Reduction and Syncope in Klamath Reduplication

Wendell A. Kimper // University of Massachusetts, Amherst

Reduplication \& The OCP

 - When a reduplicative prefixi is present, ashort vowel in the - Reduction occurs when the base vowel is in a closed syllable while sysyllable:
(1) Reduction in Closed Syllables
a. dlin 'choke' sni-qlan (causative)
d. wejli $\begin{aligned} & \text { lisps' } \\ & \text { we-w'jili (distributive) }\end{aligned}$
(2) Syncope in Open Syllables

- This process is limited prefixal reduplication; full-roo
reduplication does not trigger reduction or syncope reduplication does not trigger reduction or syncope, and lon stem vowels are also exem
-Klamah reduplicative reduction and syncope raises several
important questions:
.Why does this process occur always and only with
reduplication?
reduplication?
ii. Why is the stem vowel
vowel in the reduplican
iii. What factors govern the distribution of reduction and
syncope in these forms?
- Reduplication is antithetical to the OCP -
repetition, which the OCP seeks to avoid.
- Reduplicative reduction and syncope in Klamath represent Reduplicative reduction and syncope in Klamath represen
a tension between the need for the reduplicative prefix to surface and the desire of the OCP to avoid repetition of adjacent elemen
A primitive OCP constraint banning identity in adjacent (3) OCP-V

Identical vowels in adjacent syllables are prohibited. - OCP-V conflicts with a faithfulness constraint in the Max family (McCarthy and Prince, 1995) that requires vowel place
identity: identity:
Vowel place in S_{1} must have a correspondent in S_{2}; if S_{1} has
Val vowel place features, then S_{2} must also have vowel place features.

- Max(VPLLACE) must be distinguished from IDENT(FEATURE)
constraints, which require identity between features: (5) Jonvt(VP

Correspondent segments are identical in vowel place, if
both S_{1} and S_{2} have vowel place features, they must be identical.

- In order for reduction to occur, OCP-V must crucially
dominate Max(VPLACE): OCP-V \gg Max(VPLACE)
- To prevent dissimilation from occurring instead of reduction, IDent(VPLIAcE) must also crucially dominate Max(VPLIACE): Ident(VPlace) > Max(VPlack).

| a. sniqlin | |
| :--- | :--- | :--- |
| b. | siqian |

Syncope: Weightless Schwa

-OCP-V is satisfied with either deletion or reduction, as both
result in the elimination of identical features in adiacent vowels - reduction by eliminating vowel place and syncope - Both reduction and syncope will also violate Max(VPLack) - Both reduction and syncope wif also violate Max(V LACCE),
becase the vovel lpace features of the underlying segment
are eliminated in either case.

Reduction always occurs when the resulting syllable is
closed, and syncope always occurs when the resulting closed, and syncope always occurs when the resulting
syllable is open. syllable is ope
Kager (1999) suggests that in Dutch, the schwa does not
always bear moraic weight
vays bear moraic weight.
A weightless schwa can
A weightless schwa can be prevented from occurring in requiring syllab to contain at least one mora
Every syllable
Every syllable must have at least one mora - no
weightless syllables.
In order for *WEIIGHTLesso to force syncope, it must crucially
dominate asegmental Max constraint
dominate a segmental Max constraint:
(8) Max-V
must have a correspondent in S_{2}

- OCP-V must also rank above Max-V; this ranking both
permits and motivates syncope in cases where schwa would appear in a syllable with no coda, creating a weightless appear in
syllable:

In order to prevent dissimilation, IDent(VPLack)
ranked above Max-V: IDENT(VPLACE) \gg MAx-V With this ranking, any candidate seeking to satisfy OCPand *WEICHTLEss by dissimilation instead of syncope would be sub-optimal.

d. hostq'a

With base vowels in closed syllables, ${ }^{*}$ Weichitiesso does n have the opportunity to assign any violation marks, and is
inactive. However because Max(VPIAcE) is violated whenever Max-V is, a candidate seeking to satisfy $\mathrm{OCP}-\mathrm{V}$ b
syncope in a closed syllable will be harmonically bounded.

