Optimality Theory: The Next Generation

Phonology Seminar :: Winter 2012 :: Wendell Kimper

Syllabus

1 Description

In recent years, several spinoff versions of Optimality Theory have emerged — these theories maintain OT’s core insight of optimization and constraint interaction, but revise some of the fundamental architecture of the theory. In this seminar, we’ll be looking at two of these spinoff theories — Harmonic Serialism (HS) and Harmonic Grammar (HG) — and exploring the ways in which their predictions differ from those of Classic OT.

Many of these differences center around issues of locality of constraint interaction. In the case of HS, a monotonically harmonically improving serial derivation produces myopia — there is no ‘lookahead’, precluding the kind of structurally remote interactions that Classic OT freely produces. In the case of HG, the precondition for cumulative interactions (‘gang effects’) is an asymmetric tradeoff of violations — meaning that only constraints whose loci of violation overlap in the right way can interact cumulatively. We’ll explore the extent to which these predictions are desirable.

2 Requirements

eCommons

There will be an eCommons site; that’s where you’ll find the papers to read, and how I’ll be spamming you with course-related emails. If you’re not officially registered but still want access to the site, let me know and we can make it happen.

Reading and Presentations

There will be a number of papers to read and discuss each week; you should read these thoroughly enough to contribute meaningfully to course discussions, and should come prepared with questions, comments, objections, et cetera.

Each class one of you will be responsible for presenting one of these papers, and leading its discussion. How many you’ll have to do will depend on how many of you there are:

required presentations = \frac{\text{course meetings}}{\text{registered students}}
Various and Sundry Tasks

From time to time there will be various tasks to be done between classes — working through some puzzle or other that arises in the course of discussion, doing some modeling with relevant software, et cetera.

Final Paper

Topic scope should be such that the paper could, with subsequent further development, lead to a poster or conference talk. Use of OT-Help 2.0 (or other appropriate software tools) strongly encouraged. It’s especially exciting if you find serious empirical challenges to the theories we discuss.

Elevensies

(Okay, not strictly required.) Let’s take turns bringing some sort of tasty snack to share.

3 A Tentative Plan

Weeks 1-5: Harmonic Serialism

Introduction to HS

→ McCarthy (2010b): Studying GEN

Myopia and Sour Grapes

→ McCarthy (to appear): Autosegmental Spreading in Optimality Theory.
→ Kimper (to appear): Harmony is Myopic.

Stress

→ McCarthy et al. (to appearb): Cross-level interactions in Harmonic Serialism.

Deletion and Epenthesis

→ McCarthy (2008): The gradual path to cluster simplification.

Morphophonology

→ McCarthy et al. (to appeara): Reduplication in Harmonic Serialism.

Computing Typology with OT-Help 2.0

→ OT-Help 2.0 User Manual & supplemental materials

Weeks 6-9: Harmonic Grammar

Introduction

→ Pater (to appearb): Universal Grammar with Weighted Constraints.

Cumulativity

→ Smolensky (2006): Optimality in Phonology II.

→ Potts et al. (2010): Harmonic Grammar with linear programming.

Computing Typology with OT-Help 2.0
→ OT-Help 2.0 User Manual & supplemental materials

Serial Harmonic Grammar (SHG)

→ Bane and Riggle (to appear): The typological consequences of weighted constraints.
→ Pater (to appeara): Serial harmonic grammar and Berber syllabification.

Variation and probability

→ Guy (1997): OT and linguistic variation.
→ Coetzee and Pater (2008): The place of variation in phonological theory.
→ Goldwater and Johnson (2003): Learning OT rankings using a maximum entropy model.

Week 10: Student Presentations

References

Coetzee, Andries, and Joe Pater. 2008. The place of variation in phonological theory. ROA 946.

Wilson, Colin. 2004. Analyzing unbounded spreading with constraints: marks, targets, and derivations. UCLA.