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In this thesis, the effect of inhomogeneous pre-stress on elastic wave propagation
and scattering in nonlinear elastic materials is investigated. Four main problems
are considered: 1. torsional wave propagation in a pre-stressed annular cylinder,
2. the scattering of horizontally polarised shear waves from a cylindrical cavity in
a pre-stressed, infinite, nonlinear elastic material, 3. the use of pre-stress to cloak
cylindrical cavities from incoming horizontally polarised shear waves, and 4. the
scattering of shear waves from a spherical cavity in a pre-stressed, infinite, nonlinear
elastic material.

It is observed that waves in a hyperelastic material are significantly affected by
pre-stress, and different results are obtained from those which would be obtained if
the underlying stress was neglected and only geometrical changes were considered.

In Chapter 3 we show that the dispersion curves for torsional waves propagating
in an annular cylinder are strongly dependent on the pre-stress applied. A greater
pressure on the inner surface than the outer causes the roots of the dispersion curves to
be spaced further apart, whereas a greater pressure on the outer surface than the inner
causes them to be spaced closer together. We also show that a longitudinal stretch
causes the cut-on frequencies to move closer together and decreases the gradient of
the dispersion curves, whilst a longitudinal compression causes the cut-on frequencies
to move further apart and increases the gradient of the dispersion curves.

In Chapter 4 we observe that pre-stress affects the scattering coefficients for shear
waves scattered from a cylindrical cavity. It is shown that, for certain parameter val-
ues, the scattering coefficients obtained in a pre-stressed medium are closer to those
that would be obtained in the undeformed configuration than those that would be
obtained in the deformed configuration if the pre-stress were neglected. This result
is utilised in Chapter 5 where the cloaking of a cylindrical cavity from horizontally
polarised shear waves is examined. It is shown that neo-Hookean materials are opti-
mal for this type of cloaking. A stonger dependence of the strain energy function on
the second strain invariant leads to a less efficient cloak.

We observe that, for a Mooney-Rivlin material, as S1 tends from 1 towards 0 (in
other words, as a material becomes less dependent on the first strain invariant, and
more dependent on the second strain invariant), there is more scattering from the
cloaking region. For materials which are strongly dependent on the second strain
invariant the pre-stress actually increases the scattering cross-section relative to the
scattering cross-section for an unstressed material, hence these materials are unsuit-
able for pre-stress cloaking.

Finally, in Chapter 6 we study the effect of pressure applied to the inner surface of
a spherical cavity and at infinity on the propagation and scattering of shear waves in
an unbounded medium. It is shown that the scattering coefficients and cross-sections
for this problem are strongly dependent on the pre-stress considered. We observe that
a region of inhomogeneous pre-stress can lead to some counterintuitive relationships
between cavity size and scattering cross-sections and coefficients.
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Chapter 1

Introduction

Waves commonly occur in pre-stressed nonlinear hyperelastic materials and many of

these materials have a complex, heterogeneous structure. The application of concern

in this thesis is the propagation and scattering of waves in the various materials used

in the underwater engineering industry.

Hyperelasticity is a constitutive model for ideally elastic materials in which there is

no dissipation of energy so that all the energy resulting from the deformation of such

a material is stored as elastic potential energy. In this thesis, we shall be concerned

with hyperelastic materials which have a nonlinear stress-strain relationship and are

capable of undergoing large deformations.

A good example of the occurance of waves in pre-stressed materials is the use of

ultrasound as a non-invasive sensor. Biological soft tissue is an extremely complex

material which is naturally stressed as the body moves and grows. It is apparent

that the magnitude of the displacements that these tissues are subjected to are large

relative to the magnitude of the waves used in ultrasonic detection and it is this

disparity in magnitudes that is crucial to the theory of small-on-large, whereby small

perturbations to a large initial displacement are considered by performing a lineari-

sation.

The classic example of a nonlinear elastic material is rubber and much of the

work in this thesis is based on modelling the propagation and scattering of waves

in heterogeneous rubberlike materials, such as the one in Figure 1.1. This is an

18
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Figure 1.1: A heterogeneous rubberlike material used in underwater engineering - X-
ray micrograph produced by Fonseca, McDonald and Withers (School of Materials,
University of Manchester).

imaged slice of a (roughly) 2mm by 2mm sample of a material used in underwater

engineering applications. The grey coloured part of the image is the rubberlike host

phase of the material and the white and black areas are inclusions with different

properties. The white flecks are barytes, which have a higher atomic number than

the surrounding material and are used to tune the density of the material. The black

discs are microspheres made of a stiff (linear elastic) gas-filled shell which buckles

under pressure. As can be seen, the microstructure of this material is very complex,

and so modelling the propagation and scattering of waves through it is a difficult

task. Great pressures are exerted on this material by the ocean and the residual stress

throughout the material caused by this pressure adds an extra layer of complexity.

In order to make progress on a problem such as this it is necessary to make

some simplifications. Firstly, we can neglect the barytes and assume that the host

material is homogeneous. This is a reasonable assumption as the contrast in material

properties between the barytes and host material is small compared to the contrast
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rubberlike host material
elastic wave

p∞ p∞
p∞

p∞

p∞

p∞

p∞p∞p∞

Figure 1.2: A schematic representation of waves propagating through a composite
material containing spherical cavities.

in material properties between the microspheres and host material. Secondly, it is

known that the bulk modulus of rubber is much greater than its shear modulus, and

so it seems reasonable to model rubber-like materials as incompressible.

It is known that when the material we are modelling is put under a significant

magnitude of pressure, the microspheres in the material buckle and debond from

the host material. So, if now we assume that we can model the microspheres in

their buckled state as cavities, then we can obtain a schematic representation of the

problem as shown in Figure 1.2. In this figure, p∞ is the hydrostatic pressure applied

at infinity.

This is still a difficult problem; however, we expect that, in order to make progress

on such a problem, it will be of importance to first consider some canonical models

involving wave scattering from single voids in pre-stressed materials. We will inves-

tigate how pre-stress affects the scattering of waves from a single spherical void in a

pre-stressed, incompressible, nonlinear hyperelastic material. This specific problem is

addressed in the final chapter of this thesis, with the other chapters being dedicated
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to problems in simpler geometries in order to familarise the reader with some of the

techniques which are employed in the final chapter. The structure of the thesis is as

follows.

In Chapter 2 we shall discuss background material relevant to this thesis and will

give a broad overview of the theory of waves, nonlinear elasticity and related topics.

The reader with experience in these areas can, if they wish, skip this chapter and

move immediately to Section 2.6 where we describe the structure of the thesis in

more detail. The reader less experienced in waves and nonlinear elasticity should

certainly read this chapter however, since it provides a review of the literature and,

in particular, it presents some classical problems relevant to those considered in this

thesis.

In Chapter 3 we discuss torsional wave propagation in a pre-stressed annular

circular cylinder. In Chapter 4 we consider the scattering of antiplane waves from

a cylindrical cavity in a pre-stressed, infinite host medium. In Chapter 5 we build

on the work of Chapter 4 and discuss how the results may be used to construct a

theoretical cloak. Finally, in Chapter 6, we consider the problem of the scattering of

waves from a spherical cavity in a pre-stressed, infinite host medium and we conclude

in Chapter 7, indicating areas for further work.



Chapter 2

Background and literature review

In this chapter, a brief review of the background material relevant to this thesis

is provided. General aspects of continuum mechanics and wave theory are covered

with particular emphasis given to the literature on waves in elastic solids. We shall

discuss the history of nonlinear elasticity, the mathematical modelling of rubber, and

the theory of small-on-large.

It is assumed that the reader has some prior knowledge of continuum mechanics,

but for a good introduction to the subject, see Spencer [96] and the references therein,

or see the opening chapters of Ogden [73]. For an advanced text on waves in linear

elastic solids, see Graff [36] and for further texts on linear elasticity, see Love [58] and

Sokolnikoff [94].

For detailed texts on nonlinear elasticity and the theory of small-on-large, see Fu

and Ogden [34], Green and Zerna [38] and Ogden [73] and for a text concentrating

more specifically on waves in pre-stressed nonlinear elastic materials, see Destrade

and Saccomandi [26].

In this thesis we are concerned with the behaviour of elastic materials, and we

neglect any thermal or microscopic effects so that the material we are considering can

be modelled as an isothermal continuum. We shall first discuss the theory of nonlinear

elasticity and small-on-large, with a detailed analysis of strain energy functions and

the incompressible limit, and then will look at the reduction of the nonlinear theory

to that of linear elasticity. In the following section we shall discuss linear wave

22
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scattering and propagation in both linear and pre-stressed nonlinear elastic solids

and will review some of the papers in these areas which are relevant to this thesis.

2.1 Definitions

We begin with some definitions.

Contraction of tensors

We define the single contraction of two tensors, A, and B by

(A · B)ab...ik...z = (AB)ab...ik..z = Aab...ijBjk...z, (2.1)

where in the above we have used suffix notation with the Einstein summation conven-

tion, whereby repeated suffices imply summation over those suffices. We adopt this

convention throughout this thesis unless otherwise stated. In the above, the suffices

a, b, ...j are associated with the tensor A, the suffices j, k, ...z are associated with the

tensor B and j is the dummy suffix to be summed over.

The symbol : represents the double contraction of two tensors, defined by

(A : B)ab...il...ζ = Aab...ijkBjkl...z. (2.2)

In the above, the suffices a, b, ...k are associated with the tensor A, the Greek suffices

j, k, ...z are associated with the tensor B and j and k are the dummy suffices to be

summed over.

The Kronecker delta

The Kronecker delta, δij, is defined as follows:

δij =







1, if i = j,

0, if i 6= j.
(2.3)
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Covariant and contravariant basis vectors

Given arbitrary curvilinear coordinates (θ1, θ2, θ3), which can be expressed in terms

of Cartesian coordinates (x1, x2, x3), so that

θ1 = θ1(x1, x2, x3), θ2 = θ2(x1, x2, x3), θ3 = θ3(x1, x2, x3), (2.4)

and

x1 = x1(θ1, θ2, θ3), x2 = x2(θ1, θ2, θ3), x3 = x3(θ1, θ2, θ3), (2.5)

we define covariant base vectors g1, g2, g3 in terms of the Cartesian base vectors e1,

e2, e3 by

gi =
∂xj

∂θi

ej, (2.6)

and contravariant base vectors g1, g2, g3 by

gi =
∂θi

∂xj

ej, (2.7)

so that

gi · gj = δij (2.8)

In cylindrical coordinates,

gr = er, gθ = reθ, gz = ez, (2.9)

gr = er, gθ =
eθ

r
, gz = ez, (2.10)

and in spherical coordinates

gr = er, gθ = reθ, gφ = r sin θeφ, (2.11)

gr = er, gθ =
eθ

r
, gφ =

eφ

r sin θ
, (2.12)

Dyadic product

We define the dyadic product of two vectors a and b, a⊗ b, via its action on a third,

arbitrary vector c, as

(a ⊗ b) · c = a(b · c). (2.13)
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By evaluating the above expression in index notation, we can see that the dyadic

product of the two vectors a and b forms a second order tensor which can be evaluated

componentwise as

(a ⊗ b)ij = aibj. (2.14)

Gradient of a scalar

We define the gradient of a scalar f with respect to the coordinates (θ1, θ2, θ3) as

grad f =
∂f

∂θi

gi. (2.15)

