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Outline

1) Introduction to the dimer model

I Definition. Notion of height function. Boundary conditions.
I Statement of Kenyon’s theorem; Kasteleyn theory.

2) Imaginary geometry approach

I Temperley’s bijection;
I GFF / SLE coupling.
I Convergence of winding

3) Near-critical (massive) dimer model

I Definition, non Gaussian scaling limit
I Connection with massive SLE.
I Exact discrete Girsanov theorem on triangular lattice
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1) The dimer model
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The dimer model

Let G be a finite, planar, bipartite graph.

A dimer cover (or perfect matching): a set of edges (=dimers), such that
each vertex is incident to exactly one dimer.

The dimer model with edge weights we:

P(m) =
1
Z

∏
e∈m

we.

Typically we ≡ 1 (→ critical!)
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The dimer model as a random surface

Honeycomb lattice: lozenge tiling or a stack of cubes

©Kenyon

Height function

Introduced by Thurston. Hence view as a random surface.

Note: depends on the choice of a reference frame.
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Large scale behaviour?

The effect of boundary conditions is, however, not entirely trivial and will be
discussed in more detail in a subsequent paper.

P. W. Kasteleyn, 1961
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Temperleyan boundary conditions

Divide the vertices into black and white.
Divide further into B0 = •,B1 = ×
(and W0,W1).

Temperleyan: all corners are B1 = ×, and one corner is removed.
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Scaling limit of height function
Theorem (Kenyon ’99)

Let D ⊂ C bounded domain, Dδ = D ∩ δZ2 with Temperleyan boundary
conditions. Let hδ be the associated height function. Then,

hδ − E(hδ)→ 1√
π

hGFF
D as δ → 0,

in distribution.

Main ingredients of the proof:

I Kasteleyn theory (exact solvability): dimer correlations are given by
determinants of inverse Kasteleyn matrix,

I Asymptotic computation of inverse Kasteleyn matrix (discrete
holomorphic + boundary conditions)

I Computation of moments
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2) Imaginary Geometry
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Uniform Spanning Tree

A spanning tree on a graph is a subset of edges covering each vertex and
without cycles.

free boundary; self-dual trees ; wired boundary
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Law

Orientation
Trees can be oriented towards a designated root ρ.
For wired UST, ρ = ∂V .

For a weighted graph G = (V,E), ∂ a fixed vertex (the boundary).

P(T = t) =
1
Z

∏
e∈t

we

for every tree. Z is the partition function.
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Wilson’s algorithm 1.

Loop-Erased Random Walk (LERW)
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Wilson’s algorithm 2.

Build wired UST by adding LERW iteratively.

The tree is naturally oriented towards the boundary.
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Enumeration

For a weighted graph G = (V,E), ∂ a fixed vertex (the boundary).

P(T = t) =
1
Z

∏
e∈t

we

for every tree. Z is the partition function.

Fact:
Matrix tree theorem: Z = det(D) where D is the discrete Laplacian of
random walk killed at ∂.
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Temperley’s bijection
Bijection between dimers on G ⊂ Z2 and dual spanning trees on
B0,B1-lattices.

If G has Temperleyan boundary conditions, the B0-tree is wired and the
B1-tree is free.

Amazing feature

Let h = height function.
Then h(f )− h(f ′) = total winding of branch connecting f and f ′ !
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Temperley’s bijection 1

Dimers on Z2 ∩ D, Temperleyan boundary conditions.
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Temperley’s bijection 2

Orient dimers black→ white (just B0 = • for now)
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Temperley’s bijection 3

Double each oriented dimer to get spanning tree on B0 lattice (wired
boundary conditions).
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Temperley’s bijection 4

On B1 lattice, get dual (free boundary conditions) spanning tree.

24 / 49



Remarks

I The bijection is local.

I Temperleyan boundary conditions⇒ wired/free boundary conditions
for trees.

I If we ≡ 1 then (T , T †) uniform.

I More generally, in weighted setup, if we are weights on the dimer graph,

P((T , T †) = (t, t†)) ∝
∏
e∈t

we/2

∏
e†∈t†

we†/2

If we† ≡ 1, we can just sample T from Wilson’s algorithm; this
determines T † by duality and then a dimer configuration by
Temperley’s bijection.
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Winding in UST

Question
How much do branches wind in a wired UST?

For a face f , let γf be a path from f to ∂D which follows the UST.
Let h#δ(f ) = total winding of γf (= height function).

Theorem (B.–Laslier–Ray (2020))

Let G#δ be a sequence of graphs embedded in R2. Assume (?). Let D be
simply connected with ∂D locally connected.

h#δ − E(h#δ) −−−→
δ→0

1
χ

hGFF,

the Gaussian free field (Dirichlet boundary conditions); χ = 1/
√

2.

