Theoretical insights into the influence of formation on structural characteristics of paper

W.W. Sampson

School of Materials
University of Manchester
Manchester, M60 1QD, UK.

sampson@manchester.ac.uk

June 7, 2007

Abstract

Theory is presented for the influence of sheet uniformity on several structural parameters of paper and general classes of planar stochastic fibrous materials. The theory makes use of the negative binomial distribution for the probability of coverage of points by fibres, allowing expressions to be derived for structural properties of sheets with greater variance of coverage than that observed in a corresponding point Poisson process. The expressions obtained provide insights into the extent that formation influences free-fibre-length distribution, pore size distribution, absolute contact states and fractional contact area.

Introduction

The use of stochastic modelling and statistical geometry to model structural features of paper pertinent to the mechanical, optical and transport properties of the sheet is well established for the special case of random fibre networks. One of the earliest studies of such systems in the context of paper structure is that of Kallmes and Corte [1] who provided a precise definition of a random fibre network:

• The fibres are deposited independently of one another.
• The fibres have an equal probability of landing at all points in the sheet.
• The fibres have an equal probability of making all possible angles with any arbitrarily chosen, fixed axis, i.e. the fibres have a random orientation.

For modelling purposes, this definition is satisfied by two statistical distributions. The number of fibres covering a point in the plane of support of the network is a discrete random variable called coverage and the probability that a point has coverage \(c \) is given by the Poisson distribution,

\[
P(c) = \frac{\bar{c}^c e^{-\bar{c}}}{c!} \quad \text{for} \quad c = 0, 1, 2 \ldots
\]

with mean \(\bar{c} \), variance \(\text{var}(c) = \bar{c} \) and coefficient of variation, \(\text{cv}(c) = 1/\sqrt{\bar{c}} \). The Poisson distribution for coverage handles the first two of Kallmes and Corte’s criteria in their definition of a random fibre network. The third criterion is satisfied by using a uniform probability density function for the angle made by the major axes of fibres to a given direction.

Certain properties of random fibrous networks can be determined directly from the Poisson distribution only. For example, the probability of finding a pinhole in a sheet is given by the Poisson probability of coverage zero,

\[
P(0) = e^{-\bar{c}}.
\]

Similarly, the free-fibre-length distribution arises as the distribution of intervals along the length of a fibre in which there are no fibre crossings [1] and is given by the exponential distribution which has probability density,

\[
f(g) = \frac{1}{\bar{g}} e^{-g/\bar{g}},
\]

with mean \(\bar{g} \) and variance \(\text{var}(g) = \bar{g}^2 \).

In networks with mean coverage less than about 1, only a small fraction of the network has coverage greater than 3 and wherever fibres cross they can be considered to be in contact. We classify these thin networks as ‘two-dimensional’ and their fractional contact area \(\Phi_{2D} \), i.e. the structural analogue of relative bonded area, was derived by Kallmes et al. [2] by considering the Poisson probabilities of the network having coverage 1, 2 or 3 to give,

\[
\Phi_{2D} = 1 - \frac{1}{\bar{c}} + \frac{e^{-\bar{c}}}{\bar{c}}.
\]

At higher values of mean coverage, we expect that there will be regions where one fibre lies above another but is separated by some vertical distance through the influence of nearby fibres. The fractional contact area of networks of this type has been shown to depend on mean coverage and porosity only [3], this being consistent with the theoretical approaches of Soszyński [4, 5].

Kallmes et al. [2] considered also the configurations of fibre contacts in two-dimensional random networks, i.e. the fraction of the network where fibres are in contact with 1, 2 or no
other fibres at points along their length, no other configuration being possible. They gave
the probability of these absolute contact states, zero, 1 and 2 as,

\begin{align*}
B(0) &= e^{-\bar{c}} \\
B(1) &= \frac{2}{\bar{c}} \left(1 - (1 + \bar{c}) e^{-\bar{c}}\right) \\
B(2) &= \frac{1}{\bar{c}} \left(\bar{c} - 2 + (\bar{c} + 2) e^{-\bar{c}}\right)
\end{align*}

respectively. This treatment was recently extended by Sampson and Sirvio\cite{6} to account
for the separation of vertically adjacent fibre surfaces that is characteristic of networks with
coverages and porosities more typical of industrially formed papers. Equations (5) to (7) are
still valid for such structures, but represent the fractions available for contact with 0, 1 or 2
other fibres.