In cylindrical coordinates the gradient of the scalar f(r, θ, z) is given by

∇f = grad φ =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez, (2.16)

and in spherical coordinates the gradient of the scalar f(r, θ, φ) is given by

∇f = grad f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ. (2.17)

Gradient of a vector

We define the gradient of a vector a with respect to the coordinates (θ1, θ2, θ3) as

grad a =
∂a

∂θi

⊗ gi. (2.18)

In cylindrical coordinates the gradient of the vector a = arer + aθeθ + azez is given

by

grad a =
∂a

∂r
⊗ er +

∂a

∂θ
⊗ eθ

r
+

∂a

∂z
⊗ ez

=
∂ar

∂r
er ⊗ er +

1

r

(

∂ar

∂θ
− aθ

)

er ⊗ eθ +
∂ar

∂z
er ⊗ ez

+
∂aθ

∂r
eθ ⊗ er +

1

r

(

∂aθ

∂θ
+ ar

)

eθ ⊗ eθ +
∂aθ

∂z
eθ ⊗ ez

+
∂az

∂r
ez ⊗ er +

1

r

∂az

∂θ
ez ⊗ eθ +

∂az

∂z
ez ⊗ ez. (2.19)
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and in spherical coordinates the gradient of the vector a = arer +aθeθ +aφeφ is given

by

grad a =
∂a

∂r
⊗ er +

∂a

∂θ
⊗ eθ

r
+

∂a

∂φ
⊗ eφ

r sin θ

=
∂ar

∂r
er ⊗ er +

1

r

(

∂ar

∂θ
− aθ

)

er ⊗ eθ +

(

1

r sin θ

∂ar

∂φ
− aφ

r

)

er ⊗ eφ

+
∂aθ

∂r
eθ ⊗ er +

1

r

(

∂aθ

∂θ
+ ar

)

eθ ⊗ eθ +

(

1

r sin θ

∂aθ

∂φ
− aφ cot θ

r

)

eθ ⊗ eφ

+
∂aφ

∂r
eφ ⊗ er +

1

r

∂aφ

∂θ
eφ ⊗ eθ +

(

ar

r
+

aθ cot θ

r
+

1

r sin θ

∂aφ

∂φ

)

eφ ⊗ eφ.

(2.20)

Divergence of a vector

We define the divergence of vector a with respect to the coordinates (θ1, θ2, θ3) as

div a = gi · ∂a

∂θi

. (2.21)

In cylindrical polar coordinates, the divergence of the vector a = arer + aθeθ + azez

is given by

∇ · a = div a =
1

r

∂

∂r
(rar) +

1

r

∂aθ

∂θ
+

∂az

∂z
, (2.22)

and in spherical coordinates, the divergence of the vector a = arer + aθeθ + aφeφ is

given by

∇ · a = div a =
1

r2

∂

∂r
(r2ar) +

1

r sin θ

∂

∂θ
(sin θaθ) +

1

r sin θ

∂aφ

∂φ
. (2.23)

Divergence of a second order tensor

We define the divergence of a second order tensor A with respect to the coordinates

(θ1, θ2, θ3) as

div A = gi · ∂A

∂θi

. (2.24)
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In cylindrical polar coordinates, the divergence of a tensor A = Aijei ⊗ ej is given

by

div A = er ·
∂A

∂r
+

eθ

r
· ∂A

∂θ
+ ez ·

∂A

∂z

=

(

∂Arr

∂r
+

1

r

(

∂Aθr

∂θ
+ Arr − Aθθ

)

+
∂Azr

∂z

)

er

+

(

∂Arθ

∂r
+

1

r

(

∂Aθθ

∂θ
+ Arθ + Aθr

)

+
∂Azθ

∂z

)

eθ (2.25)

+

(

∂Arz

∂r
+

1

r

(

∂Aθz

∂θ
+ Arz

)

+
∂Azz

∂z

)

ez,

and in spherical coordinates, the divergence of a tensor A = Aijei ⊗ ej is given by

div A = er ·
∂A

∂r
+

eθ

r
· ∂A

∂θ
+

eφ

r sin θ
· ∂A

∂φ

=

(

∂Arr

∂r
+

1

r

∂Aθr

∂θ
+

1

r sin θ

∂Aφr

∂φ
+

1

r
(2Arr − Aθθ − Aφφ) +

cot θ

r
Aθr

)

er

+

(

∂Arθ

∂r
+

1

r

∂Aθθ

∂θ
+

1

r sin θ

∂Aφθ

∂φ
+

1

r
(2Arθ + Aθr) +

cot θ

r
(Aθθ − Aφφ)

)

eθ

+

(

∂Arφ

∂r
+

1

r

∂Aθφ

∂θ
+

1

r sin θ

∂Aφφ

∂φ
+

1

r
(2Arφ + Aφr) +

cot θ

r
(Aθφ + Aφθ)

)

eφ.

(2.26)

Invariants of tensors

The principal invariants of a tensor A are the coefficients of its characteristic poly-

nomial:

p(λ) = det(A − λI), (2.27)

where I is the identity tensor.

The invariants of a tensor do not change with rotation of the coordinate system

(i.e. they are objective) and any function of the invariants only is also objective.

Partial differentiation of a scalar with respect to a second order tensor

We define partial differentation of a scalar φ with respect to a second order tensor A

as follows:
(

∂φ

∂A

)

ij

=
∂φ

∂Aji

. (2.28)
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2.2 Nonlinear elasticity and the theory of small-

on-large

In this section we introduce the notation used throughout this thesis. As previously

mentioned, good texts on this subject include Fu and Ogden [34], Green and Zerna

[38] and Ogden [73] as well as the paper by Spencer, published in 1970 [95]. There

are also two papers by Haughton and Ogden which concentrate on specific aspects

of this theory, [41], [42]. Note that the notation used in this thesis differs from these

other works and has been defined for consistency and uniformity.

2.2.1 Static deformation

Position vectors and displacement

Consider an elastic body, B, with bounding surface S, at rest. A general point, R,

in B, is described by the position vector

X = X(Θ1, Θ2, Θ3), (2.29)

where Θ1, Θ2 and Θ3 are general curvilinear coordinates in this configuration referred

to an origin O. We refer to this configuration as the undeformed configuration. In

Cartesian coordinates, for example, the point R is defined by X(X1, X2, X3).

We assume that B undergoes some deformation so that the point R is moved to

the point r, described by the position vector

x = x(θ1, θ2, θ3), (2.30)

where θ1, θ2 and θ3 are general curvilinear coordinates in this configuration referred

to the same origin, O. We refer to the deformed body as b, with bounding surface

s, and this configuration as the deformed configuration. This is illustrated in Figure

2.1.

We define the displacement associated with this deformation as

U = x − X. (2.31)
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Figure 2.1: The static deformation of an elastic body, B.

Deformation gradient tensor

Now consider the differentials dX and dx in the undeformed, and deformed, config-

urations, respectively. We assume that there exists a tensor F that maps dX to dx,

so that

dx = FdX. (2.32)

We refer to the tensor, F as the deformation gradient tensor.

In Cartesian coordinates, we have

dxi =

(

∂xi

∂Xj

)

dXj, (2.33)

and so

Fij =
∂xi

∂Xj

. (2.34)

In a general curvilinear coordinate system, the deformation gradient tensor is given

by

F = Grad x, (2.35)

where Grad represents the gradient operator in the undeformed configuration.

In cylindrical coordinates, for example, a position vector in the deformed config-

uration is given by

x = rer(θ) + zez, (2.36)
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and the gradient operator in the undeformed configuration applied to x is given by

Grad x =
∂x

∂R
⊗ eR +

∂x

∂θ
⊗ eΘ

R
+

∂x

∂Z
⊗ ez, (2.37)

and, therefore,

F =
∂r

∂R
er ⊗ eR +

1

R

∂r

∂Θ
er ⊗ eΘ +

∂r

∂Z
er ⊗ eZ +

r

R
eθ ⊗ eΘ

+
∂z

∂R
ez ⊗ eR +

1

R

∂z

∂Θ
ez ⊗ eΘ +

∂z

∂Z
ez ⊗ eZ . (2.38)

This can be expressed in matrix notation as follows:

F =











∂r
∂R

1
R

∂r
∂Θ

∂r
∂Z

0 r
R

0

∂z
∂R

1
R

∂z
∂Θ

∂z
∂Z











. (2.39)

Since F is a second order tensor, it has three invariants:

tr(F ) = F11 + F22 + F33 = Fii, (2.40)

1

2
((tr(F ))2 − tr(F 2)) =

1

2
(FiiFjj − FijFji), (2.41)

and

det(F ) = J. (2.42)

For an incompressible material, we have

det(F ) = J = 1. (2.43)

Displacement gradient tensor

We define the displacement gradient tensor to be

D = Grad U = F − I. (2.44)

Stretch and strain tensors

Note that, upon applying the polar decomposition theorem, we may decompose F

equivalently in the form

F = V R, (2.45)
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or in the form

F = RW , (2.46)

where R is a proper, orthogonal tensor which we call the rotation tensor which

describes the local rigid body rotation of a material element, V is the left stretch

tensor and W is the right stretch tensor. V and W characterise the local deformation

of a material element. The left and right stretch tensors have the same invariants, i1,

i2 and i3:

i1 = tr(V ) = tr(W ) = λ1 + λ2 + λ3, (2.47)

i2 =
1

2
(i21 − tr(V 2)) =

1

2
(i21 − tr(W 2)) = λ1λ2 + λ1λ3 + λ2λ3, (2.48)

i3 = det V = det W = λ1λ2λ3, (2.49)

where λ1, λ2 and λ3 are the principal values of V and W and are refered to as the

prinicpal stretches of the deformation.

Using the above decomposition of F , we define the left and right Cauchy-Green

strain tensors as, respectively,

B = FF T = V 2, (2.50)

and

C = F T F = W 2. (2.51)

The left and right Cauchy-Green strain tensors have the same invariants, I1, I2 and

I3:

I1 = tr(B) = tr(C) = λ2
1 + λ2

2 + λ2
3, (2.52)

I2 =
1

2
(I2

1 − tr(B2)) =
1

2
(I2

1 − tr(C2)) = λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, (2.53)

I3 = det B = det C = λ2
1λ

2
2λ

2
3. (2.54)

We refer to I1, I2 and I3 as strain invariants. I1, I2 and I3 are connected with i1, i2

and i3 by the relations

I1 = i21 − 2i2, I2 = i22 − 2i1i3, I3 = i23, (2.55)
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as can be seen by substituting the expressions for I1, I2, I3, i1, i2 and i3 in terms of

the principal stretches into the above.

The Green (or Lagrangian) strain tensor is defined as

E =
1

2
(F T F − I) =

1

2
(D + DT + DT D). (2.56)

Volumes

Consider the differential volumes dV and dv in the undeformed, and deformed, con-

figurations, respectively. They are related by the expression

dv = det(F )dV = JdV. (2.57)

Areas

Consider the differential areas dS and ds in the undeformed, and deformed, configu-

rations, respectively, with respective unit normals N and n. These quantities satisfy

the following relation

nds = JF−T NdS. (2.58)

Alternatively, by taking the transpose of (2.58), we obtain

nT ds = JNT F−1dS, (2.59)

which can be written in index notation as

nids = JNjF
−1
ji dS. (2.60)

The above are equivalent forms of Nanson’s formula, which is derived in Ogden [73].

