0C2 Exercise Sheet 2 Sequences and series

1. Complete the following sentences using the phrases: $sum,\ difference,\ first\ term,\ last\ term, a_k, a_k=a+(k-1)d, d=a_{k+1}-a_k, \frac{n}{2}$
The k th term of the sequence a_1, a_2, a_3, \ldots is denoted by We say that the sequence is an arithmetic progression if each pair of consecutive terms have a common, d . That is $d = $, for all k . If the arithmetic progression has a , then the k th term can be expressed as The of the first n terms of an arithmetic progression can be found by adding together the and the, and multiplying the result by
2. Find the 100 th term of the following arithmetic progression: $\frac{7}{2}$, $\frac{19}{4}$, 6, $\frac{29}{4}$, What is the sum of the first 100 terms?
3. If the first term of an arithmetic progression is 1, and the sum of the first 5 terms is 37, what is the common difference?
4. Complete the following sentences using the phrases: $ ratio, a_k = ar^{k-1}, r = \frac{a_{k+1}}{a_k}, sum, \sum_{k=1}^n a_k, a\frac{1-r^k}{1-r}, first \ term, \frac{a}{1-r} $
We say that the sequence a_1, a_2, a_3, \ldots is a geometric progression if each pair of consec-
utive terms have a commonr. That is If the geometric
progression has first term a and common r , then the k th term can be ex-
pressed as $\underline{\hspace{1cm}}$ of the first n terms of a geometric progres-
sion is given by $\underline{\hspace{1cm}}$. The sum of the first n terms of a geometric progression
with a and common $r \neq 1$ is given by If
-1 < r < 1, then the (infinite) sum of all terms in the geometric progression is

5. Find the sum of the first 10 terms of the following geometric progression:

$$1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$$

What is the sum of the infinite progression?

6. Find the sum of the first 8 terms of the following geometric series:

$$1 + 3 + 9 + 27 + 81 + \dots$$

After how many terms is the sum greater than a million?

7. Use the Binomial Theorem to expand the following:

(i)
$$(a+b)^7$$
,

(ii)
$$(\sqrt{3} - \sqrt{2})^4$$
.

(Note: for part (ii), give the exact answer using a radical; don't give approximate values.)

8. Expand $(1+x)^6$, and use this to approximate $(1.01)^6$ to four decimal places.