These absolute contact states are important because we expect regions where there is no
contact to exhibit different stress-strain behaviours from those with one or two contacts. In
particular, fibres at the surfaces of the network can contact other fibres on one side only and
as such might be considered less efficient at bearing load than other fibres within the bulk of
the network. The fraction of the total fibre surface that is available for contact with other
fibres has recently been derived for random fibre networks \cite{7} and is given by,

\begin{equation}
f = 1 + \frac{\gamma - Ei(\bar{c}) + \log(\bar{c})}{e^{\bar{c}} - 1}
\end{equation}

where \(\gamma\) is Euler’s constant and \(Ei(z)\) is the exponential integral function\cite{1}.

Whereas the structure of handsheets can be considered to approximate that of a random
fibre network formed from the same constituent fibres \cite{8, 9}, the higher consistencies used in
industrial papermaking lead to flocculation of fibres in suspension and worse formation, \textit{i.e.}
sheets exhibit a higher variance of local coverage than that arising from an equivalent point
Poisson process in two dimensions. When comparing the formation of real sheets with that
calculated for a random network formed from the same fibres, it is convenient to use the
ratio of their variances. This approach was used by Corte \cite{10} and has subsequently been
used extensively by Dodson and coworkers, see \textit{e.g.} \cite{8} who termed the variance ratio the
‘formation number’, \(n_f(x)\), this parameter being dependent on the scale of inspection, \(x\). We
note that Dodson and coworkers \cite{11–13} report correlations between the formation number
and flocculation in suspension, as quantified by the crowding number \cite{14}.

Here we derive expressions that account for the influence of formation, as characterised
by the formation number at points, \(n_f\), on the structural properties of the sheet that have
been discussed so far. To account for the increased variance of coverage over that observed
using the Poisson distribution, we use the negative binomial distribution for the probability

\footnote{Note that Equation (8) is a simplified form of that given in \cite{7}}
of coverage. This distribution has been widely applied in other fields where data exhibit higher degrees of clustering, and hence higher variance, than those arising from equivalent Poisson processes, see e.g. [15–17].

Theory

Consider a stochastic fibre network with mean coverage \(\bar{c} \) such that the probability that a point in the plane of support has coverage \(c \) is given by the negative binomial distribution:

\[
P^*(c) = \frac{\Gamma(c + m)}{c! \Gamma(m)} (1 - p)^c p^m \quad \text{for } c = 0, 1, 2, \ldots
\]

The mean, variance and coefficient of variation of coverage at points given by,

\[
\bar{c} = \frac{m(1 - p)}{p} \tag{10}
\]

\[
\text{var}^*(c) = \frac{m(1 - p)}{p^2} \tag{11}
\]

\[
cv^*(c) = \sqrt{\frac{1}{m(1 - p)}} \tag{12}
\]

respectively, and the asterisks denote that we are dealing with flocculated networks.

Our interest is flocculated networks with variance of coverage greater than that arising from an equivalent point Poisson process in two dimensions. We quantify the departure from randomness arising from flocculation by the formation number at points, as given by the ratio of the point variance of a flocculated network to that of a random network,

\[
n_f = \frac{\text{var}^*(c)}{\text{var}(c)} \tag{13}
\]

A property of the Poisson distribution is that \(\text{var}(c) = \bar{c} \), so we have,

\[
cv^*(c) = \sqrt{\frac{n_f}{\bar{c}}} \tag{14}
\]

Substituting for \(cv^*(c) \) and solving Equations (10) and (12) simultaneously for \(p \) and \(m \) gives,

\[
m = \frac{\bar{c}}{n_f - 1} \tag{15}
\]

\[
p = \frac{1}{n_f} \tag{16}
\]
Figure 1: Histograms of coverage for networks with mean coverage \(\bar{c} = 5 \) (top row) and \(\bar{c} = 10 \) (bottom row). Histograms on the left represent the random case as given by the Poisson distribution; other histograms represent flocculated cases as given by the negative binomial distribution with variance over random quantified by \(n_f \).