The derivation is reproduced below in the current notation:

Consider an infinitesimal vector element of material surface dS in a neighbour-

hood of the point X in B such that dS = NdS, where N is the (positive) unit

normal to the surface. Let dX be an arbitrary material line element cutting the edge

of dS such that dX · dS > 0. Then the cylinder with base dS and generators dX

has volume dV = dX · dS. Suppose that dX and dS respectively become dx and

ds under the deformation, where ds = nds and n is the (positive) unit normal to the
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surface ds. The material of the volume dV forms a cylinder of volume dv = dx · ds

in the deformed configuration and so, by (2.57), we have

dx · ds = JdX · dS. (2.61)

On use of (2.32) we obtain

F T ds = JdS (2.62)

after removal of the arbitrary dX. Hence by the definitions of ds and dS, and upon

mulitplying both sides of (2.62) by F−T , we obtain (2.58).

Note that to get from (2.61) to (2.62), the following intermediary step has been

taken into account:

dx · ds = (F · dX) · ds = (dX ·F T ) · ds = dX · (F T · ds) = dX · (F T ds). (2.63)

Traction and Stress

Consider a deformable body subjected to some arbitrary loading in equilibrium. At

any given point, we can imagine a plane slicing through the body (see Figure 2.2). If

we now consider one of the surfaces created by this imaginary plane, then any small

area element of this surface △S, with outer unit normal n, will have a resultant force

△F acting on it. The traction vector t is defined by

t = lim
△S→0

△F

△S
, (2.64)

and is dependent on the spacial position in the body and the outer unit normal to

the plane under consideration.

Cauchy stress

The relationship between the traction vector and the outer unit normal of the plane

being considered can be expressed in terms of the Cauchy stress tensor T :

t = T · n. (2.65)

The components of the Cauchy stress tensor can be related to an infinitesimal block

of material whose faces are parallel to the axes (see Figure 2.3. The element Tij of
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Figure 2.2: The traction vector
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Figure 2.3: The Cauchy stress tensor

the tensor T gives the component in the positive i-direction of the traction on the

face θj = constant, with normal pointing in the positive j-direction.

Conservation of energy and Cauchy stress

One of the fundamental assumptions of continuum mechanics is conservation of en-

ergy. Following making this assumption, it can be shown that [96]:

ρ
De

Dt
= T : grad v − div q, (2.66)
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where ρ is the density of the continuum under consideration in the deformed config-

uration,

D

Dt
=

∂

∂t
+ v · grad (2.67)

is the material time derivative, e is the internal energy density of the continuum

under consideration, T is the Cauchy stress,

v =
∂U

∂t
=

∂x

∂t
, (2.68)

is the velocity vector of a particle at position x, and q is the heat flux vector. We

have neglected other forms of energy entering the system such as electromagnetic

energy or energy caused by chemical changes, for example.

For an elastic material, we assume there is no heat flux (q = 0) and so (2.66)

becomes

ρ
De

Dt
= T : grad v. (2.69)

Now, if we define the strain energy function per unit volume in B as

W = ρ0e, (2.70)

where ρ0 is the initial density of the material under consideration, then (2.69) becomes

ρ

ρ0

DW

Dt
= T : grad v. (2.71)

Note that

ρ

ρ0

= J−1, (2.72)

and, therefore,

J−1 DW

Dt
= T : grad v. (2.73)

For a hyperelastic material, it is assumed that the strain energy function depends only

on the deformation gradient tensor, i.e. only on the current state of deformation, and

so

J−1DW

Dt
= J−1 ∂W

∂F
:
DF

Dt
= J−1∂W

∂F
:

D

Dt
(Grad x) = J−1∂W

∂F
: (Grad v)

= J−1∂W

∂F
: (grad v · F ) = J−1

(

F
∂W

∂F

)

: grad v, (2.74)
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where we define the derivative of W with respect to F by

(

∂W

∂F

)

ij

=
∂W

∂Fji

, (2.75)

as in (2.28).

Therefore, (2.73) can be rewritten as

J−1

(

F
∂W

∂F

)

: grad v = T : grad v. (2.76)

Since this must hold for all values of gradv, we have

T = J−1F
∂W

∂F
. (2.77)

If the strain energy function is described in terms of the principal invariants Ij, then

the principal Cauchy stresses are

T11 =
2λ2

1

J

(

∂W

∂I1

+ (λ2
2 + λ2

3)
∂W

∂I2

+ λ2
2λ

2
3

∂W

∂I3

)

, (2.78)

T22 =
2λ2

2

J

(

∂W

∂I1

+ (λ2
1 + λ2

3)
∂W

∂I2

+ λ2
1λ

2
3

∂W

∂I3

)

, (2.79)

T33 =
2λ2

3

J

(

∂W

∂I1

+ (λ2
1 + λ2

2)
∂W

∂I2

+ λ2
1λ

2
2

∂W

∂I3

)

. (2.80)

For an incompressible material, the Cauchy stress is given by

T = F
∂W

∂F
+ QI, (2.81)

where Q is a Lagrange multiplier associated with the incompressibility constraint,

and I is the second order identity tensor. For a justification of the introduction of

the constant Q see Ogden [73].

Note that the W in (2.77) can depend on the strain invariants I1, I2 and I3,

whereas, the W in (2.81) can only depend on I1 and I2, since I3 = 1 for an in-

compressible material. We use the same symbol, W , for both, for simplicity. For a

derivation of the theory of small-on-large with respect to strain invariants, see Green

and Zerna [38].

The Cauchy stress can also be expressed as

T = β0I + β1B + β−1B
−1, (2.82)
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where

β0 =
2√
I3

(

I2
∂W

∂I2

+ I3
∂W

∂I3

)

, (2.83)

β1 =
2√
I3

∂W

∂I1

, (2.84)

β−1 = −2
√

I3
∂W

∂I2

. (2.85)

In the above, β0, β1 and β−1 are referred to as the elastic response functions. When

the material under consideration is incompressible, β0 is replaced by the Lagrange

multiplier Q in (2.82).

Nominal stress

The nominal stress, S is defined by

S =
∂W

∂F
, (2.86)

for a compressible material, and

S =
∂W

∂F
+ QF−1, (2.87)

for an incompressible material.

Again, note that the W in (2.86) can depend on the strain invariants I1, I2 and

I3, whereas, the W in (2.87) can only depend on I1 and I2.

Relationship between Cauchy and nominal stresses

We observe that

T = J−1FS. (2.88)

Static equations of equilbrium

Balance of linear momentum for a volume v, with closed surface s, gives

∫∫

s

nT ds +

∫∫∫

v

ρBdv =

∫∫∫

v

ρ
∂2U

∂t2
dv, (2.89)

where n is the outward normal to the surface s, ρ is the density of the body b, and

B is the body force acting on b.
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Assuming that s is at least piecewise smooth and that T is continuously differ-

entiable and defined on a neighbourhood of v, we apply the divergence theorem to

obtain
∫∫∫

v

div T dv +

∫∫∫

v

ρBdv =

∫∫∫

v

ρ
∂2U

∂t2
dv, (2.90)

where div represents the divergence operator in the deformed configuration.

Rearranging the above, we obtain

∫∫∫

v

(

div T + ρB − ρ
∂2U

∂t2

)

dv = 0. (2.91)

If we now assume that every term in the integrand in the above equation is continously

differentiable and defined on a neighbourhood of v, then the above equation must hold

for all volumes v. This allows us to shrink v down to a point and hence obtain the

pointwise equation

div T + ρB − ρ
∂2U

∂t2
= 0. (2.92)

Hence,

div T + ρB = ρ
∂2U

∂t2
. (2.93)

The static equations of equilibrium in the absence of body forces are, therefore, given

by

div T = 0. (2.94)

For further details in the derivation of the balance of linear momentum, see [73], for

example.

2.2.2 Incremental deformation

A great deal of this thesis relies upon the theory of small-on-large, whereby a lineari-

sation is performed about a nonlinearly pre-stressed state. Here we give a detailed

derivation of this theory with an original, consistent notation. There is an exten-

sive literature on the theory of small-on-large, and the methodology detailed in this

section is largely based on the text by Ogden, published in 1997 [73], although the

notation presented by Ogden has been modified extensively here.
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In general, the theory of small-on-large is most commonly used in problems in-

volving waves or stability. For some applications of the theory of small-on-large

see, for example, Ogden and Sotiropoulos [75], Chattopadhyay and Rogerson [16]

or Baek et al. [6]. In [75], Ogden and Sotiropoulos discuss the effect of pre-stress

on the propagation and reflection of plane waves in incompressible elastic solids; in

[16], Chattopadhyay and Rogerson consider wave reflection in slightly compressible,

finitely deformed elastic media; and, in [6], Baek et al. examine the potential use of

the theory of small-on-large in computations of fluid-solid interactions in arteries.

Position vectors and displacement

We now consider a separate deformation of B into a deformed body b̄ with bounding

surface s̄. We assume that the point R in B is now deformed to the point r̄ in b̄,

where b̄ is in some sense “close” to b (see Figure 2.4). We assume that the point r̄

can be described by the position vector

x̄ = x̄(θ̄1, θ̄2, θ̄3), (2.95)

where θ̄1, θ̄2 and θ̄3 are general curvilinear coordinates in this configuration referred

to the origin O. We refer to this configuration as the perturbed configuration (in the

sense that it is close to b).

We will define the difference between position vectors in the perturbed and de-

formed configurations as

u = x̄ − x, (2.96)

and since we assume that the perturbed configuration is close to the deformed con-

figuration,

|x̄ − x| = |u| ≪ 1. (2.97)

Deformation gradient tensor

We define the tensor f by

f = grad x̄, (2.98)
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B

b

b̄

Figure 2.4: The deformation of an elastic body, B, to two similar configurations.

where grad is the gradient operator with respect to x.

We also define the tensor F̄ by

F̄ = Grad x̄ = fF , (2.99)

and so,

Γ = Grad u = Grad(x̄ − x) = Grad x̄ − Grad x = fF − F = (f − I)F . (2.100)

We also have

γ = grad u = grad(x̄ − x) = grad x̄ − grad x = f − I, (2.101)

so that

f = I + γ, (2.102)

and

Γ = γF . (2.103)

Note that

|Γ| ≪ 1, (2.104)

and

|γ| ≪ 1, (2.105)
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where we have defined | · | via its action on the tensor A as

|A| = (A : AT )
1
2 . (2.106)

Also note that

f−1 ≈ I − γ. (2.107)

This can be seen by evaluating ff−1 and f−1f :

ff−1 = (I + γ)(I − γ) = I − γγ = I + O(|γ|2) ≈ I, (2.108)

f−1f = (I − γ)(I + γ) = I − γγ = I + O(|γ|2) ≈ I. (2.109)

We will define the quantity j̄ in b̄ as

j̄ = det f = det(I + γ), (2.110)

Since γ = O(|u|), we have det(I + γ) ≈ 1 + tr(γ), and so

j̄ ≈ 1 + tr(γ). (2.111)

We will define the quantity J̄ in b̄ as

J̄ = det F̄ = det(fF ) = det(f) det(F ) = det(I + γ)J, (2.112)

hence, to first order in |u|,

J̄ = (1 + tr(γ))J. (2.113)

We will assume that the quantity J̄−1 can be expanded as

J̄−1 = J−1 + j−1, (2.114)

where j−1 ≪ 1.

