Dimers and Imaginary Geometry

Nathanaël Berestycki, University of Vienna

March 2023, Manchester. UK Easter probability meeting

Outline

- 1) Introduction to the *dimer model*
 - Definition. Notion of height function. Boundary conditions.
 - Statement of Kenyon's theorem; Kasteleyn theory.
- 2) Imaginary geometry approach
 - Temperley's bijection;
 - ▶ GFF / SLE coupling.
 - Convergence of winding
- 3) Near-critical (massive) dimer model
 - Definition, non Gaussian scaling limit
 - Connection with massive SLE.
 - Exact discrete Girsanov theorem on triangular lattice

l) The dimer model

The dimer model

Let G be a finite, planar, bipartite graph.

A *dimer cover* (or *perfect matching*): a set of edges (=dimers), such that each vertex is incident to exactly one dimer.

The *dimer model* with edge weights w_e :

$$\mathbb{P}(\mathbf{m}) = \frac{1}{Z} \prod_{e \in \mathbf{m}} w_e.$$

Typically $w_e \equiv 1 \ (\rightarrow critical!)$

The dimer model as a random surface

Honeycomb lattice: *lozenge tiling* or a stack of cubes

©Kenyon

Height function

Introduced by Thurston. Hence view as a random surface.

Note: depends on the choice of a reference frame.

Large scale behaviour?

The effect of boundary conditions is, however, not entirely trivial and will be discussed in more detail in a subsequent paper.

P. W. Kasteleyn, 1961

Temperleyan boundary conditions

Divide the vertices into black and white. Divide further into $B_0 = \bullet, B_1 = \times$ (and W_0, W_1).

Temperleyan: all corners are $B_1 = \times$, and one corner is removed.

Scaling limit of height function

Theorem (Kenyon '99)

Let $\mathcal{D} \subset \mathbb{C}$ bounded domain, $\mathcal{D}^{\delta} = \mathcal{D} \cap \delta \mathbb{Z}^2$ with *Temperleyan* boundary conditions. Let h^{δ} be the associated height function. Then,

$$h^{\delta} - \mathbb{E}(h^{\delta}) \rightarrow \frac{1}{\sqrt{\pi}} h_{\mathcal{D}}^{\text{GFF}} \quad \text{as} \quad \delta \rightarrow 0,$$

in distribution.

Main ingredients of the proof:

- Kasteleyn theory (exact solvability): dimer correlations are given by determinants of inverse *Kasteleyn matrix*,
- Asymptotic computation of inverse Kasteleyn matrix (discrete holomorphic + boundary conditions)
- Computation of moments

2) Imaginary Geometry

Uniform Spanning Tree

A spanning tree on a graph is a subset of edges covering each vertex and without cycles.

free boundary;

self-dual trees ;

wired boundary

Law

Orientation

Trees can be oriented towards a designated root ρ . For wired UST, $\rho = \partial V$.

For a weighted graph G = (V, E), ∂ a fixed vertex (the boundary).

$$\mathbb{P}(T=t) = \frac{1}{Z} \prod_{e \in t} w_e$$

for every tree. Z is the partition function.

Wilson's algorithm 1.

Loop-Erased Random Walk (LERW)

Wilson's algorithm 2.

Build wired UST by adding LERW iteratively.

The tree is naturally oriented towards the boundary.

Enumeration

For a weighted graph G = (V, E), ∂ a fixed vertex (the boundary).

$$\mathbb{P}(T=t) = \frac{1}{Z} \prod_{e \in t} w_e$$

for every tree. Z is the partition function.

Fact:

Matrix tree theorem: $Z = \det(D)$ where *D* is the discrete Laplacian of random walk killed at ∂ .

Bijection between dimers on $G \subset \mathbb{Z}^2$ and dual spanning trees on B_0, B_1 -lattices.

If G has **Temperleyan boundary conditions**, the B_0 -tree is wired and the B_1 -tree is free.

Amazing feature

Let h = height function. Then h(f) - h(f') = total **winding** of branch connecting f and f' !

Dimers on $\mathbb{Z}^2 \cap D$, Temperleyan boundary conditions.

Orient dimers black \rightarrow white (just $B_0 = \bullet$ for now)

Double each oriented dimer to get spanning tree on B_0 lattice (wired boundary conditions).

On B_1 lattice, get dual (free boundary conditions) spanning tree.