Broad Correspondence

The contrairnation. We expect to see syncope and reduction

 powerfu prediction. We expect to see syncope and reductionactive wherever adjacent syllables contained identical vowels However, this is not the case.
(12) Adjacent vowels in non-reduplicative environments
$\begin{array}{ll}\text { a. sajaqa } \\ \text { b. cilvis } & \text { 'washes the hands' } \\ \text { boy (late teenage)' }\end{array}$

The forms above sho
established thus far.
It is necessary to restrict OCP effects to reduplicative environments. Cole (1997) discusses this restriction in terms
of recoverability. of recoverabily
Redupicated vowels have a unique opportunity to violate
faithfulness and identer because the original features of the base vowel can be, deduced from its correspondent in the redulicant
-The generalization that Klamath vowels are permitted to
reduce or delete only in reduplicative environments
reduce or delete only in reduplicative environments can be
explained with broad correspondence (Struije, 1998), which explained with broad correspondence (Struike, 1998), which
requires only that each segment of the input must appear requires only that each
somewhere in the output.

- Faithfulness constraints, then, are existentially defined.
- Broad correspondence specifically applies to the

Input-Output domain.
In non-reduplicative environments, the
existentially-defined broad correspondents constraints
manifest as a traditional correspondence relationship. -In reduplicative environments, input segments have multiple correspondents, and two chances to satisfy

failun

Neduplication and Reduplicative Correspondence

- Each reduplicated segment essentially has two
correspondents in the output: when one deletes,
correspondents in the output; when one deletes, the other can
still satisfy breat
- The relevant faithfulness constraints for this analysis of
Klamath reduction and syncope, existentially defined:
(14) Existential Faithfulness in Klamath Reduplication
\exists-Max-V

E-Max-VII
Each vowel in the Input has some correspondent in the

Each vowel place feature in the Input as some
correspondent in the Output.
correspondent in the
\exists-IDENT(VPLACE)|o
Some Output segment corresponding to an Input segment
preserves the vowel place of that input segnent Sreserves the vowel place of that input segment.

- In non-reduplicative environments, the optimal candidate In non-reduplicative environments, the op
will violate the OCP to preserve the input.
- In a reduplicative context, this same ranking permits OCP-V
to force reduction or syncope. to force reduction or syncope
These constraints, however, cannot differentiate between the various candidates that satisfy OCP-V. For that, we need to
turn to Base-Reduplicant correspondence and faithullness constraints that are not existentially defined
- Broad correspondence only applies to the Input-Output choose between syncope, reduction, and dissimilation in reduplicative candidates that satisfy OCP-V
$\underset{\text { MAx-VBR }}{\text { (15) Base-Red }}$
${ }_{\text {Maxh }}^{\text {Ea }}$ vowel in the Base has a correspondent in the
Reduplicant.
MAx(VPIACE)
Each vowel place feature in the Base has a correspondent Each vowel place
the Reduplicant.
the Reduplicant.
IDENT(VPLACE)
BR
Correspondent segments in the base and reduplicant are
identical in vowel place. identical in vowel place.
These BR-specific constraints maintain the rankings of their
more general counterparts: OCP-V, IDENT(VPLACE) BR \gg more general counterparts:
MAx-VBR \gg Max(VPLACCEBR
- With this ranking, it is once again possible to distinguish
between reduction, syncope, and dissimilation. When base between reduction, syncope, and dissisibilatoionst When base
vowels are in closed syllables. and $* W$ Wrictrusss is not active vowels are in closed syllables, and *V
reduction will be the optimal choice:

When the base vowel would be in an open syllable and
Wrichitesso has an opportunity to become active, syncope wil be the preferred choic

a.	hostaq'a	$*!$			
b.	hostoqqa		$*!$		
c.	hostaq'a			$*$	
d. ws hostqa				$*$	

Positional Faithfulnes

-In the redupicative environments outlined thus far, multiple vowels are candidates for reduction or syncope to satisfy
OCP-V: the vowel in the base and the vowel in the eduplicant.
Invariably, it is the vowel in the base which is affected, and the vo
input.