Using (2.113), we have

j−1 =
1

(1 + tr(γ))J
− 1

J
≈ 1 − tr(γ)

J
− 1

J
= −J−1 tr(γ). (2.115)
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Areas

Consider the differential areas ds and d̄s in the deformed, and perturbed, configura-

tions, respectively, with respective unit normals n and n̄. These quantities satisfy

the following relation

n̄T d̄s = j̄nT f−1ds. (2.116)

Alternatively, by taking the transpose of (2.116), we obtain

n̄d̄s = j̄f−T nds. (2.117)

Incremental stress

Incremental nominal stress

We will assume that the total nominal stress in b̄ is given by

S̄ = S + s, (2.118)

where s is the nominal stress associated with the perturbation, and, therefore

|s| ≪ 1. (2.119)

We justify this assumption by taking the Taylor series of S̄ at F .

Note that

S̄ = S(F̄ ) = S(fF ) = S(F + γF ), (2.120)

and let

A = F + γF . (2.121)

Now we take the Taylor series of S̄ about A = F :

S̄ = S(A)|A=F +
∂S

∂A

∣

∣

∣

∣

A=F

: (A − F ) + ...,

= S(F ) +
∂S

∂F
: (γF ) + .... (2.122)

Hence to first-order, for a compressible material, we have

s = L : Γ = L : (γF ), (2.123)
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where L is a fourth-order tensor defined by

L =
∂S

∂F
=

∂2W

∂F 2 , (2.124)

and in Cartesian components, L in index notation is given by

Lijkl =
∂Sij

∂Flk

=
∂2W

∂Fji∂Flk

. (2.125)

For an incompressible material,

s = L : Γ + qF−1 − QF−1γ = L : (γF ) + qF−1 − QF−1γ, (2.126)

where q is the perturbation to the Lagrangian multiplier, Q, introduced in (2.81).

We also define the push forward of the incremental nominal stress to be

ζ = J−1Fs, (2.127)

so that

ζ = M : γ, (2.128)

for a compressible material, where M can be defined in index notation as follows:

Mijkl = J−1LmjnlFimFkn = J−1 ∂2W

∂Fjm∂Fln

FimFkn. (2.129)

For an incompressible material, we have

ζ = M : γ + qI − Qγ. (2.130)

The tensor M can be compared with the elasticity tensor c, which will be presented in

Section 2.3. These tensors are similar in the sense that they relate a measure of stress

to a measure of strain, however, there is a crucial difference between these tensors

which makes small-on-large problems more complex than linear elastic problems. The

elasticity tensor c possesses the minor symmetries cijkl = cjikl = cijlk, however, in

general, M does not.
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Incremental Cauchy stress

We will assume that the total Cauchy stress in b can be expressed as

T̄ = T + τ , (2.131)

where τ is the Cauchy stress associated with the perturbation, and, therefore

|τ | ≪ 1. (2.132)

Using (2.88), we see that

T̄ = J̄−1fF S̄, (2.133)

and, therefore,

T + τ = (J−1 + j−1)(F + Γ)(S + s), (2.134)

⇒ τ = j−1FS + J−1ΓS + J−1Fs + O(|u|2), (2.135)

since T = J−1FS.

So, neglecting O(|u|2) terms, and using (2.127), we have

τ = ζ + j−1FS + J−1ΓS. (2.136)

Using (2.115), we obtain

τ = ζ − tr(γ)J−1FS + J−1ΓS, (2.137)

⇒ τ = ζ − tr(γ)T + J−1ΓS. (2.138)

Hence, using (2.103) and (2.88), we obtain

τ = ζ − tr(γ)T + γT . (2.139)

For an incompressible material, tr(γ) = 0, and so, we have

τ = ζ + γT . (2.140)
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Incremental equations of equilibrium

The equations of equilibrium in the perturbed configuration, in the absence of body

forces, are given by

div(T̄ ) = ρ̄
∂2Ū

∂t2
, (2.141)

where div represents the divergence operator in the perturbed configuration, ρ̄ is the

density of b̄, Ū = U + u and we remind the reader that T̄ is the total stress.

Note that since U is not dependent on time, we have

∂2Ū

∂t2
=

∂2u

∂t2
, (2.142)

and hence,

div(T̄ ) = ρ̄
∂2u

∂t2
. (2.143)

We assume that ρ̄ = ρ + O(|u|), and so, neglecting O(|u|2) terms, we obtain

div(T̄ ) = ρ
∂2u

∂t2
, (2.144)

It can be shown that this can also be written as

div ζ = ρ
∂2u

∂t2
. (2.145)

We will prove this in index notation for Cartesian coordinates:

The left side of equation (2.144) can be written in index notation as

∂

∂x̄i

(T̄ij) =
∂xk

∂x̄i

∂

∂xk

(T̄ij) = f−T
ik

∂

∂xk

(T̄ij) = f−1
ki

∂

∂xk

(Tij+τij) = (δki−γki)
∂

∂xk

(Tij+τij)

≈ ∂

∂xi

(Tij)+
∂

∂xi

(τij)−γki
∂

∂xk

(Tij) =
∂

∂xi

(Tij)+
∂

∂xi

(τij)−
∂

∂xk

(γkiTij)+Tij
∂

∂xk

(γki).

(2.146)

Therefore, using the fact that Tij,i = 0 (from the static equations of equilibrium), we

have

∂

∂x̄i

(T̄ij) =
∂

∂xi

(τij) −
∂

∂xi

(γikTkj) + Tij
∂

∂xk

(γki). (2.147)

By the definition of γ, we have

Tij
∂

∂xk

(γki) = Tij
∂

∂xk

(

∂uk

∂xi

)

= Tij
∂2

∂xi∂xk

(uk) = Tij
∂

∂xi

(

∂uk

∂xk

)

= Tij
∂

∂xi

(γkk)
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=
∂

∂xi

(Tijγkk) − γkk
∂

∂xi

(Tij) =
∂

∂xi

(Tijγkk). (2.148)

Hence, (2.147) becomes

∂

∂x̄i

(T̄ij) =
∂

∂xi

(τij) −
∂

∂xi

(γikTkj) +
∂

∂xi

(Tijγkk). (2.149)

This can be written in tensor notation as

div(T̄ ) = div(τ − γT + tr(γ)T ). (2.150)

Hence, using (2.139),

div(T̄ ) = div ζ, (2.151)

and thus,

div ζ = ρ
∂2u

∂t2
. (2.152)

2.2.3 Incremental boundary conditions

Hydrostatic pressure boundary conditions

If we have a hydrostatic pressure loading only, on the surface, s, of b, and this pressure

remains unchanged on s̄ of b̄, then, on s̄,

T̄ n̄d̄s = −pn̄d̄s, (2.153)

where p is the applied pressure, and, on s,

Tnds = −pnds. (2.154)

So, upon using (2.117) in (2.153), and subtracting (2.154), we obtain

T̄ j̄f−T nds − Tnds = −pj̄f−T nds + pnds, (2.155)

⇒ (j̄τf−T + T (j̄f−T − I))n = p(I − j̄f−T )n. (2.156)

Now,

j̄f−T − I ≈ (1 + tr(γ))(I − γT ) − I = tr(γ)I − γT + O(|u|2). (2.157)
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Hence, (2.156), to first order in |u|, becomes

τn + T (tr(γ)I − γT )n + p(tr(γ)I − γT )n = 0, (2.158)

⇒ τn + tr(γ)(Tn + pn) − TγT n − pγT n = 0, (2.159)

and, using (2.154), the boundary condition on the incremental Cauchy stress becomes

τn = TγT n + pγT n. (2.160)

Thus, from (2.139), it can be shown that this is equivalent to

ζT n = tr(γ)Tn + pγT n, (2.161)

which, upon using (2.154) can be rewritten as

ζT n = p(γT n − tr(γ)n), (2.162)

or for an incompressible material,

ζT n = pγT n. (2.163)

Hence, when p = 0, we have

ζT n = 0. (2.164)

2.2.4 Strain energy functions

Strain energy functions relate the strain energy density of a material to its deforma-

tion gradient and, in the case of an isotropic material, can be expressed explicitly

as functions of the strain invariants, I1, I2 and I3, (see Fu and Ogden [34]) or the

stretch invariants i1, i2 and i3. Note that, using (2.52)-(2.54), these strain energy

functions can be expressed equivalently in terms of the principal stretches λ1, λ2 and

λ3. Objectivity and isotropy of the material under consideration give

W = W (λ1, λ2, λ3) = W (λ1, λ3, λ2) = W (λ2, λ1, λ3). (2.165)

Much of the literature on strain energy functions is dedicated to modelling the

behaviour of rubber, which is an excellent example of a material which exhibits
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nonlinear elastic behaviour. Furthermore, the problems in this thesis are concerned

with modelling the behaviour of a rubberlike composite material under pre-stress and

so below we discuss some proposed forms for the strain energy function of rubberlike

materials. For an in depth article on the hyperelasticity of rubber and biological

tissues, see Beatty [7].

Rubber

Here are three simple examples of strain energy functions which are used to model

rubberlike materials: the neo-Hookean model,

W =
µ

2
(I1 − 3), (2.166)

the Mooney-Rivlin model,

W =
µ

2
(S1(I1 − 3) + S2(I2 − 3)), (2.167)

and the Varga model,

W = µ(i1 − 3). (2.168)

In these models, µ represents the initial shear modulus of the material under consid-

eration and S1 and S2 satisfy S1 + S2 = 1 in order to agree with the theory of linear

elasticity when the strains under consideration are small (see [79]). These strain en-

ergy functions are used to model incompressible materials, for which i3 = I3 = 1.

Note that rubber is approximately incompressible.

The neo-Hookean model was proposed by Treloar in a paper published in 1943

[100]. It was then shown by Rivlin, in 1948 [86], that the deformation produced on

a unit cube of such material by the action of three equally and oppositely directed

forces acting normally on its faces is uniquely determined provided that the forces

per unit area, measured in the deformed state, are specified. The neo-Hookean model

is essentially the extension of Hooke’s law (see Section 2.3) into nonlinear elasticity.

Similarly, the Mooney-Rivlin model was proposed by Mooney in a paper published

in 1940 [61] and the same uniqueness theorem as above was proved by Rivlin in [87]

for this model. The Varga model was proposed by Varga in 1966 [106].
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In a paper published in 1944 [101], Treloar conducted a series of experiments

and showed that the neo-Hookean model exhibits reasonable agreement with the

data obtained for rubber under moderate strain, and the neo-Hookean model is now

commonly regarded as a valid prototype constitutive model for rubberlike materials.

In [106], it was shown that the Varga strain energy function has a similar range of

agreement with experimental results as the neo-Hookean model. The Mooney-Rivlin

model gives a slight improvement to the range of validity of the neo-Hookean model

for rubber, whilst still retaining a certain level of mathematical simplicity, and is

widely used in this thesis.

Many generalisations of the above models have been proposed for modelling rub-

berlike materials, for example the polynomial strain energy function:

W =
n

∑

i,j=0

Cij(I1 − 3)i(I2 − 3)j, (2.169)

where n and Cij are material constants and C00 = 0. This model was proposed by

Rivlin and Saunders in a paper published in 1951 [88]. Note that this model reduces

to the neo-Hookean model when n = 1 and C01 = C11 = 0 and to the Mooney-Rivlin

model when n = 1 and C11 = 0.

A simpler form of the above is the Yeoh strain energy function:

W =
3

∑

i=1

Ci(I1 − 3)i, (2.170)

where Ci are material constants and the quantity 2C1 can be interpreted as the

initial shear modulus (i.e. C1 = µ/2). This model was proposed by Yeoh in a paper

published in 1993 [109]. Note that this model reduces to the neo-Hookean model

when C2 = C3 = 0.