Remarks

- ▶ The bijection is local.
- ► Temperleyan boundary conditions ⇒ wired/free boundary conditions for trees.
- If $w_e \equiv 1$ then $(\mathcal{T}, \mathcal{T}^{\dagger})$ uniform.
- More generally, in weighted setup, if w_e are weights on the dimer graph,

$$\mathbb{P}((\mathcal{T},\mathcal{T}^{\dagger}) = (\mathbf{t},\mathbf{t}^{\dagger})) \propto \prod_{e \in \mathbf{t}} w_{e/2} \prod_{e^{\dagger} \in \mathbf{t}^{\dagger}} w_{e^{\dagger}/2}$$

If $w_{e^{\dagger}} \equiv 1$, we can just sample \mathcal{T} from Wilson's algorithm; this determines \mathcal{T}^{\dagger} by duality and then a dimer configuration by Temperley's bijection.

Winding in UST

Question

How much do branches wind in a wired UST?

For a face f, let γ_f be a path from f to ∂D which follows the UST. Let $h^{\#\delta}(f)$ = total winding of γ_f (= height function).

Theorem (B.–Laslier–Ray (2020))

Let $G^{\#\delta}$ be a sequence of graphs embedded in \mathbb{R}^2 . Assume (*). Let *D* be simply connected with ∂D locally connected.

$$h^{\#\delta} - \mathbb{E}(h^{\#\delta}) \xrightarrow[\delta \to 0]{} \frac{1}{\chi} h_{\text{GFF}},$$

the Gaussian free field (Dirichlet boundary conditions); $\chi = 1/\sqrt{2}$.

Note: $\mathbb{E}(h^{\#\delta})$ itself is **not** universal, only fluctuations!

Robustness

We recover Kenyon's result, + much more:

- Balanced random environments ! (BLR 2020)
- General domains with **purely liquid** phases (Laslier 2022)
- Riemann Surfaces (BLR 2021, 2022)
- Near-critical (massive) cases (B. Haunschmid-Sibitz 2022). See tomorrow.

Still requires nice boundary conditions so that Temperley's bijection applies.

Scaling limit of Uniform Spanning Tree

Theorem (Lawler, Schramm, Werner '03, Schramm '00)

- $D \subset \mathbb{C}$ simply connected
 - ▶ Uniform spanning tree on $D \cap \delta \mathbb{Z}^2 \to$ "A continuum tree" (continuum uniform spanning tree).
 - ▶ Branches of the continuum tree are (radial) SLE₂ curves.

The continuum tree can be obtained by performing Wilson's algorithm in the continuum.

Universality

Yadin–Yehudayoff 2010: assuming convergence of SRW to BM, LERW converges to SLE₂.

Schramm–Loewner–Evolution (SLE)

Familly of curves in (D, a, o) with $a \in \partial D, o \in D$.

Domain Markov property

Given $\gamma[0, t]$, law of future? $\gamma[t, \infty) = \text{curve } (D_t, \gamma_t, o).$

Theorem (Schramm)

Suppose γ satisfies Domain Markov + Conformal invariance. Then γ is SLE_{κ} for some $\kappa \geq 0$.

Oded Schramm 1961–2008

Schramm–Loewner Evolution (SLE)

 g_t = conformal map which removes $\gamma(0, t]$.

$$\frac{\partial g_t(z)}{\partial t} = g_t(z) \frac{\xi_t + g_t(z)}{\xi_t - g_t(z)}, \quad z \in \mathbb{D} \setminus \gamma[0, t]$$

 $\xi = \exp(i\sqrt{\kappa}B_t) =$ driving function.

Imaginary Geometry

Dubédat, Miller–Sheffield: "flow lines of GFF/χ are SLE_{κ} curves", provided:

$$\chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}.$$

Meaning: coupling (h, η) , h = GFF, $\eta = \text{SLE}_{\kappa}$:

Take-home message

"Values" of h/χ along curve record "winding" of SLE_{κ} (in sense of arg g').

Imaginary geometry

Recall:

Take-home message

"Values" of h/χ along curve record "winding" of SLE_{κ} (in sense of arg g').

Two parts:

Part I: winding of continuum UST Part II: making the diagramme commute

Intrinsic vs. topological winding of a path

Let $\gamma : [0,1] \to \mathbb{C}$ smooth, *simple* curve. Let

 $W(\gamma, z) =$ topological winding around z

and let

$$W_{\text{int}}(\gamma) = \text{ intrinsic winding of } \gamma = \int_0^1 \arg \gamma'(s) ds$$
$$= \frac{\pi}{2} (\text{ # left turns - # right turns in discrete}).$$

Lemma

$$W_{int}(\gamma) = W(\gamma, a) + W(\gamma, b)$$
 where $a = \gamma(0), b = \gamma(1)$.

As a result this is well defined even for non-smooth paths, and is essentially continuous!