Substituting for \(m \) and \(p \) in Equation (9) yields, on manipulation, the negative binomial probability function in terms of \(\bar{c} \) and \(n_f \) only:

\[
P^*(c) = \frac{\Gamma\left(c + \frac{\bar{c}}{n_f-1}\right)}{c! \, \Gamma\left(\frac{\bar{c}}{n_f-1}\right)} \left(1 - \frac{1}{n_f}\right)^c n_f^{-\frac{\bar{c}}{n_f-1}} \quad \text{for } c = 0, 1, 2, \ldots
\]

(17)

We note that as \(n_f \to 1 \), Equation (17) converges to the Poisson distribution, as given by Equation (1). This is important, since any expressions we derive for structural properties of flocculated networks include the random case as a special case in the limit as \(n_f \to 1 \).

Coverage

Histograms of the coverage at points as given by the Equation (17) for some flocculated cases \(n_f > 1 \), and by Equation (1) for the random case \(n_f = 1 \), are shown in Figure 1 for networks with mean coverage 5 and 10. As expected, increasing \(n_f \) increases the probabilities of the highest and lowest coverages in the network and reduces the fraction with coverage close to the mean. Inevitably, this influences the skewness of the distribution which is given
by,

\[
S_k = \frac{2n_f - 1}{\sqrt{c_n_f}},
\]

such that skewness increases with flocculation, decreases with increasing coverage and when \(n_f = 1 \) we recover the skewness of the Poisson distribution, \(1/\sqrt{c} \).

The probability of a pinhole occurring in the network is given by the probability of coverage zero, \(i.e., \)

\[
P^*(0) = n_f^{-\frac{\bar{c}}{n_f - 1}},
\]

and \(\lim_{n_f \to 1} P^*(0) = e^{-\bar{c}} \) recovering the result for the random case.

Equation (19) is plotted against mean coverage in Figure 2 where \(n_f = 1 \) corresponds to the random case and the probability of pinholes increases with flocculation. It is illustrative to consider how the incidence of individual pinholes is related to the probabilities plotted in Figure 2. In one of the few articles presenting data on pinholes, Wiseman [18] suggests that pinholes in newsprint have equivalent circular diameters of order 30 \(\mu m \), so we may estimate the area of an individual pinhole as being around \(7 \times 10^{-10} m^2 \). Accordingly, a probability of pinholes of \(10^{-6} \) corresponds to about 1500 pinholes per square meter. Thus, although the probabilities plotted are relatively low, Figure 2 suggests that small changes in formation can have a significant influence on the occurrence of pinholes; this is consistent with Wiseman’s observations for newsprint and directory grades made on twin-wire and Fourdrinier formers.
Free-fibre-length distribution

To derive the free-fibre-length distribution, we use the negative binomial distribution to describe the frequency of crossings along a line with \(\mu \) crossings per unit length. The expected number of crossings in an interval of length \(g \) is \(\mu g \) and the probability of there being no crossings in a gap of length \(g \) is,

\[
P^\ast(0) = n_f^{-\frac{\mu g}{n_f - 1}}. \tag{20}
\]

The probability density of \(g \) is given by,

\[
f^\ast(g) = \frac{P^\ast(0)}{\int_0^\infty P^\ast(0) \, dg} = \frac{\mu \log(n_f)}{n_f - 1} \frac{1}{n_f^{\frac{\mu g}{n_f - 1}}}, \tag{21}
\]

with mean,

\[
\bar{g} = \frac{n_f - 1}{\mu \log(1/n_f)}. \tag{22}
\]

Solving Equation (22) for \(\mu \) and substituting into Equation (21) yields on manipulation,

\[
f^\ast(g) = \frac{1}{\bar{g}} e^{-g/\bar{g}}, \tag{23}
\]

which is, of course, the probability density function for the exponential distribution as given by Equation (3) for random networks.

As crossings can occur on both sides of a given fibre, intervals containing a small integer number of crossings may be more appropriate for characterisation of the free-fibre-lengths which form the in-plane perimeter of pores within the sheet [19]. The distribution of intervals containing \(n \) crossings in a random fibre network is,

\[
f(g, n) = \frac{P(n)}{\int_0^\infty P(n) \, dg}. \tag{24}
\]

Assuming that expected length of an interval containing \(n \) crossings is \(\bar{g}_n = (n + 1) \bar{g} \) we have,

\[
\bar{g}_n = (n + 1) \bar{g} = \int_0^\infty g f(g, n) \, dg \tag{25}
\]

\[
= \frac{n + 1}{\mu} \tag{26}
\]

such that \(\bar{g} = 1/\mu \) and,

\[
f(g, n) = \frac{g^n e^{-g/\bar{g}}}{\bar{g}^{n+1} \Gamma(n + 1)}, \tag{27}
\]

7
which is the probability density function for the gamma distribution with mean, $\bar{g}_n = (n+1) \bar{g}$ and coefficient of variation, $1/\sqrt{n+1}$.