Another proposed model is the Ogden strain energy function:

W =
N

∑

p=1

µp

αp

(λ
αp

1 + λ
αp

2 + λ
αp

3 − 3), (2.171)

where N , µp and αp are material constants. This strain energy function was proposed

by Ogden in a paper published in 1972 [72], in which he shows excellent agreement of

his theory with Treloar’s data for simple tension, pure shear and equibiaxial tension.
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Note that the Ogden model reduces to the neo-Hookean model when N = 1 and

α = 2, to the Mooney-Rivlin model when N = 2, α1 = 2 and α2 = −2, and to the

Varga model when N = 1 and α = 1.

The extra degrees of freedom in the polynomial, Yeoh and Ogden models allow

better agreement with experimental data, however, some of the mathematical sim-

plicity of the neo-Hookean, Mooney-Rivlin and Varga models is lost.

The above strain energy functions are all incompressible, and this is a good ap-

proximation for rubber when modelling large static deformations. However, rubber

is capable of supporting compressional waves, and so if we are interested in modelling

these, we must consider a strain energy function which incorporates some compress-

ibility. For compressible materials, we no longer have the condition that I3 = 1, and

so potential strain energy functions can also depend on this strain invariant as well

as I1 and I2.

The Blatz-Ko model was proposed for modelling compressible polyurethane:

W =
µ

2

(

I2

I3

+ 2I
1
2
3 − 5

)

, (2.172)

where µ denotes the shear modulus of the material under infinitesimal deformations.

This model was proposed by Blatz and Ko in a paper published in 1962 [12] and has

been adopted in many investigations of finite deformation of compressible materials.

If we are only interested in incorporating a small amount of compressibility (see

Section 2.2.5) then it is reasonable to consider strain energy functions which are ex-

tensions of either the neo-Hookean or Mooney-Rivlin models, for example. A recently

proposed strain energy function of such form is

W =
µ

2
(S1(I1 − 3I

1
3
3 ) + S2(I2 − 3I

2
3
3 )) +

κ

2
(I

1
2
3 − 1)2, (2.173)

where µ and κ are the ground state shear and bulk moduli, respectively, of the

material under consideration, and S1 and S2 are two material parameters which sum

to one. Note that this is a compressible extension of the Mooney-Rivlin strain energy

function. This can be seen from that fact the if we take the limit as I3 → 1 in the

above we recover equation (2.167). If we choose S1 = 1 and S2 = 0, then we obtain

the compressible analogue of the neo-Hookean strain energy function.
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Other compressible extensions of incompressible strain energy functions exist,

such as this extension of the neo-Hookean model [73]

W =
µ

2
(I1 − 3 − 2 log J) +

κ

2
(J − 1)2. (2.174)

In Figure 2.5 we plot the stress-strain curves for a compressible neo-Hookean material

under uniaxial tension. The solid line represents a material for which κ ≫ µ (i.e. a

nearly incompressible material - see Section 2.2.5) and the dashed line represents a

material for which κ = O(µ).

To obtain these curves, a deformation of the form

X =
x

λ1

, Y =
y

λ2

, Z =
z

λ3

, (2.175)

was assumed. We assume that the material is being stretched in the x-direction and

allowed to contract in the y and z-directions. Analytical expressions were obtained

for the stresses T11, T22 and T33 by using (2.174) in (2.77):

T11

µ
=

(

λ1

λ2λ3

− 1

λ1λ2λ3

)

+
κ

µ
(λ1λ2λ3 − 1), (2.176)

T22

µ
=

(

λ2

λ1λ3

− 1

λ1λ2λ3

)

+
κ

µ
(λ1λ2λ3 − 1), (2.177)

T33

µ
=

(

λ3

λ1λ2

− 1

λ1λ2λ3

)

+
κ

µ
(λ1λ2λ3 − 1), (2.178)

and the following conditions were applied:

λ2 = λ3, T22 = T33 = 0. (2.179)

The first condition was applied as we expect the lateral contractions to be the same

in the y and z-directions. The second condition was applied as we are assuming that

the only force applied is in the x-direction.

These conditions allowed expressions for λ2 and λ3 to be determined as a function

of λ1:

λ2 = λ3 =
1√
2

√

1

λ1

− µ

κλ2
1

+

√

4κµλ2
1 + (µ − κλ1)2

κλ2
1

, (2.180)

therefore, they could be eliminated from the expression for T11 so that T11 could be

plotted as a function of λ1 only.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 52

1.5 2.0 2.5 3.0 3.5 4.0

5

10

15

λ1

T11

µ

Figure 2.5: Stress-strain curves for a compressible neo-Hookean material. The solid
line represents a material for which κ ≫ µ (κ/µ = 10000) and the dashed line
represents a material for which κ = O(µ) (κ/µ = 1).

In the figure, the values of selected for the plots were κ/µ = 10000 for the solid

line and κ/µ = 1 for the dashed line.

Similarly, we can consider the following compressible extension of the Mooney-

Rivlin strain energy function

W =
µ

2
(C1(I1 − 3 − 2 log J) + C2(I2 − 3 − 4 log J)) +

κ

2
(J − 1)2. (2.181)

In Figure 2.6 (C1 = 0.8, C2 = 0.2) and Figure 2.7 (C1 = 0.1, C2 = 0.9) we plot the

stress-strain curves for a compressible Mooney-Rivlin material under uniaxial tension.

In both figures the solid line represents a material for which κ ≫ µ and the dashed

line represents a material for which κ = O(µ). The same technique and values of µ

and κ were used as for the compressible neo-Hookean strain energy function. The

stresses obtained in this case were

T11

µ
=

(

C1

(

λ1

λ2λ3

− 1

λ1λ2λ3

)

+ C2

(

λ1λ2

λ3

+
λ1λ3

λ2

− 2

λ1λ2λ3

))

+
κ

µ
(λ1λ2λ3 − 1),

(2.182)

T22

µ
=

(

C1

(

λ2

λ1λ3

− 1

λ1λ2λ3

)

) + C2

(

λ1λ2

λ3

+
λ2λ3

λ1

− 2

λ1λ2λ3

))

+
κ

µ
(λ1λ2λ3 − 1),

(2.183)
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Figure 2.6: Stress-strain curves for a compressible Mooney-Rivlin material (C1 =
0.8, C2 = 0.2). The solid line represents a material for which κ ≫ µ (κ/µ = 10000)
and the dashed line represents a material for which κ = O(µ) (κ/µ = 1).

T33

µ
=

(

C1

(

λ3

λ1λ2

− 1

λ1λ2λ3

)

) + C2

(

λ1λ3

λ2

+
λ2λ3

λ1

− 2

λ1λ2λ3

))

+
κ

µ
(λ1λ2λ3 − 1).

(2.184)

The contractions λ2 and λ3 were determined to be

λ2 = λ3 =

1√
2

√

κλ1 − µ(C1 + C2λ2
1) +

√

(κλ1 − µ(C1 + C2λ2
1))

2 + 4µ(C1 + 2C2)(C2µ + κλ2
1)

C2µ + κλ2
1

.

(2.185)

For further information on strain energy functions for rubberlike materials and

matching models to experimental data see, for example, Valanis and Landel [103],

Blatz et al. [13], James and Treloar [50], Horgan and Saccomandi [45], Ogden et al.

[74], Nah et al. [65] or Hoss and Marczak [46].

In this thesis we utilise incompressible neo-Hookean and Mooney-Rivlin strain

energy functions. These strain energy functions have been selected due to the fact

that they exhibit reasonable agreement with experiments on rubberlike materials, but

also retain a degree of mathematical simplicity. We are interested in inhomogeneous



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 54

1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

5

6

λ1

T11

µ

Figure 2.7: Stress-strain curves for a compressible Mooney-Rivlin material (C1 =
0.1, C2 = 0.9). The solid line represents a material for which κ ≫ µ (κ/µ = 10000)
and the dashed line represents a material for which κ = O(µ) (κ/µ = 1).

deformations and so it was important to use relatively simple strain energy functions

in order to give the simplest possible incremental equations. More complex strain

energy functions could be used to better match experimental data, however, the

neo-Hookean and Mooney-Rivlin models should provide a good first approximation.

2.2.5 The incompressible limit

Much work has been done on taking the limit of a compressible material as it tends

towards incompressibility. Creating a general theory for a ‘nearly incompressible’

material is difficult however. In the incompressible limit, we know that certain quan-

tities have certain behaviours. For example, the Poisson’s ratio ν → 1
2

(see Section

2.3), the ratios µ
κ

and µ
λ

tend to 0 and the third strain invariant I3 → 1. It is this final

limit which causes difficulty since the elastic response function β0 from (2.82) becomes

indeterminate in this limit due to the ∂W
∂I3

term. For an incompressible material, we

introduce the function Q to account for the indeterminability of β0. The form of Q

must be determined via the incompressibility condition and governing equations.
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For some problems involving ‘nearly incompressible’ nonlinear elastic materials

see, for example, the paper by Faulkner, published in 1971 [33], the paper by Chat-

topadhyay and Rogerson, published in 2001 [16], the paper by Kobayashi and Van-

derby, published in 2007 [52] or the paper by Mott et al., published in 2008 [64].

In [33], Faulkner considers finite dynamic deformations of a nearly incompressible

elastic spherical shell; in [16], Chattopadhyay and Rogerson discuss wave reflection

in nearly incompressible, finitely deformed elastic media; in [52], Kobayashi and Van-

derby present an acoustoelastic analysis of reflected waves in nearly incompressible,

hyper-elastic materials; and in [64], Mott et al. discuss the behviour of the bulk

modulus and Poisson’s ratio of an elastic material in the incompressible limit.

2.2.6 Static nonlinear elasticity

There is an extremely extensive literature on the static deformation of nonlinear elas-

tic materials. It ranges from the early texts by Green and Zerna [38] (first published

in 1954) and Green and Adkins [37] (1960) to recent papers on, for example, the

deformation of fiber-reinforced composites [21], [22] or the stress field in a pulled

cork [23] (the latter paper involves the use of the ‘semi-inverse method’ which was

reviewed in a paper by De Pascalis et al., published in 2009 [24]).

The problems in this thesis involve an initial finite deformation of either a cylin-

drical annulus, a cylindrical cavity, or a spherical cavity. Two examples of papers

which involve finite deformation in a cylindrical coordinate system are the paper by

Tait and Harrow, published in 1985 [98], in which a perturbation method was pre-

sented for the analysis of torsion of a compressible hyperelastic cylinder and the paper

by Destrade et al., published in 2010 [25], in which the deformation of a sector of a

circular cylindrical tube into an intact tube was discussed. Two examples of papers

which involve finite deformation of a sphere are the paper by Abeyaratne and Horgan,

published in 1984 [1], in which the deformation of a hollow sphere under pressure was

considered for a special class of compressible materials called harmonic materials, and

the paper by Haughton, published in 1987 [40], in which the inflation and bifurcation
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of thick-walled compressible elastic shells was discussed.. Finite deformation of an

infinite material containing a spherical cavity is considered in the thesis by Parnell

[79].

2.3 Linear elasticity

In linear elasticity, it is assumed that the components of the displacement gradient

tensor are small, so that

DT D ≈ 0, (2.186)

and hence

E ≈ 1

2
(D + DT ). (2.187)

We, therefore, define the linear strain tensor as

e =
1

2
(D + DT ), (2.188)

which can be expressed in index notation in Cartesian coordinates as

eij =
1

2

(

∂ui

∂Xj

+
∂uj

∂Xi

)

. (2.189)

Note that the displacement u here is defined in the same way as U in Section 2.2,

however, we use the lower case u to emphasise that we are in the context of linear

elasticity. The displacements in this section are equivalent to the displacements in

the small-on-large analysis with no initial large displacement.