Note: E(h#δ) itself is not universal, only fluctuations!
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Robustness

We recover Kenyon’s result, + much more:

I Balanced random environments ! (BLR 2020)
I General domains with purely liquid phases (Laslier 2022)
I Riemann Surfaces (BLR 2021, 2022)
I Near-critical (massive) cases (B. Haunschmid-Sibitz 2022). See

tomorrow.
Still requires nice boundary conditions so that Temperley’s bijection applies.
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Scaling limit of Uniform Spanning Tree

Theorem (Lawler, Schramm, Werner ’03, Schramm ’00)
D ⊂ C simply connected
I Uniform spanning tree on D ∩ δZ2 → “A continuum tree” (continuum

uniform spanning tree).
I Branches of the continuum tree are (radial) SLE2 curves.

The continuum tree can be obtained by performing Wilson’s algorithm in the
continuum.

Universality

Yadin–Yehudayoff 2010: assuming convergence of SRW to BM, LERW
converges to SLE2.
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Schramm–Loewner–Evolution (SLE)

Familly of curves in (D, a, o) with
a ∈ ∂D, o ∈ D.

Domain Markov property

Given γ[0, t], law of future?
γ[t,∞)= curve (Dt, γt, o).

Oded Schramm 1961–2008

γt?

Dt = D \ γ[0, t]

Theorem (Schramm)
Suppose γ satisfies Domain Markov + Conformal invariance.
Then γ is SLEκ for some κ ≥ 0.
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Schramm–Loewner Evolution (SLE)

gt = conformal map which removes γ(0, t].

∂gt(z)
∂t

= gt(z)
ξt + gt(z)
ξt − gt(z)

, z ∈ D \ γ[0, t]

ξ= exp(i
√
κBt) = driving function.

30 / 49



Imaginary Geometry
Dubédat, Miller–Sheffield: “flow lines of GFF/χ are SLEκ curves”,
provided:

χ =
2√
κ
−
√
κ

2
.

Meaning: coupling (h, η), h = GFF, η = SLEκ:

−λ + χ arg g′t

λ + χ arg g′t

Take-home message

“Values” of h/χ along curve record “winding” of SLEκ (in sense of arg g′).
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Imaginary geometry

Recall:

Take-home message

“Values” of h/χ along curve record “winding” of SLEκ (in sense of arg g′).

UST
winding−−−−−−−−−−−→

Temperley’s bijection
h#δ

Lawler, Schramm, Werner ↓ ↓?
Continuum UST

winding?−−−−−−−−−−→
imaginary geometry

(1/χ)hGFF

Two parts:

Part I: winding of continuum UST
Part II: making the diagramme commute
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Intrinsic vs. topological winding of a path

Let γ : [0, 1]→ C smooth, simple curve. Let

W(γ, z) = topological winding around z

and let

Wint(γ) = intrinsic winding of γ =

∫ 1

0
arg γ′(s)ds

=
π

2
( # left turns - # right turns in discrete).

Lemma
Wint(γ) = W(γ, a) + W(γ, b) where a = γ(0), b = γ(1).

As a result this is well defined even for non-smooth paths, and is essentially
continuous!
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3) Near-critical dimer model
Makarov–Smirnov (2009):

The key property of SLE is its conformal invariance, which is expected in 2D
lattice models only at criticality, and the question naturally arises: Can SLE
success be replicated for off-critical models? In most off-critical cases to
obtain a non-trivial scaling limit one has to adjust some parameter [...],
sending it at an appropriate speed to the critical value. Such limits lead to
massive field theories...,
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Biperiodic setup

Choose si = 1 + ciδ, where δ = mesh size. Gasesous/Liquid boundary...
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Massive Laplacian
Let K = Kasteleyn matrix, D = KK∗. Then D is (essentially) a massive
Laplacian:

D(b, b) = −
4∑

i=1

s2
i

but ∑
b′

D(b, b′) = 2s2s4 + 2s1s3 < |D(b, b)|

by AM-GM.
Describes a massive walk (fixed killing probability).

Natural guess:

Scaling limit = Massive GFF?

E[h(x)h(y)] =

∫ ∞
0

e−m2tpt(x, y)dt
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Negative answer

Unfortunately this guess is wrong.

Theorem (Chhita, 2012)
Limiting moments of height function can be computed; no Wick rule so non
Gaussian !
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New results for near-critical dimers

With Levi Haunschmid-Sibitz (2022) we prove:

I Exact connection with Makarov and Smirnov’s massive SLE2 (and with
massive Laplacian).

I Existence and universality of scaling limit of height function in
Temperleyan domains

I Conformal covariance of scaling limit
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Scaling limit of Temperleyan tree

Consider off-critical dimer model on square with si = 1 + ciδ.
Let T = Temperleyan B0-tree.

P(T = t) ∝
∏
v∈B0

sv(t)

where sv(t) ∈ {s1, . . . , s4} depending on the direction of the unique
outgoing edge from v in t.

Wilson’s algorithm

The branch connecting z to ∂D is LERW for the random walk on B0 with
jump probabilities (si)

4
i=1.

The random walk itself converges to BM with drift ∆,

∆ =
1
4

(c1 + c2i + c3i2 + c4i3)

But what is the scaling limit of LERW?
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Connection with massive SLE2

Suppose
c1 + c3 = c2 + c4 = 0

Theorem 1 (B.–Haunschmid)
Let z ∈ Ω. Let γδ = path in Temperleyan tree to ∂Ω, Yδ = endpoint. Then
conditionally on Yδ = yδ ,

γδ → mSLE2,

where mass m = ‖∆‖.
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Massive SLE2

Consider random walk killed with probability m2δ2 at each step.

