alpha_{k}}}{a} .
$$

Define $\beta(v)>0$ by

$$
\exp \left(-\beta(v)^{2}\right)=(a / 3)^{-3} \prod_{k=1}^{3} e^{\alpha_{k}}
$$

well defined by AM-GM.

Discrete Girsanov on triangular lattice \mathbb{T}.

Define a vector $\alpha(v)$ at every vertex v in the graph,

$$
\alpha=\alpha_{1}+\alpha_{2} \tau+\alpha_{3} \tau^{2}
$$

Lemma

Fix any lattice path $\gamma=\left(x_{0}, \ldots, x_{n}\right)$ on \mathbb{T}.

$$
\frac{\mathbb{Q}}{\mathbb{P}}(\gamma)=\exp \left(M_{n}-\frac{1}{2} V_{n}\right)
$$

where $M_{n}=\frac{2}{3} \sum_{s=0}^{n-1}\left\langle\alpha\left(x_{s}\right), \mathrm{d} x_{s}\right\rangle$; and $V_{n}=\frac{2}{3} \sum_{s=0}^{n-1} \beta\left(x_{s}\right)^{2}$.
Discrete analogue of

$$
\frac{d \mathbb{Q}}{d \mathbb{P}}=\exp \left(\int_{0}^{t} \Delta\left(X_{s}\right) \cdot \mathrm{d} X_{s}-\frac{1}{2} \int_{0}^{t}\left\|\Delta\left(X_{s}\right)\right\|^{2} \mathrm{~d} s\right) .
$$

Corollary (constant drift case)

$\mathbb{Q}_{x}\left(\cdot \mid x_{n}=y\right)$ is the same as a massive walk conditioned to survive up to time n and $X_{n}=y$.

Proof.

At each v, write $n_{i}=n_{i}(v)=$ number of times path goes in direction $1, \tau, \tau^{2}$.

$$
\begin{aligned}
& \mathbb{Q}_{x}(\gamma)=\prod_{v} \prod_{i=1}^{3}\left(\frac{e^{\alpha_{i}}}{a}\right)^{n_{i}} \\
&=3^{-n} \prod_{v}\left[\left((a / 3)^{-3} \prod_{i=1}^{3}\left(e^{\alpha_{i}}\right)^{\frac{n_{1}+n_{2}+n_{3}}{3}} \prod_{i=1}^{3}\left(e^{\alpha_{i}}\right)^{n_{i}-\frac{n_{1}+n_{2}+n_{3}}{3}}\right]\right. \\
&=3^{-n} \prod_{v} e^{-\beta(v)^{2} \frac{n_{1}+n_{2}+n_{3}}{3}} \exp \left(\sum_{i=1}^{3} \alpha_{i}\left(n_{i}-\frac{n_{1}+n_{2}+n_{3}}{3}\right)\right) \\
&=3^{-n} e^{-\frac{1}{2} V_{n}} \exp \left(\sum_{v} \alpha_{1}\left(\frac{2 n_{1}-n_{2}-n_{3}}{3}+\alpha_{2}\left(\frac{2 n_{2}-n_{1}-n_{3}}{3}\right)+\alpha_{3}\left(\frac{2 n_{3}-n_{1}-n_{2}}{3}\right)\right)\right. \\
&=3^{-n} e^{-\frac{1}{2} V_{n}} \exp \left(\frac{2}{3} \sum_{v}\left\langle\alpha_{1}+\alpha_{2} \tau+\alpha_{3} \tau^{2}, n_{1}+n_{2} \tau+n_{3} \tau^{2}\right\rangle\right) \\
&=3^{-n} e^{-\frac{1}{2} V_{n}} \exp \left(\frac{2}{3} \sum_{s=0}^{n-1}\left\langle\alpha\left(x_{s}\right), \mathrm{d} x_{s}\right\rangle\right) .
\end{aligned}
$$

Open Problems

- Balanced condition $c_{1}+c_{3}=c_{2}+c_{4}=0$. Is this necessary? (cf. "Loop-Erased BM")
- Is $h^{(\Delta) ; \Omega}$ absolutely continuous with respect to GFF?
- Coleman correspondence: massive free fermions \leftrightarrow Sine-Gordon. Is there a connection?
- Bosonisation and Ising model?
- Near-critical theory for isoradial graphs?