3) Near-critical dimer model

Makarov-Smirnov (2009):

The key property of SLE is its conformal invariance, which is expected in 2D lattice models only at criticality, and the question naturally arises: Can SLE success be replicated for off-critical models? In most off-critical cases to obtain a non-trivial scaling limit one has to adjust some parameter [...], sending it at an appropriate speed to the critical value. Such limits lead to massive field theories...,

Biperiodic setup

Choose $s_i = 1 + c_i \delta$, where δ = mesh size. *Gasesous/Liquid boundary...*

Massive Laplacian

Let K = Kasteleyn matrix, $D = KK^*$. Then D is (essentially) a *massive Laplacian*:

$$D(b,b) = -\sum_{i=1}^{4} s_i^2$$

4

but

$$\sum_{b'} D(b,b') = 2s_2s_4 + 2s_1s_3 < |D(b,b)|$$

by AM-GM.

Describes a *massive walk* (fixed killing probability).

Natural guess:

Scaling limit = Massive GFF?

$$\mathbb{E}[h(x)h(y)] = \int_0^\infty e^{-m^2t} p_t(x,y) dt$$

Unfortunately this guess is wrong.

Theorem (Chhita, 2012)

Limiting moments of height function can be computed; no Wick rule so non Gaussian !

New results for near-critical dimers

With Levi Haunschmid-Sibitz (2022) we prove:

- Exact connection with Makarov and Smirnov's *massive SLE*₂ (and with massive Laplacian).
- Existence and universality of *scaling limit* of height function in Temperleyan domains
- Conformal *covariance* of scaling limit

Scaling limit of Temperleyan tree

Consider off-critical dimer model on square with $s_i = 1 + c_i \delta$. Let \mathcal{T} = Temperleyan B_0 -tree.

$$\mathbb{P}(\mathcal{T}=\mathbf{t})\propto\prod_{\nu\in B_0}s_\nu(\mathbf{t})$$

where $s_{\nu}(\mathbf{t}) \in \{s_1, \dots, s_4\}$ depending on the direction of the unique outgoing edge from ν in \mathbf{t} .

Wilson's algorithm

The branch connecting *z* to ∂D is LERW for the random walk on B_0 with jump probabilities $(s_i)_{i=1}^4$.

The random walk itself converges to BM with drift Δ ,

$$\Delta = \frac{1}{4}(c_1 + c_2i + c_3i^2 + c_4i^3)$$

But what is the scaling limit of LERW?

Connection with massive SLE₂

Suppose

$$c_1 + c_3 = c_2 + c_4 = 0$$

Theorem 1 (B.–Haunschmid)

Let $z \in \Omega$. Let γ^{δ} = path in Temperleyan tree to $\partial \Omega$, Y_{δ} = endpoint. Then conditionally on $Y_{\delta} = y_{\delta}$, $\gamma^{\delta} \to \text{mSLE}_2$,

where mass $m = \|\Delta\|$.

Massive SLE₂

Consider random walk killed with probability $m^2\delta^2$ at each step.

Condition to leave Ω without dying. What is scaling limit of LERW?

Theorem (Makarov–Smirnov (2009), Chelkak-Wan (2019))

massive LERW converges to "massive SLE2"

Described by Loewner's equation with driving function:

$$d\xi_t = \sqrt{2}dB_t + 2\lambda_t dt;$$

with

$$\lambda_t = \left. \frac{\partial}{\partial w} \log \frac{P_{\Omega_t}^{(m)}(z, w)}{P_{\Omega_t}^{(0)}(z, w)} \right|_{w = \gamma(t)}$$

[m = 0: Lawler-Schramm-Werner 2002]

Additional remarks

Unconditional convergence also holds, then global Radon–Nikodym derivative:

$$\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\,\mathrm{mSLE}_2}(\gamma) = \exp(2\langle Y - z, \Delta\rangle)$$

where Y = exit point.

Exact same statement for hexagonal lattice $a_i = 1 + c_i \delta$,

$$\Delta = \frac{1}{3}(c_1 + c_2\tau + c_3\tau^2).$$

Convergence of height function

Corollary (B.-Haunschmid)

The Temperleyan tree \mathcal{T}_{δ} has a scaling limit (in Schramm topology); the limit law depends only on Δ and so is the same for hexagonal and square lattice cases.

Proof: Wilson's algorithm.

Corollary (B.-Haunschmid)

The height function of near-critical dimers in Temperleyan domains converge to the same scaling limit.

Proof: "imaginary geometry approach" by B.-Laslier-Ray (2020-2022).

Conformal covariance

Conformal covariance:

Image under conformal map preserved, up to power α of derivative of conformal map.

 $(\alpha = 0 \text{ means conformal invariance.})$

This requires allowing for general vector field $\Delta : \Omega \to \mathbb{R}^2 \equiv \mathbb{C}$.