It has not been possible to obtain the corresponding closed-form expression for the probability density of intervals containing n crossings in a flocculated fibre network as given by,

$$f^*(g, n) = \frac{P^*(n)}{\int_0^\infty P^*(n)dg}.$$ (28)

The probability densities for some small n can be obtained in closed form however, and for $n = 1$ we recover the gamma distribution that is known to describe the intervals for the random case:

$$f^*(g, 1) = \frac{g e^{-g/\bar{g}}}{\bar{g}^2},$$ (29)

with $\bar{g}_1 = 2 \bar{g}$ and coefficient of variation, $cv^*(g_1) = 1/\sqrt{2}$.

For $n > 1$, the probability densities become increasingly cumbersome with increasing n but we find that these are well approximated by gamma distributions with the same mean and coefficients of variation. i.e. $\bar{g}_n = (n+1) \bar{g}$ and,

$$cv^*(g_2) = \sqrt{\frac{1}{2} - \frac{3}{2 (3 + \log^2(n_f))}},$$ (30)

$$cv^*(g_3) = \sqrt{\frac{1}{2} + \frac{9 (4 - \log(n_f))}{4 (12 + 9 \log(n_f) + 2 \log^2(n_f))^2} - \frac{15}{4 (12 + 9 \log(n_f) + 2 \log^2(n_f))^2}},$$ (31)

such that there is a dependence of the coefficient of variation on uniformity, as quantified by the parameter n_f. This is illustrated in Figure 3 where the coefficient of variation of the length of intervals containing n crossings is plotted against n_f.

Recall that free-fibre-lengths represent the boundaries of voids in the plane of the sheet which have been modelled using the product of independent and identical gamma distributions [20]. We note however that despite an expectation that pore size will be influenced by formation [8, 20, 21], experimental evidence suggests that any dependence is rather weak [22]. Recent theoretical treatments suggest two reasons for this, firstly that the adjacent sides of polygons representing voids in the plane are correlated, and that this correlation is expected to be rather insensitive to fibre orientation and flocculation [23], and secondly that measurements of pore size are strongly influenced by the out-of-plane dimensions of voids [24], these being rather insensitive to formation [25, 26]. The insensitivity of the free-fibre-length distribution and the distributions of intervals containing n crossings to the parameter n_f, which quantifies formation, provides a third contributing factor to the observed insensitivity of pore size to formation. Interestingly, we observe that the dependence of the coefficient of variation of free-fibre-lengths is most sensitive to n_f when it is close to 1; as such any influence in near-random structures would be rather difficult to isolate experimentally.
Figure 3: Coefficient of variation of intervals contain \(n \) crossings. \(cv^*(g_n) \) is independent of formation for \(n = 0 \) and \(n = 1 \) and exhibits a weak dependence for higher \(n \).

Absolute Contact States

The absolute contact states derived by Kallmes et al. [2] for random networks and given by Equations (5) to (7) represent the fractions of the fibre surface in the network that is available for contact with no other fibres, one other fibre or two other fibres. For flocculated networks, we repeat their derivation using the negative binomial distribution for the probability of coverage \(c \) and we have,

\[
B^*(0) = \frac{P^*(1)}{\bar{c}} \\
B^*(1) = 2 \frac{1 - P^*(0) - P^*(1)}{\bar{c}} \\
B^*(2) = \frac{1}{\bar{c}} \sum_{c=3}^{\infty} (c - 2) P^*(c) .
\]

On simplification, these yield,

\[
B^*(0) = \left(\frac{1}{n_f} \right)^{1+\frac{\bar{c}}{n_f-1}} , \quad (35) \\
B^*(1) = \frac{2}{\bar{c}} \left(1 - (\bar{c} + n_f) \left(\frac{1}{n_f} \right)^{1+\frac{\bar{c}}{n_f-1}} \right) , \quad (36)
\]
Figure 4: Absolute contact states. A weak dependence of the fractions \(B^*(0) \) and \(B^*(1) \) on flocculation is observed for networks with mean coverage 5, though the fraction \(B^*(2) \) is less sensitive. At lower coverages, sensitivity is greater.