Condition to leave Ω without dying. What is scaling limit of LERW?

Theorem (Makarov–Smirnov (2009), Chelkak-Wan (2019))
massive LERW converges to “massive SLE2”

Described by Loewner’s equation with driving function:

dξt =
√

2dBt + 2λtdt;

with

λt =
∂

∂w
log

P(m)
Ωt

(z,w)

P(0)
Ωt

(z,w)

∣∣∣∣∣
w=γ(t)

[m = 0: Lawler–Schramm–Werner 2002]
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Additional remarks

I Unconditional convergence also holds, then global Radon–Nikodym
derivative:

dP
d mSLE2

(γ) = exp(2〈Y − z,∆〉)

where Y = exit point.
I Exact same statement for hexagonal lattice ai = 1 + ciδ,

∆ =
1
3

(c1 + c2τ + c3τ
2).
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Convergence of height function

Corollary (B.–Haunschmid)

The Temperleyan tree Tδ has a scaling limit (in Schramm topology); the
limit law depends only on ∆ and so is the same for hexagonal and square
lattice cases.

Proof: Wilson’s algorithm.

Corollary (B.–Haunschmid)

The height function of near-critical dimers in Temperleyan domains
converge to the same scaling limit.

Proof: “imaginary geometry approach” by B.–Laslier–Ray (2020–2022).
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Conformal covariance

Conformal covariance:
Image under conformal map preserved, up to power α of derivative of
conformal map.

(α = 0 means conformal invariance.)

This requires allowing for general vector field ∆ : Ω→ R2 ≡ C.

Generalised near-critical dimers
At each point z ∈ B0, assign weights si = 1 + ciδ, with
c1 + c3 = 0, c2 + c4 = 0,

1
4

(c1 + c2i + c3i2 + c4i3) = ∆

Any drift vector can be encoded in this way.
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Conformal covariance

Theorem 3. (B.–Haunschmid)
The loop-erased random walk has a scaling limit.
Hence the height function has a scaling limit, call it h(∆);Ω.

Theorem 4. (B.–Haunschmid)
Let φ : Ω̃→ Ω be a conformal map (with bounded derivative). In law,

h(∆);Ω ◦ φ = h(∆̃);Ω̃

where at a point w ∈ Ω̃,

∆̃(w) = φ′(w) ·∆(φ(w)).
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Discrete Girsanov on triangular lattice T.

Directed triangular lattice T
if τ = e2iπ/3,

Q(x, x + τ k−1) =
eαk

a
.

ai = eδαi; a =
3∑
i=1

ai.

Define β(v) > 0 by

exp(−β(v)2) = (a/3)−3
3∏

k=1

eαk ,

well defined by AM-GM.
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Discrete Girsanov on triangular lattice T.
Define a vector α(v) at every vertex v in the graph,

α = α1 + α2τ + α3τ
2,

Lemma
Fix any lattice path γ = (x0, . . . , xn) on T.

Q
P

(γ) = exp(Mn − 1
2 Vn)

where Mn = 2
3

∑n−1
s=0 〈α(xs), dxs〉; and Vn = 2

3

∑n−1
s=0 β(xs)

2.

Discrete analogue of

dQ
dP

= exp

(∫ t

0
∆(Xs) · dXs −

1
2

∫ t

0
‖∆(Xs)‖2ds

)
.

Corollary (constant drift case)

Qx(·|xn = y) is the same as a massive walk conditioned to survive up to time
n and Xn = y.
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Proof.
At each v, write ni = ni(v) = number of times path goes in direction 1, τ, τ 2.

Qx(γ) =
∏

v

3∏
i=1

(
eαi

a
)ni

= 3−n
∏

v

[
((a/3)−3

3∏
i=1

(eαi)
n1+n2+n3

3

3∏
i=1

(eαi)ni−
n1+n2+n3

3

]

=3−n
∏

v

e−β(v)2 n1+n2+n3
3 exp

(
3∑

i=1

αi(ni − n1+n2+n3
3 )

)

=3−ne−
1
2 Vn exp

(∑
v

α1( 2n1−n2−n3
3 + α2( 2n2−n1−n3

3 ) + α3( 2n3−n1−n2
3 )

)

=3−ne−
1
2 Vn exp

(
2
3

∑
v

〈α1 + α2τ + α3τ
2, n1 + n2τ + n3τ

2〉
)

=3−ne−
1
2 Vn exp

(
2
3

n−1∑
s=0

〈α(xs), dxs〉
)
.

48 / 49



Open Problems

I Balanced condition c1 + c3 = c2 + c4 = 0. Is this necessary? (cf.
“Loop-Erased BM”)

I Is h(∆);Ω absolutely continuous with respect to GFF?

I Coleman correspondence: massive free fermions↔ Sine-Gordon. Is
there a connection?

I Bosonisation and Ising model?

I Near-critical theory for isoradial graphs?
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