Generalised near-critical dimers

At each point $z \in B_0$, assign weights $s_i = 1 + c_i \delta$, with $c_1 + c_3 = 0, c_2 + c_4 = 0$,

$$\frac{1}{4}(c_1 + c_2i + c_3i^2 + c_4i^3) = \Delta$$

Any drift vector can be encoded in this way.

Conformal covariance

Theorem 3. (B.–Haunschmid)

The loop-erased random walk has a scaling limit. Hence the height function has a scaling limit, call it $h^{(\Delta);\Omega}$.

Theorem 4. (B.–Haunschmid)

Let $\phi: \tilde{\Omega} \to \Omega$ be a conformal map (with bounded derivative). In law,

$$h^{(\Delta);\Omega} \circ \phi = h^{(\tilde{\Delta});\tilde{\Omega}}$$

where at a point $w \in \tilde{\Omega}$,

$$\tilde{\Delta}(w) = \overline{\phi'(w)} \cdot \Delta(\phi(w)).$$

Discrete Girsanov on triangular lattice \mathbb{T} .

Define $\beta(v) > 0$ by

$$\exp(-\beta(v)^2) = (a/3)^{-3} \prod_{k=1}^3 e^{\alpha_k},$$

well defined by AM-GM.

Discrete Girsanov on triangular lattice \mathbb{T} .

Define a vector $\alpha(v)$ at every vertex v in the graph,

$$\alpha = \alpha_1 + \alpha_2 \tau + \alpha_3 \tau^2,$$

Lemma

Fix any lattice path $\gamma = (x_0, \ldots, x_n)$ on \mathbb{T} .

$$\frac{\mathbb{Q}}{\mathbb{P}}(\gamma) = \exp(M_n - \frac{1}{2}V_n)$$

where
$$M_n = \frac{2}{3} \sum_{s=0}^{n-1} \langle \alpha(x_s), dx_s \rangle$$
; and $V_n = \frac{2}{3} \sum_{s=0}^{n-1} \beta(x_s)^2$.

Discrete analogue of

$$rac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(\int_0^t \Delta(X_s)\cdot \mathrm{d}X_s - rac{1}{2}\int_0^t \|\Delta(X_s)\|^2\mathrm{d}s
ight).$$

Corollary (constant drift case)

 $\mathbb{Q}_x(\cdot|x_n = y)$ is the same as a massive walk conditioned to survive up to time *n* and $X_n = y$.

Proof.

At each *v*, write $n_i = n_i(v)$ = number of times path goes in direction 1, τ , τ^2 .

$$\begin{split} \mathbb{Q}_{x}(\gamma) &= \prod_{\nu} \prod_{i=1}^{3} \left(\frac{e^{\alpha_{i}}}{a}\right)^{n_{i}} \\ &= 3^{-n} \prod_{\nu} \left[\left((a/3)^{-3} \prod_{i=1}^{3} (e^{\alpha_{i}})^{\frac{n_{1}+n_{2}+n_{3}}{3}} \prod_{i=1}^{3} (e^{\alpha_{i}})^{n_{i}-\frac{n_{1}+n_{2}+n_{3}}{3}} \right] \\ &= 3^{-n} \prod_{\nu} e^{-\beta(\nu)^{2} \frac{n_{1}+n_{2}+n_{3}}{3}} \exp\left(\sum_{i=1}^{3} \alpha_{i} (n_{i} - \frac{n_{1}+n_{2}+n_{3}}{3}) \right) \\ &= 3^{-n} e^{-\frac{1}{2}V_{n}} \exp\left(\sum_{\nu} \alpha_{1} \left(\frac{2n_{1}-n_{2}-n_{3}}{3} + \alpha_{2} \left(\frac{2n_{2}-n_{1}-n_{3}}{3} \right) + \alpha_{3} \left(\frac{2n_{3}-n_{1}-n_{2}}{3} \right) \right) \\ &= 3^{-n} e^{-\frac{1}{2}V_{n}} \exp\left(\frac{2}{3} \sum_{\nu} \langle \alpha_{1} + \alpha_{2}\tau + \alpha_{3}\tau^{2}, n_{1} + n_{2}\tau + n_{3}\tau^{2} \rangle \right) \\ &= 3^{-n} e^{-\frac{1}{2}V_{n}} \exp\left(\frac{2}{3} \sum_{s=0}^{n-1} \langle \alpha(x_{s}), dx_{s} \rangle \right). \end{split}$$

Open Problems

- ▶ Balanced condition $c_1 + c_3 = c_2 + c_4 = 0$. Is this necessary? (cf. "Loop-Erased BM")
- Is $h^{(\Delta);\Omega}$ absolutely continuous with respect to GFF?
- ► Coleman correspondence: massive free fermions ↔ Sine-Gordon. Is there a connection?
- Bosonisation and Ising model?
- Near-critical theory for isoradial graphs?