Equations (35) to (37) are plotted against the formation number, \(n_f \) in Figure 4 for mean coverages up to 5. At mean coverage \(\bar{c} = 5 \) and greater, we observe only a weak dependence on \(n_f \) and obtain the expected approximations,

\[
B^*(0) \approx 0; \quad B^*(1) \approx \frac{2}{\bar{c}}; \quad B^*(2) \approx 1 - \frac{2}{\bar{c}} .
\]

Fractional contact area

Two dimensional networks

Consider first a network of fibres of infinitesimal thickness such that they make contact with each other at all regions where they cross. Each fibre has an upper and a lower surface and those parts of the fibres that constitute the surfaces of the sheet can make contact with other fibres on one side only.

At a point in a fibre network with coverage \(c \), the fraction of the fibre surface covering that point which is in contact with other fibres is,

\[
\phi(c) = \frac{c - \frac{1}{\bar{c}}}{c} ,
\]

such that the fractional contact area of a random two-dimensional network is,

\[
\Phi_{2D} = \frac{1}{\bar{c}} \sum_{c=1}^{\infty} c \phi(c) P(c) = 1 - \frac{1}{\bar{c}} + \frac{e^{-\bar{c}}}{\bar{c}} ,
\]

(39)
recovering Equation (4) as derived by Kallmes et al. [2] by considering the Poisson probabilities of coverage up to 3.

Recall that Equation (2) gives the probability of coverage \(c = 0 \) in a random network; this fractional open area, \(\varepsilon \), is the two-dimensional equivalent of porosity in networks of finite thickness. From Equation (2) we have,

\[
\bar{c} = \log(1/\varepsilon),
\]

so the fractional contact area of a two dimensional random fibre network can be given in terms of its fractional open area only:

\[
\Phi_{2D} = 1 + \frac{1 - \varepsilon}{\log(\varepsilon)}. \tag{41}
\]

Using the negative binomial distribution for coverage, for the flocculated case we have,

\[
\Phi^*_{2D} = 1 - \frac{1}{\bar{c}} + \frac{n_f - \bar{c}}{\varepsilon}.
\]

and, since \(\varepsilon = P^*(0) = n_f^{-\bar{c}} \), we have the following unified expression for the fractional contact area of random and flocculated two-dimensional networks:

\[
\Phi^*_{2D} = 1 - \frac{1}{\bar{c}} + \frac{\varepsilon}{\bar{c}}. \tag{43}
\]

For two dimensional networks of equal coverage, the free parameter \(\varepsilon \) in Equation (43) increases with flocculation such that the fractional contact area increases also. Such behaviour is consistent with expectation, since increasing flocculation will increase the fraction of the network with coverage greater than 2 and hence the proportion of the total fibre length that contacts other fibres on both sides. An alternative scenario is that both coverage and flocculation vary and we note from Equation (19) that these variables are coupled such that,

\[
\bar{c} = \frac{(n_f - 1)}{\log(n_f)} \log(1/\varepsilon), \tag{44}
\]

and \(\lim_{n_f \to 1} \bar{c} = \log(1/\varepsilon) \). In the random case, \(\varepsilon = e^{-\bar{c}} \); it follows therefore that the fractional contact area of a flocculated network with mean coverage \(\bar{c} \) is the same as that of a random network with the same fractional open area and mean coverage \(\bar{c} \log(n_f)/(n_f - 1) \).
Multiplanar networks

The fractional contact area of networks with finite thickness can be modelled by considering the superposition of several two-dimensional networks. Our approach is guided by that of recent theory [3], but has the advantage that the resultant expressions are simpler and applicable over the full range of network porosities, whereas those presented in [3] were applicable only to networks with porosity greater than about 0.3.