We define the linear rotation tensor as

ω =
1

2
(D − DT ), (2.190)

which can be expressed in index notation in Cartesian coordinates as

ωij =
1

2

(

∂ui

∂Xj

− ∂uj

∂Xi

)

. (2.191)

The stress-strain relationship for three-dimensional linear elasticity is based on a

generalisation of Hooke’s law, and can be expressed as

σ = c : e, (2.192)
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where σ is the linear Cauchy stress and c is a fourth order tensor often referred to

as the stiffness tensor or the elasticity tensor. The neo-Hookean and Mooney-Rivlin

strain energy functions provide a generalisation of Hooke’s law for large deformations.

For small-on-large problems, it is useful to consider the no pre-stress limit. In this

case, when the large deformation is zero, the incremental response of the material is

just a standard linear elastic response and all of the incremental linear stress tensors

are the same; in particular, we have τ = σ.

In the case of an isotropic material, equation (2.192) can be reduced to

σ = λ tr(e)I + 2µe, (2.193)

which can be written in index notation as

σij = λδijekk + 2µeij, (2.194)

where δij is the Kronecker delta, λ is Lamé’s first parameter and µ is Lamé’s second

parameter, also known as the shear modulus.

The following quantities can be expressed in terms of the Lamé constants:

Young’s modulus:

E =
µ(3λ + 2µ)

λ + µ
, (2.195)

Poisson’s ratio:

ν =
λ

2(λ + µ)
, (2.196)

bulk modulus:

κ = λ +
2

3
µ. (2.197)

The governing equations in linear elasticity are normally expressed in terms of

the undeformed coordinates, and so we write

Div σ + ρB = ρ
∂2u

∂t2
, (2.198)

or, in the absence of body forces,

Div σ = ρ
∂2u

∂t2
(2.199)
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where Div represents the divergence operator with respect to the undeformed coor-

dinate system.

It is worth stressing, however, that a linear elastic deformation is equivalent to

a small-on-large problem where there is no initial deformation (i.e. the deformed

configuration is the same as the undeformed configuration). So we could equivalently

write

div σ + ρB = ρ
∂2u

∂t2
, (2.200)

and

div σ = ρ
∂2u

∂t2
. (2.201)

Upon using (2.193), (2.188) and (2.44), the above equations can be formulated in

terms of the displacements, u, as follows:

(λ + µ)∇(∇ · u) + µ∇2u + ρB = ρ
∂2u

∂t2
, (2.202)

or, in the absence of body forces,

(λ + µ)∇(∇ · u) + µ∇2u = ρ
∂2u

∂t2
, (2.203)

where ∇ is defined with respect to the undeformed configuration so that, in Cartesian

coordinates, for example, we have

∇ =











∂
∂X1

∂
∂X2

∂
∂X3











=











∂
∂X

∂
∂Y

∂
∂Z











. (2.204)

The above governing equations can also be expressed in index notation in Cartesian

coordinates as

(λ + µ)uj,ji + µui,jj + ρBi = ρüi, (2.205)

and

(λ + µ)uj,ji + µui,jj = ρüi, (2.206)

respectively.

Upon using the vector identity

∇2u = ∇(∇ · u) −∇× (∇× u), (2.207)
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(2.198) can be rewritten as

(λ + 2µ)∇(∇ · u) − µ∇× (∇× u) + ρB = ρ
∂2u

∂t2
. (2.208)

Recalling the definition of ω, we can rewrite the above as

(λ + 2µ)∇△−2µ∇× ω + ρB = ρ
∂2u

∂t2
, (2.209)

where we have defined the dilatation, △, as

△ = ∇ · u. (2.210)

Using the Helmholtz decomposition theorem, u can be rewritten in terms of the scalar

and vector potentials Φ and H as follows:

u = ∇Φ + ∇× H , (2.211)

where H satisfies

∇ · H = 0. (2.212)

Similarly, B can be rewritten in terms of the scalar and vector potentials Ψ and F

as

B = ∇Ψ + ∇× F , (2.213)

where F satisfies

∇ · F = 0. (2.214)

After substituting (2.211) and (2.213) into (2.202), we obtain

(λ+µ)∇∇·(∇Φ+∇×H)+µ∇2(∇Φ+∇×H)+ρ(∇Ψ+∇×F ) = ρ(∇Φ̈+∇×Ḧ).

(2.215)

This can be rearranged as

∇((λ + 2µ)∇2Φ + ρΨ − ρΦ̈) + ∇× (µ∇2H + ρF − ρḦ) = 0, (2.216)

which will satisfied if

(λ + 2µ)∇2Φ + ρΨ = ρΦ̈, (2.217)
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and

µ∇2H + ρF = ρḦ . (2.218)

In the absence of body forces, the above equations reduce to

(λ + 2µ)∇2Φ = ρΦ̈, (2.219)

and

µ∇2H = ρḦ . (2.220)

2.4 Linear elastic waves in unstressed solids

In this thesis, we are concerned with the propagation of waves through elastic solids

in the absence of body forces. In particular, we will consider the case where we have

linear, time harmonic waves, so that the displacement u takes the form

u = ℜ(ûe−iωt), (2.221)

where û is a function of the spatial coordinates only and ω is the angular frequency

of the waves.

Dilatational waves

If we take the divergence of (2.203) we obtain

(λ + µ)∇ · (∇∇ · u) + µ∇ · (∇2u) = ρ∇ · u, (2.222)

which can be rewritten in terms of the dilatation as

(λ + 2µ)∇2△ = ρ
∂2△
∂t2

, (2.223)

which can be rewritten as

∇2△ =
1

c2
1

∂2△
∂t2

, (2.224)

where

c1 =

√

λ + 2µ

ρ
. (2.225)

We recognise (2.224) as the wave equation, where c1 is the propagation velocity, hence

dilatational waves in a linear elastic material propagate at the velocity c1.
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Rotational waves

If we take the curl of (2.203) we similarly obtain

µ∇2ω = ρ
∂2ω

∂t2
, (2.226)

which can be rewritten as

∇2ω =
1

c2
1

∂2ω

∂t2
, (2.227)

where

c2 =

√

µ

ρ
. (2.228)

We again recognise (2.227) as a scalar wave equation, where c2 is the propagation

velocity, hence rotational waves in a linear elastic material propagate at the velocity

c2.

Specific examples of rotational waves which appear in this thesis are SH waves,

SV waves and torsional waves.

2.4.1 Propagation and reflection of waves in a half-space

Here we reproduce, with some slight changes and corrections, a problem which ap-

pears in [36] in order to illustrate the difference between SH and SV waves.

When elastic waves are incident upon a boundary between two media, some of the

energy carried by the waves is reflected from the boundary, and some is transmitted

across it. In this thesis, we are generally concerned with waves impinging upon free

surfaces and, in this case, all of the energy carried by the wave is reflected. For certain

types of boundaries and incident waves, a process called mode conversion occurs,

whereby the incident wave is converted into two reflected waves. This process, and

the fact that two distinct types of wave can propagate in an elastic material causes

elastic wave problems to be more complex than acoustic and many electromagnetic

wave problems.

Here we consider time-harmonic plane waves propagating in the half space y ≥ 0.

With no loss of generality, we assume that the wave normal n lies in the x, y-plane,

which we will call the vertical plane. We call the x, z-plane, which is the surface of
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Figure 2.8: Plane wave, with wave normal n in the x, y-(vertical) plane advancing
toward a free surface. This figure is a reproduction of the figure given on page 312
of Graff 1991 [36].

the half-space, the horizontal plane. Dilatational wave motion will be in the direction

of the wave normal and will, therefore, lie completely in the vertical plane. Shear

wave motion may have components both in the vertical plane and parallel to the

horizontal plane. The impingement of a general plane wave with normal n upon the

free surface y = 0 is shown in Figure 2.8. The component of the displacement in the

normal direction is un and the transverse components are uv and uz, which are in the

vertical and horizontal planes, respectively. The motion does not very with z if the

wave normal is in the vertical plane since every point of the wave along that axis is

undergoing the same motion and has the same phase.

The governing equations for this problem are

ux =
∂Φ

∂x
+

∂Hz

∂y
, uy =

∂Φ

∂y
− ∂Hz

∂x
, uz = −∂Hx

∂y
+

∂Hy

∂x
, (2.229)

∂Hx

∂x
+

∂Hy

∂y
= 0, (2.230)

∇2Φ =
1

c2
1

∂2Φ

∂t2
, ∇2Hi =

1

c2
2

∂2Hi

∂t2
, (i = x, y, z), (2.231)

where we have used the z independence of all quantities. Here, Φ is the scalar

potential associated with the dilatational part of the Helmholtz decomposition of the
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displacement vector u, and Hx, Hy and Hz are the components of the vector potential

associated with the rotational part of the Helmholtz decomposition of u (see equation

(2.211)). Equation (2.230) results from ∇ · H = 0.

The Cauchy stresses are given by

σxx = (λ + 2µ)

(

∂ux

∂x
+

∂uy

∂y

)

− 2µ
∂uy

∂y
, (2.232)

σyy = (λ + 2µ)

(

∂ux

∂x
+

∂uy

∂y

)

− 2µ
∂ux

∂x
, (2.233)

σzz =
λ

2(λ + µ)
(σxx + σyy), (2.234)

σxy = µ

(

∂ux

∂y
+

∂uy

∂x

)

, (2.235)

σyz = µ
∂uz

∂y
, σxz = µ

∂uz

∂x
. (2.236)

Note that, in [36], σxz was incorrectly given as 0 in the above. From (2.229) - (2.231),

we can rewrite the above equations in terms of the potentials Φ, Hx, Hy and Hz as

σxx = (λ + 2µ)

(

∂2Φ

∂x2
+

∂2Φ

∂y2

)

− 2µ

(

∂2Φ

∂y2
− ∂2Hz

∂x∂y

)

, (2.237)

σyy = (λ + 2µ)

(

∂2Φ

∂x2
+

∂2Φ

∂y2

)

− 2µ

(

∂2Φ

∂x2
− ∂2Hz

∂x∂y

)

, (2.238)

σzz = λ

(

∂2Φ

∂x2
+

∂2Φ

∂y2

)

, (2.239)

σxy = µ

(

2
∂2Φ

∂x∂y
+

∂2Hz

∂y2
− ∂2Hz

∂x2

)

, (2.240)

σyz = µ

(

−∂Hx

∂y2
+

∂2Hy

∂x∂y

)

, σxz = µ

(

− ∂Hx

∂x∂y
+

∂2Hy

∂x2

)

. (2.241)

Again, in [36], σxz was incorrectly given as 0.

Finally, we have the boundary conditions given by

σyy|y=0 = σxy|y=0 = σyz|y=0 = 0. (2.242)

We observe here that the waves we are considering decouple into two distinct types.

We note that ux, uy depend only on Φ and Hz, which are governed by (2.231), where

i = z in the second of the two equations, and the stresses σxx, σyy and σxy only depend

on ux and uy, and, therefore, only on Φ and Hz. We also note that uz depends only
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on Hx and Hy which are governed by the second equation of (2.231), where i = x, y,

and the stresses σyz and σxz depend only on uz, and, hence, only on Hx and Hy. Due

to this decoupling, we can resolve the motion into two parts, where one is a plane

strain wave motion, with uz = 0, ux = ux(x, y) 6= 0 and uy = uy(x, y) 6= 0, and the

other is SH wave motion, where ux = uy = 0 and uz = uz(x, y) 6= 0. This decoupling

would become apparent in the boundary condition equations if it was not noted here.

