Reduction & The OCP

When a reductional prefi x is present, a short vowel in the initial syllable of the base reduces to schwa or deletes entirely. Reduction occurs selectively to vowel in a closed syllable, while syncope occurs when the base vowel is in an open syllable.

1. Reduction in Closed Syllables
 a. qipa 'chop' maqipa (causative) d. vipa 'rip' vipa (distributive)
 b. [vipa] 'chump' aqipa (relative) d. [vipa] 'hurk' aqipa (distributive)

2. Syncope in Open Syllables
 a. vipa 'rip' aqipa (relative) d. [vipa] 'hurk' aqipa (distributive)
 b. [vipa] 'chump' aqipa (relative) d. [vipa] 'hurk' aqipa (distributive)

This process is limited to a full-face reduplication, full-rost reduction does not trigger reduction or syncope, and long stem vowels are also exempt.

Klamath reduction and syncope raise several important issues:

i. Why does this process occur only and always with reduplication?
ii. Why is the stem vowel always affected, and never the vowel in the reduplicant?
iii. What factors govern the distribution of reduction and syncope in these forms?

Reduplication is attributive to the OCP—it demands repetition, which the OCP seeks to avoid.

- Reduplicative reduction and syncope in Klamath represent a tension between the need for the reductional prefi x to surface and the desire of the OCP to avoid repetition of adjacent elements.
- A prefi xic OCP constraining homophony in adjacent vowels.
- OCP-V
- OCP-S
- OCP-M
- OCP-A

Syncope: Weightless Schwa

OCP-V is satisfied with either deletion or reduction, as both result in elimination. Vowel syncope in an open syllable — reduction by eliminating vowel slot and syncope by eliminating the vowel — will also violate OCP-V because the vowel slot features of the underlying segment are eliminated in either case.

- Reduction always occurs when the resulting syllable is open and syncope always occurs when the resulting syllable is open.
- A weightless schwa can be prevented from occurring in open syllables by a suf fi ciently high ranking of a constraint requiring syllables to contain at least one mora.
- Every syllable must have at least one mora — no weightless schwa.
- Syncope for *Wassawaa to form a syncope, it must correspondingly dominate a segmental Max constraint.

Because OCP-V must also rank above Max-V, this ranking both permits and motivates syncope in cases when schwa would appear in a syllable with no coda, creating a weightless syllable.

- In order to prevent dissimilation, Invol(np(s)) must be ranked above Max-V, Invol(Mp(s)) ≫ Max-V

With the ranking, any candidate seeking to satisfy OCP-V and "Wassawaa" by dissimilation instead of syncope would be unfaithful.

- [\{[\sigma]v\}] ≫ Invol(np(s)) \{\{\sigma\}\} ≫ Max-V

With base vowels in closed syllables, Wassawaa does not give any candidate the opportunity to assign any violation marks to the vowel, and is inactive. However, because Max(Ap(s)) is violated whenever \{\{\sigma\}\} > 0, a candidate seeking to satisfy OCP-V by syncope in a closed syllable will be harmoniously bounded.

- In a word with a small vowel in the base, Wassawaa does not give any candidate the opportunity to assign any violation marks to the vowel, and is inactive. However, because Max(Ap(s)) is violated whenever \{\{\sigma\}\} > 0, a candidate seeking to satisfy OCP-V by syncope in a closed syllable will be harmoniously bounded.

Broad Correspondence

The constraint rankings established above make a few too powerful predictions. We expect to see reductional prefixes active wherever syllable reductional constraints identify vowel.

1. Adjacent vowels in non-redundative environments
 a. nipa 'hiss' - nipa 'hiss (late tongue')
 b. vipa 'hiss' - vipa 'hiss'

2. Vowel in the input.

3. These BR-specific constraints maintain the rankings of their more general counterparts OCP-V, Invol(np(s)) ≫ Max-V ≫ Max-Ap(s).

- With this ranking, it is once again possible to distinguish between reduction, syncope, and dissimilation. When base vowels are in closed syllables, and *Wassawaa is not active, reduction, syncope, and dissimilation are all unfaithful.
- When the base vowel would be in an open syllable and *Wassawaa has an opportunity to become active, syncope will be the preferred choice.

Positional Faithfulness

- In the reduplicative environments outlined thus far, multiple candidates are available for reduction or syncope to satisfy OCP-V, the base and the vowel in the reduplicant.
- Invariably, it is the vowel in the base which is affected, and the vowel in the reduplicant preserves the features of the input.
- The faithfulness rankings we have currently established are unable to make this distinction.
- Base-Reduplicant correspondence is equally violated by unfaithfulness in either the base or the reduplicant.

Markedness explanations are not sufficient to explain why absolutely every form displaying reduc tional syncope has syncope in the base and not the reduplicant.

- Syncope in these forms?

- What factors govern the distribution of reduction and syncope in these forms?

Positional faithfulness constraints specific to word-initial syllables crucially determine their counterpart constraints specific to root vowels.

- This ranking ensures that the vowel slot features of the word-initial syllable (in the reduplicant) will be preserved, at the expense of the vowel slot features in the root syllable (in the base):

- Broad correspondence will be satisfied by preservation of input material in the word-initial syllable — the reduplicant

Conclusion

- This paper has sought to answer several important questions about reduplicative reduction and syncope in Klamath:
- Why does this process occur only and always with reduplication?
- Why is the stem vowel always affected, and never the vowel in the reduplicant?
- What factors govern the distribution of reduction and syncope in these forms?

References

University of Illinois.

New types of correspondence. University of Maryland.