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A b s t r a c t - - T h i s  note extends E. H. Lloyd's model of pore structure in random fibre networks to 
a large class of stochastic fibre networks containing the random model as a special case. The key to 
the generalization is the substitution of a family of gamma distributions for the negative exponential 
family used for intercrossing distances on fibres. This allows closed expressions to be obtained for 
the variance and mean of the equivalent pore size distributions in a planar array of line elements 
representing fibres. The analytical details have been made available in a Mathematica notebook, via 
the World Wide Web. The result has application in modeling the forming of nonwoven textiles and 
paper from fibre suspensions, and in modeling their void structures and transmission of fluids. 
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1. I N T R O D U C T I O N  

In  a p lanar  network of r a n d o m  lines, the mean  number  of sides per polygon is four, so Corte  

and  Lloyd [1,2] es t imated  the pore size d i s t r ibu t ion  as the product  of two negat ive exponent ia l  

d is t r ibut ions ,  which are known to give a good approximat ion  to the intercrossing lengths in a 

r a n d o m  network [3]. Here we repeat  this  analysis  using the  g a m m a  d i s t r ibu t ion  as a general isa t ion 

of intercrossing length d i s t r ibu t ions  for more general  s tochastic fibre networks; then  the negat ive  

exponent ia l  d i s t r ibu t ion  is a special case. We used the computer  algebra package Mathematica 
for the  calculus and  graphics; the code for our calculat ions is available from the authors  or v ia  

the World Wide  Web [4]. 

In  appl ica t ions  to nonwoven textiles and  paper,  a r andom a r rangement  of fibres is a common  

targe t  s t ructure .  However, in commercial  product ion,  such a degree of dispersion is hard to 

achieve because of a t endency  for the fibres to c lump together,  or ' f locculate. '  So the r andom 

case becomes an ' uppe r  bound  on uniformity. '  The  new models provide a family of commercia l ly  

realizable s t ructures .  

2. P O R E  SIZE D I S T R I B U T I O N S  

The g a m m a  d i s t r ibu t ion  has a probabi l i ty  densi ty  funct ion given by 

b k _ _ 
/(x) = r- x k le % (1) 
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with mean ~ -- k/b and variance Var (x) = k/b 2. The negative exponential distribution is a 
g a m m a  distribution with k = 1. Thus, k and b are the parameters  which represent the departure 
from the random case, for which k = 1 and brand ---- l/if:. For clumped or 'flocculated' stochastic 
fibre networks, we expect k/b 2 > 1/brand 2 and to increase with increasing fibre clumping. For 
disperse stochastic fibre networks, we expect b 2 >> k such tha t  k/b 2 < 1/brand 2 and to decrease 
with increasing uniformity. 

We consider the product  of two independent identical gamma  distributions f (x)  and f(y) such 
tha t  xy = a, where a is the area of a rectangular pore. The probabili ty density of a will be given 
by 

~ l f x  

Evaluation of the integral in equation (2) gives us 

2a k-1 b 2a Ko(z) where z = 2bx/a, (3) 
p(a) = r(k)  2 , 

and K0 (z) is the zeroth-order modified Bessel function of the second kind. The distribution given 
by equation (3) has mean ~ = k2/b 2 and variance Var (a) = k 2 (1 + 2k)/b 4. 

Following Corte and Lloyd, we define an equivalent pore radius r which is given by a -- ~rr 2. 
The probabil i ty of finding an equivalent pore radius r l  _< r < r2 is given by 

7r~'2 2 ?'2 

p(a)da=~r p(Tcr2) 2~rrdr. (4) 
?'I 2 1 

So the probabil i ty density function for equivalent pore radii is 

q(r) = 2~rr p (rr2) , (5) 

which gives us 

4b2k rk r2k-1 Ko(z) where z ---- 2bryn, 
q(r) -- F(k) 2 , 

and f o  q(r) dr = 1. The mean and variance of q(r) are given by 

r(k + 1/2) 2 
b v ~ r ( k )  2 

and 

(6) 

(7) 

Var (r) = k2 r(k)4b2~r(k)4- r(k + 1/2) 4 = ~2/' k 2 r(k) 4 ) 
~ r ( ~ +  1-~) 4 1 .  (s) 
% ] 

For a random network, k = 1 and the distribution of pore radii has mean ~ -- v~/4b and variance 
Var (r) = (1/b 2) (1/~r - ~r/16) in agreement with Corte and Lloyd [1,2]. Equation (8) gives the 
generalization. 

Corte and Lloyd used a multiplanar model of paper  with layers of capillaries of distributed 
radii. Then, for a fluid flow proportional to r ~ in a capillary of radius r, the mean effective radius 
averaged over m layers is 

-1 r :  ~ ,  (9) 

Typical flow regimes tha t  may be used are: laminar or Poiseuille t¢ = 4; molecular or Knudsen 
t~ = 3; turbulent  ~ = 2; capillary n = 1/2. The same procedure may be used for the new family 
of pore radii distributions. 

The  derivation of pore size distribution for random networks allows a relatively simple de- 
terminat ion of the relationship between the mean pore size and the s tandard deviation. This 
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re la t ionship  is l inear in the theoret ical  case, and approximate ly  l inear for exper imenta l  measure-  

ments  [1,2]. A proper ty  of the g a m m a  dis t r ibut ion,  and  of the new d is t r ibu t ion  q(r), is t ha t  a 

given value of the mean  may be associated wi th  an infinite n u m b e r  of variances. Some plots are 

provided in [4], together  with results of comparisons with measured pore size d i s t r ibu t ions  in 

paper ,  which will be reported in detail  elsewhere. 
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