In summary, we have the following:

Plane strain: uz = 0, ux = ux(x, y), uy = uy(x, y),

ux =
∂Φ

∂x
+

∂Hz

∂y
, uy =

∂Φ

∂y
− ∂Hz

∂x
, (2.243)

∇2Φ =
1

c2
1

∂2Φ

∂t2
, ∇2Hz =

1

c2
2

∂2Hz

∂t2
, (2.244)

with σxx, σyy, σzz, σxy given by equations (2.232) - (2.235) and (2.237) - (2.240). The

boundary conditions are

σyy|y=0 = σxy|y=0 = 0. (2.245)

SH waves : ux = uy = 0, uz = uz(x, y),

uz = −∂Hx

∂y
+

∂Hy

∂x
,

∂Hx

∂x
+

∂Hy

∂y
= 0, (2.246)

∇2Hx =
1

c2
2

∂2Hx

∂t2
, ∇2Hy =

1

c2
2

∂2Hy

∂t2
, (2.247)

with σyz given by equations (2.236) and (2.241). The boundary conditions are

σyz|y=0 = 0. (2.248)

Note that we could directly consider the displacement equation of motion in the case

of SH waves:

∇2uz =
1

c2
2

∂2uz

∂t2
. (2.249)

Now consider the solution in the plane strain case and let

Φ = f(y)ei(ξx−ωt), Hz = hz(y)ei(ζx−ωt). (2.250)

Upon substituting the above into the governing equations (2.244), we obtain

d2f

dy2
+ α2f = 0,

d2hz

dy2
+ β2hz = 0, (2.251)
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where

α2 =
ω2

c2
1

− ξ2, β2 =
ω2

c2
2

− ζ2. (2.252)

The plane wave solutions for Φ and Hz are then given by

Φ = A1e
i(ξx−αy−ωt) + A2e

i(ξx+αy−ωt), (2.253)

Hz = B1w
i(ζx−βy−ωt) + B2e

i(ζx+βy−ωt). (2.254)

We refer to the wave associated with Φ as a P wave and the wave associated with Hz

as an SV wave.

If we define θ1 and θ2 as the angles between the y-axis and the wave normal of

the dilational and shear waves, respectively, then we may write

ξ = γ1 sin θ1, α = γ1 cos θ1, (2.255)

ζ = γ2 sin θ2, β = γ2 cos θ2, (2.256)

where γ1 and γ2 are the wavenumbers of the P and SV waves, respectively. Hence,

we may write Φ and Hz, respectively, as

Φ = A1e
(iγ1(sin θ1x−cos θ1y−c1t) + A2E

iγ1(sin θ1x+cos θ1y−c1t), (2.257)

and

Hz = B1e
iγ2(sin θ2x−cos θ2y−c2t) + B2e

iγ2(sin θ2x+cos θ2y−c2t). (2.258)

We now apply the solutions (2.257) and (2.258) to the plane-strain boundary condi-

tions (2.245), obtaining

γ2
1(2 sin2 θ1 − k2)(A1 + A2)e

iγ1(sin θ1x−c1t) − γ2
2 sin 2θ2(B1 − B2)e

iγ2(sin θ2x−c2t) = 0,

(2.259)

and

γ2
1 sin 2θ1(A1 − A2)e

iγ1(sin θ1x−c1t) − γ2
2 cos 2θ2(B1 + B2)e

iγ2(sin θ2x−c2t) = 0, (2.260)

where

k2 =
c2
1

c2
2

=
λ + 2µ

µ
. (2.261)
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We can immediately factor out e−iωt from the above. If these results are to hold for

arbitrary x, then we must be able to factor eiγ1 sin θ1x and eiγ2 sin θ2x from them. This

can only occur if we have

γ1 sin θ1 = γ2 sin θ2. (2.262)

Since ω = γ1c1 = γ2c2, so that γ2/γ1 = c1/c2 = k, we may write the above as

γ2

γ1

=
sin θ1

sin θ2

= k. (2.263)

This result may be interpreted as the form of Snell’s law for elastic waves. With this,

the boundary condition equations reduce to

γ2
1(2 sin2 θ1 − k2)(A1 + A2) − γ2

2 sin 2θ2(B1 − B2) = 0, (2.264)

and

γ2
1 sin 2θ1(A1 − A2) − γ2

2 cos 2θ2(B1 + B2) = 0. (2.265)

This governs the reflection of plane waves in a half-space. Note that, in [36], γ1

was incorrectly given as γ2 in equation (2.265). We observe from this result that P

and SV waves are coupled (i.e. they must both be present to satisfy the boundary

conditions). Therefore, if the incident field is either a purely P wave or a purely SV

wave, then both P and SV waves will be reflected. As we shall see in Section 2.4.5

and Chapter 6, when a plane wave impinges on a spherical cavity there will also be

mode conversion and, therefore, both P waves and shear waves will be scattered.

We now consider the solution in the SH wave case, and let

Hx = hx(y)ei(ξx−ωt), Hy = hy(y)ei(ξx−ωt). (2.266)

Substituting the above into the governing equations (2.247), we obtain

d2hx

dy2
+ η2hx = 0,

d2hy

dy2
+ η2hy = 0, (2.267)

where

η2 =
ω2

c2
2

− ξ2. (2.268)

The solutions are

Hx = C1e
i(ξx−ηy−ωt) + C2e

i(ξx+ηy−ωt), (2.269)
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Hy = D1e
i(ξx−ηy−ωt) + D2e

i(ξx+ηy−ωt). (2.270)

These results may also be expressed in terms of an incidence angle θ3, as was done

previously for Φ and Hz.

Due to the fact that ∇ · H = 0, not all of the above quantities are independent.

This allows us to determine the three components of the displacement from the four

components of Φ and H . It was found earlier that ux and uy depend only on Φ and Hz,

and are, therefore, uniquely determined. This is not the case for uz, which depends

on Hx and Hy. In the present case of z independence, the divergence condition is

given by equation (2.230).

Applying this condition to the results (2.269) and (2.270) gives

iξ(C1e
−iηy + C2e

iηy) + iη(−D1e
−iηy + D2e

iηy) = 0, (2.271)

where ei(ξx−ωt) has been factored out. This re-groups to

(ξC1 − ηD1)e
−iηy + (ξC2 + ηD2)e

iηy = 0. (2.272)

In order for the above result to hold for all y, we must have C1, D1, C2 and D2 related

by

ξC1 = ηD1, ξC2 = −ηD2. (2.273)

Therefore, two of the constants of (2.269) and (2.270) may be eliminated. We arbi-

trarily choose to eliminate D1 and D2, to obtain

Hx = C1e
i(ξx−ηy−ωt) + C2e

i(ξx+ηy−ωt), (2.274)

Hy =
ξ

η
C1e

i(ξx−ηy−ωt) − ξ

η
C2e

i(ξx+ηy−ωt). (2.275)

Substituting these results into the boundary condition σyz|y=0 = 0 gives

η2(C1 + C2) + ξ2(C1 + C2) = 0, (2.276)

and, therefore,

C1 = −C2. (2.277)

This result governs the reflection of SH waves in a half-space. The key feature

of such waves is that there is no mode conversion on the boundary for an incoming
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SH wave field, and so the reflected wave is also an SH wave with a reflection angle

equal to the incidence angle. If a shear wave of arbitrary polarisation impinges on a

free surface, the SV component of the wave will lose a portion of its energy to the

generation of P waves, whereas the SH component will reflect with only a change in

phase.

When SH waves are incident upon a cylindrical cavity, with axis aligned with the

displacement vector of the wave, the same result is observed, i.e. there is no mode

conversion and the scattered wave field still has the same polarisation as the incident

field. This problem will be investigated further in Section 2.4.3 and Chapter 4.

2.4.2 Torsional wave propagation in an annular circular cylin-

der

In Chapter 3 we look at the propagation of torsional waves in a pre-stressed nonlinear

elastic annular cylinder in the absence of body forces and are interested in the effect

of this pre-stress on the dispersion relation for the propagating waves. As a pre-cursor

to that chapter, in this section we discuss the propagation of torsional waves in an

isotropic linear elastic annular cylinder and the governing equation in this section can

be compared with the governing equation in Chapter 3.

For this problem we are interested in time harmonic waves propagating in the

longitudinal (z) direction, and so

ur = 0, uθ = ℜ(v(r)ei(kz−ωt)), uz = 0, (2.278)

where k is the longitudinal wavenumber and ω is the frequency of the wave. For

conciseness, we shall omit the ℜ symbol in the following, however, the fact that we

are interested in the real part of the wave should henceforth be considered implicit.

It can be shown by using (2.19) and (2.44) in (2.188) that the components of the

linear strain tensor in cylindrical coordinates are as follows:

err =
∂ur

∂r
, eθθ =

1

r

∂uθ

∂θ
+

ur

r
, (2.279)

ezz =
∂uz

∂z
, erθ =

1

2

(

1

r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

)

, (2.280)
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erz =
1

2

(

∂uz

∂r
+

∂ur

∂z

)

, eθz =
1

2

(

∂uθ

∂z
+

1

r

∂uz

∂θ

)

, (2.281)

where ur, uθ and uz are the displacements in the radial, azimuthal and longitudinal

directions, respectively.

Upon substituting the above values of ur, uθ and uz into (2.279) - (2.281), the

only non-zero components of the linear strain tensor we obtain are

erθ =
1

2

(

v′(r) − v(r)

r

)

ei(kz−ωt), eθz =
ik

2
v(r)ei(kz−ωt). (2.282)

Hence, upon using (2.193) (since the material we are considering is isotropic), the

only non-zero components of the linear Cauchy stress tensor we obtain are

σrθ = µ

(

v′(r) − v(r)

r

)

e−iωt, σθz = µikv(r)ei(kz−ωt). (2.283)

The governing equations for a linear elastic solid can be written in cylindrical coor-

dinates as (see equation (2.25))

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

∂σrz

∂z
+

σrr − σθθ

r
+ ρfr = ρ

∂2ur

∂t2
, (2.284)

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

∂σθz

∂z
+

2

r
σrθ + ρfθ = ρ

∂2uθ

∂t2
, (2.285)

∂σrz

∂r
+

1

r

∂σθz

∂θ
+

∂σzz

∂z
+

1

r
σrz + ρfz = ρ

∂2uz

∂t2
, (2.286)

where fr, fθ and fz are the components of the body force in the radial, azimuthal

and longitudinal directions, respectively. In this problem, body forces have negligible

effect, and so

fr = fθ = fz = 0. (2.287)

Upon substituting the relevant components of σ and u into the above, we find that the

radial and longitudinal governing equations are satisfied trivially, and the azimuthal

governing equation reduces to

v′′(r) +
1

r
v′(r) +

(

s2 +
1

r2

)

v(r) = 0, (2.288)

where

c =

√

µ

ρ
(2.289)
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is the torsional wave velocity, and

s2 =
ω2

c2
− k2. (2.290)

If we make the substitution

x = sr, (2.291)

then we can write equation (2.288) as

d2v

dx2
+

1

x

dv

dx
+

(

1 − 1

x2

)

v = 0. (2.292)

This is Bessel’s equation of order one, and so v must be a linear combination of the

order one Bessel functions of the first and second kinds (J1 and Y1, respectively):

v = C1J1(x) + C2Y1(x) = C1J1(sr) + C2Y1(sr), (2.293)

where C1 and C2 are arbitrary constants.