When two structures with fractional open area, \(\varepsilon\), are brought together, the fraction of their projected solid area that makes contact is \((1 - \varepsilon)^2\). For a given two-dimensional network, with fractional contact area, \(\Phi_{2D}\), the fraction of the fibre surface that is available for additional contacts is \((1 - \Phi_{2D})\). Accordingly, for a network with infinite coverage formed from the superposition of an infinite number of layers, we have,

\[
\Phi_{\infty} = \Phi_{2D} + (1 - \varepsilon)^2 (1 - \Phi_{2D}) .
\] (45)

We have seen earlier that the fractional contact area of a flocculated two-dimensional network with mean coverage \(\bar{c}\) is equivalent to that of a random network with the same fractional open area but with mean coverage \(\bar{c} \log(n_f)/(n_f - 1)\). This is convenient, as it allows us to use Equation (41), which arises from consideration of random networks, to compute \(\Phi_{2D}\) and hence \(\Phi_{\infty}\) using Equation (45) such that \(\Phi_{\infty}\) is independent of \(n_f\).

When we consider multiplanar networks of finite thickness we must take account of the fraction of the total fibre length which is located at the surfaces of the network and can be in contact with other fibres on one side only. At points with coverage \(c\), the fraction of fibre surfaces available for contact with other fibres is \((c - 1)/c\). The fraction of the network covered by fibres is \((1 - P^*(0))\) so the fraction of the network as a whole that is available for contact is,

\[
f^* = \frac{1}{1 - P^*(0)} \sum_{c=2}^{\infty} \frac{c - 1}{c} P^*(c)
\] (46)

\[
= 1 - \frac{\bar{c} \, \text{F}(\bar{c}, n_f)}{n_f \left(n_f^{-1} - 1 \right)}
\] (47)

where \(\text{F}(\bar{c}, n_f)\) is the hypergeometric function, \(3F_2\left(1, 1, \frac{\varepsilon}{n_f-1} + 1; 2, 2; 1 - \frac{1}{n_f}\right)\). For the random case, \(f = \lim_{n_f \to 1} f^*\) and we recover Equation (8).

The fractional contact area of a network of finite coverage is given by,

\[
\Phi_{c}^* = f^* \Phi_{\infty}
\] (48)

The influence of coverage and formation on the fractional contact area as given by Equation (48) is plotted against normalised density \((1 - \varepsilon)\) in Figure 5. For clarity, only the
Figure 5: Fractional contact area plotted against normalised density. The influence of formation on fractional contact area decreases with increasing coverage and at a given density depends only on the fraction of fibre surface available for contact.

flocculated case with $n_f = 2$ is shown. We observe that at low mean coverages, flocculation reduces the fractional contact area, though the effect is negligible at mean coverage 20 or higher. We have identified that Φ_∞ is independent of formation, so the observed dependence of the fractional contact area of networks with a given density and with finite coverage on formation arises only from the fraction of the fibre network that is available for contact with other fibres; this being most sensitive to formation at low mean coverage.

Summary

Theory has been presented for the influence of formation on several structural parameters of paper and general classes of planar stochastic fibrous materials. The expressions derived arise from consideration of the probability of coverage of points by fibres as modelled by the negative binomial distribution. This distribution permits greater variance of coverage in a network with mean coverage \bar{c} than that of a classical random fibre network, as modelled using the Poisson distribution for coverage.

Having stated the probability function for the negative binomial distribution in terms of the mean coverage and the formation number at points–a measure of the additional variance when compared to a random network–expressions have been derived for the probability of pinholes, the free-fibre-length distribution, the distribution of absolute contact states and the
fractional open area of the network.

The theory predicts that the skewness of the distribution of coverage increases with flocculation; a consequence of this is that the incidence of pinholes increases, in line with expectation and observations reported in the literature [18]. Surprisingly, the free-fibre-length distribution, i.e. the distribution of intervals between fibre crossings, is found to be independent of network uniformity. The distribution of intervals containing a small number of crossings, which can be considered to represent the perimeters of in-plane voids, is found to be well approximated by the gamma distribution and to exhibit a weak dependence on network uniformity. Data characterising the dependence of the free-fibre-length distribution on formation that would allow confirmation of such a dependence have not been identified in the literature, and are probably difficult to obtain. Nonetheless, the finding is consistent with the experimentally observations that pore size distribution is well approximated by the gamma distribution and is rather insensitive to formation [22].

Expressions characterising the extent and configuration of contacts between fibres have been derived. We find that the configuration of fibre contacts, as characterised by the absolute contact states, are very insensitive to formation once mean coverage exceeds 5. This is reflected in the influence of formation on the fractional contact area; for very thin networks of a given coverage, we predict some dependence of this parameter on formation, though for networks of coverage more representative of most paper products, our models predict that the influence of formation is weak and decreases with increasing coverage.

References