- The faithfulness rankings we have currently established are
unable to make this distinction.
- Base-Reduplicant correspondence is equally violated by anfaithfulness in either the base or the reduplicant least one copy of the vowel remains.
- In prefixes with fixed coda material, in fact, the vowel in the
reduplicant would be a more optimal choice - syncope
 violation would be spared in favor of a violation of the lower-ranked Max(VPLack) Br.
Markedness explanations are not sufficient to explain why
absolutely every form displaying reduplicative ped syncope doees so in the base and not the reduplicant.
- Reduction and syncope occurs with a broad range of syllable structures, and it's unlikely that every
configuration is improved by deleting the base vowel. There is insufficient data on Klamath stress to entirely rule There is insufficient data on Klamath stress to entirely rule
out a prosodic motivation, but tit would also be unlikely that in absolutely every case the prosodic structure is improved by deleting the base vowel instead of the reduplic markedness would ultimately require some kind o Output-Output Correspondence or Optimel Paradigm
(McCarthy, 2005) restrictions to insure sufficient regularity ositional faithfulness (Beckman, 1998) provides additional Positional faithfulness (Beckman, 1998) provides additiona,
strength for faithfulness restrictions in prominent positions. strength for faithfulness restrictions in prominent positions.
Root-initial syllables are prominent, and call for additional faithfulness:
(18) Root-Initial Faithfulness
(Beckman, 1998)
IDENT $\sigma_{1}(\mathrm{~F})$
An Output segment in σ_{1} [of the root] and the Input correspondent of that segment must have identical feature
specifications. specifications.
Positional prominence is especially important within the
context of broad correspondece vowel is in a prominent position, it is better suited to carry the features of the input, because its features are morer likely to b
easily perceived and interpreted than the features of a owel easily perceived and interpreted than the features of a vowel
- (Smith, 2002) suggests that th
(Smirht, 2002) suggests that the relevant initial syllable is
word-initial, and that root faithfulness is distinct from initial-syllable faithfulness
She argues that word-initial syllables play an important
role in early-stage word recogniter role in early-stage w
particularly salient.
- In Klamath, it is the word-initial syllable that retains the underlying features of the redupicated vowel. It is the
word-initial syllable, not the root-initial syllable, whose word--initial sylable, not the root-initial syllable, wh
prominence is relevant to positional faithfulness:

Mord-nitia Faithuiness in Klamath Reduptcais
Maxdi-V
In a word-initial syllable, every vowel in S_{1} must have correspondent in S_{2}
$\mathrm{MAxo}_{1}\left(\mathrm{VP}_{\text {Lacke }}\right)$
In a word-initial syllable, vowel place in S_{1} must have
correspondent in S_{2}. correspondent in S_{2}
IDENTI
IV
In a word-initial syllable, a vowel and its correspondent must be identical in place

- It is necessary here that the positional faithfulness constrain
specific to word-initial syllables crucially dominate their specific to word-initial syllables crucially domina
counterpart constraints specific to root vowels.
- This ranking insures that the vowel place features of the word-initial syllable (in the reduplicant) will be preserved, at the expense of the vowel place features in the root syllable (in
the base):

\qquad

| b. hasconwa |
| :--- | :--- |
| c. hoscanwa |

- Broad correspondence will be satisfied by preservation of input material in the word-initial syllable - the reduplicant
- and OCP-V will be satisfied by unfaithfulness in the base, - asdite its prominence as the root.

Conclusion

- This paper has sought to answer several important question i. Why does this process occur always and only with i. Why
reduplication?
ii. Why is the stem vowel always affected, and never the vowel in the reduplicant?
iii. What factors govern the distribution of reduction and
syncope in these forms? - Question (i.) was answered by an account of reduplicative - Question (i.) was answered by an account of reduplicative
reduction and syncope motivated by the OCP, and restricted to reduplicative environments by existentially-defined correspondence.
- Question (ii.) was answered by an account based on
positional taatruunes
uestion (iii.) was answered by the potential weightlessnes of schwa, combined with a prohibition on weightless syllables.

References

Beckman, Jill. 1998. Positional faithfulness. Doctoral Deletion and recoverability in klamath Cole Jiversity of Illinois.
Kager, Rene. 1990. Dutch schwa in moraic phonology. In Papers
from the 26 th Regional Meeting of the Chicago Linguistic Society, from the 2in Regional Meeting of the Chicago Linguistic Society,
volume 2, 241-255. Carthy John. 2005.
 Renate Raffelsiefen, 170-210. Oxford University Press McCarthy, John, and Alan Prince. 1995. Faithfulness and
reduplicative identity. In University of massachusetts occasional
 Beckman, Suzanne U Urbanczyk, and Laura Walsh Dickey
249-384, University of Massachuetts. 249-384. University of Massachusetts.
Smith, Jennifer. 2002. Phonological augmentation in prominen
positions. Doctoral Dissertation, University of Massachusettion Amherst.
Struijke, Caro. 1998. Reduplicant and output tetu in kwakwala.
A new model of correspondence. University of Maryland Working Papers in in Linguisticis 7 :150-178.