Let the annular cylinder have inner radius a and outer radius b. If we are now

interested in applying traction-free boundary conditions on the inner and outer sur-

faces of the annular cylinder, then the equations to be satisfied on r = a and r = b

are

σ · n|r=a,b = 0, (2.294)

where n is the outer unit normal to the surface under consideration, so on r = a,

n = −er and on r = b, n = er. Therefore, (2.294) reduces to

σθr|r=a = σθr|r=b = 0, (2.295)

which, in turn, reduces to

v′(a) − v(a)

a
= v′(b) − v(b)

b
= 0. (2.296)

The values of s which satisfy these boundary conditions define the dispersion relations

for torsional waves in an annular cylinder via equation (2.290). The resulting disper-

sion curves will be plotted in Chapter 3 and compared with those for a pre-stressed

annular cylinder.
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Figure 2.9: SH waves incident on a cylindrical cavity.

2.4.3 Scattering of shear waves from a cylindrical cavity

In Chapter 4 we look at the scattering of SH waves from a cylindrical cavity in an

infinite, pre-stressed nonlinear elastic material in the absence of body forces. In this

section we discuss the scattering of SH waves from a cylindrical cavity in an infinite,

isotropic, linear elastic material and the results in this section can be compared with

those in Chapter 4. This problem appears in [36], but is reproduced here with slightly

different notation.

In Figure 2.9 we illustrate the problem we are considering of SH waves propagating

in the positive x direction, and impinging on an infinite, cylindrical cavity of radius

a.

Time harmonic, SH waves have the following form

ur = 0, uθ = 0, uz = ℜ(w(r, θ)e−iωt), (2.297)

where ω is the frequency of the wave. For conciseness, we shall omit the ℜ symbol

in the following, however, the fact that we are interested in the real part of the wave

should henceforth be considered implicit.

Upon substituting the above forms of ur, uθ and uz into (2.279) - (2.281), the
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only non-zero components of the linear strain tensor we obtain are

erz =
1

2

∂w

∂r
e−iωt, eθz =

1

2r

∂w

∂θ
e−iωt. (2.298)

Hence, upon using (2.193) (since the material we are considering is isotropic), the

only non-zero components of the linear Cauchy stress tensor we obtain are

σrz = µ
∂w

∂r
e−iωt, σθz =

µ

r

∂w

∂θ
e−iωt. (2.299)

Upon substituting the relevant components of σ and u into (2.284) - (2.286), we

find that the radial and azimuthal governing equations are satisfied trivially, and the

longitudinal governing equation reduces to

∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2
+ k2w = 0, (2.300)

where

k = ω

√

ρ

µ
. (2.301)

If we are now interested in applying a traction free boundary condition on the surface

of the cavity, then the equations to be satisfied on r = a are

σ · n|r=a = 0, (2.302)

where n is the outer unit normal to the surface under consideration, so on r = a,

n = −er. Therefore, (2.302) reduces to

σθr|r=a = 0, (2.303)

which, in turn, reduces to

∂w

∂r

∣

∣

∣

∣

r=a

= 0. (2.304)

An incident SH wave propagating in the positive x direction is given by

wi = W0e
i(γx−ωt). (2.305)

When the incident wave strikes the cavity, reflection will occur, setting up a scattered

wavefield,

ws = ws(r, θ, t). (2.306)
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The total displacement will then be given as

w(r, θ, t) = wi + ws. (2.307)

It can be shown that the incident wavefield automatically satisfies the governing

equation (2.300) for γ = k.

We now assume that the scattered field can be written as

ws = R(r)Θ(θ)e−iωt = Wse
−iωt, (2.308)

and substitute this into (2.300), giving

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ + k2RΘ = 0. (2.309)

This separates to

Θ′′ + n2Θ = 0, (2.310)

and

R′′ +
1

r
R′ +

(

k2 − n2

r2

)

R = 0. (2.311)

The solution of (2.310) is

Θ = Aθ cos(nθ) + Bθ sin(nθ). (2.312)

Since the incoming wave is propagating in the positive x direction, we require that

the scattered field be symmetrical with respect to the plane y = 0. This implies

that we must have Bθ = 0, while the requirement that Θ be single valued (that is,

Θ(θ) = Θ(θ + 2π)) indicates that n must be an integer.

We recognise (2.311) as Bessel’s equation of order n and write the solutions in

terms of the order n Hankel functions:

R = ArH
(1)
n (kr) + BrH

(2)
n (kr). (2.313)

This solution form was chosen due to the convenient exponential representation of the

asymptotic behaviour. We now impose the requirement that the scattered wavefield

must be outward propagating. This condition will enable us to determine which
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Hankel function is appropriate. It can be shown (see [36]) that, for large values of the

argument (b ≫ 1), the Hankel functions have the following approximate expressions,

H(1)
n (b) ∼

(

2

πb

) 1
2

ei(b−π
4
−

nπ
2 )(1 − ...), (2.314)

H(2)
n (b) ∼

(

2

πb

) 1
2

e−i(b−π
4
−

nπ
2 )(1 + ...). (2.315)

Recalling that the time dependence is e−iωt, it is seen that an outward propagating

wave must have the form ei(kr−ωt), so that H
(1)
n is appropriate in the present case.

Hence let Br = 0 in (2.313). The scattered field is thus given by

Ws(r, θ) =
∞

∑

n=0

AnH(1)
n (kr) cos(nθ), (2.316)

where An must be determined.

We now have solutions which satisfy the wave equation so that only substitution

into the boundary condition remains. The form of Ws(r, θ) is ideally suited for this,

but this is not the case for the incoming wave (2.305). What is required is a Bessel-

function representation of the plane wave. Writing wi as

wi = Wi(r, θ)e
−iωt = W0e

ikr cos θe−iωt, (2.317)

it can be shown, using the Jacobi-Anger expansion (see [57] or [59]), that

Wi(r, θ) = W0

∞
∑

n=0

ǫn(−1)nJn(kr) cos(nθ), (2.318)

where

ǫ0 = 1, (2.319)

and

ǫn = 2in, n > 0. (2.320)

In (2.316) and (2.317), we have the incident and scattered wavefields similarly repre-

sented. Substitution into the boundary conditions, where the time dependence has

been omitted, gives

∂Wi

∂r

∣

∣

∣

∣

r=a

+
∂Ws

∂r

∣

∣

∣

∣

r=a

= 0. (2.321)
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Using (2.316) and (2.318), we obtain

∞
∑

n=0

(

W0ǫn(−1)n dJn(kr)

dr
+ An

H
(1)
n (kr)

dr

)

cos(nθ)

∣

∣

∣

∣

∣

r=a

= 0. (2.322)

Solving the above for An, we obtain

An = −ǫn(−1)nW0J
′
n(ka)

H
(1)′
n (ka)

. (2.323)

This analytical expression for the scattering coefficients An can be plotted as a func-

tion of ka, and in Chapter 4 we compare the scattering coefficients for pre-stressed

cavities with the above results for an unstressed cavity.

2.4.4 Scattering of dilatational waves from a spherical cavity

In Chapter 6, we consider the scattering of waves from a spherical cavity in a pre-

stressed nonlinear elastic material in the absence of body forces. Here we discuss the

unstressed state. First, in this section, we discuss the scattering of P waves from a

spherical cavity in an infinite, isotropic, linear elastic material; then, in the following

section, we will discuss the scattering of shear waves. The problem of scattering from

an inclusion with different material parameters is presented in [36].

In Figure 2.10 we illustrate the problem we are considering of P waves propagating

in the positive z direction, and impinging on a spherical cavity of radius a.

Due to the axisymmetry of the present problem, we have

u = ur(r, θ, t)er + uθ(r, θ, t)eθ, (2.324)

and since we are interested in time-harmonic waves we have

ur = ℜ(u(r, θ)e−iωt), uθ = ℜ(v(r, θ)e−iωt), (2.325)

where ω is the angular frequency of the wave. For conciseness, we shall omit the ℜ

symbol in the following, however, the fact that we are interested in the real part of

the wave should henceforth be considered implicit.

It can be shown (see [36]) that the components of the linear strain tensor in

spherical coordinates are as follows:

err =
∂ur

∂r
, eθθ =

1

r

∂uθ

∂θ
+

ur

r
, (2.326)
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Figure 2.10: P waves incident on a spherical cavity.

eφφ =
1

r sin θ

∂uφ

∂φ
+

ur

r
+ uθ

cot θ

r
, erφ =

1

2

(

1

r sin θ

∂ur

∂φ
− uφ

r
+

∂uφ

∂r

)

, (2.327)

erθ =
1

2

(

1

r

∂ur

∂θ
− uθ

r
+

∂uθ

∂r

)

, eφθ =
1

2

(

1

r

∂uφ

∂θ
− uφ cot θ

r
+

1

r sin θ

∂uθ

∂φ

)

, (2.328)

where ur, uθ and uφ are the displacements in the radial, polar and azimuthal direc-

tions, respectively.

Upon substituting the above forms of ur, uθ and uφ = 0 into (2.326) - (2.328), the

only non-zero components of the linear strain tensor we obtain are

err =
∂u

∂r
e−iωt, eθθ =

(

1

r

∂v

∂θ
+

u

r

)

e−iωt, (2.329)

eφφ =

(

u

r
+

v cot θ

r

)

e−iωt, erθ =
1

2

(

1

r

∂u

∂θ
− v

r
+

∂v

∂r

)

e−iωt. (2.330)

Hence, upon using (2.193) (since the material we are considering is isotropic), the

only non-zero components of the linear Cauchy stress tensor we obtain are

σrr = λ △ +2µ
∂u

∂r
e−iωt, (2.331)

σθθ = λ △ +2µ

(

1

r

∂v

∂θ
+

u

r

)

e−iωt, (2.332)

σφφ = λ △ +2µ

(

u

r
+

cot θ

r
v

)

e−iωt, (2.333)

σrθ = µ

(

1

r

∂u

∂θ
+

∂v

∂r
− v

r

)

e−iωt, (2.334)
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where

△ = ∇ · u =

(

∂u

∂r
+

2

r
u +

1

r

∂v

∂θ
+

cot θ

r
v

)

e−iωt. (2.335)

The governing equations for a linear elastic solid can be written in spherical coordi-

nates as

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

1

r sin θ

∂σrφ

∂φ
+

2σrr − σθθ − σφφ + σrθ cot θ

r
+ ρfr = ρ

∂2ur

∂t2
, (2.336)

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

1

r sin θ

∂σθφ

∂φ
+

3σrθ + (σθθ − σφφ) cot θ

r
+ ρfθ = ρ

∂2uθ

∂t2
, (2.337)

∂σrφ

∂r
+

1

r

∂σθφ

∂θ
+

1

r sin θ

∂σφφ

∂φ
+

3σrφ + 2σθφ cot θ

r
+ ρfφ = ρ

∂2uφ

∂t2
, (2.338)

where fr, fθ and fφ are the components of the body force in the radial, polar and

azimuthal directions, respectively. In this problem, there are no body forces, and so

fr = fθ = fφ = 0. (2.339)

Upon substituting the relevant components of σ and u into the above, we find that the

azimuthal governing equation is satisfied trivially, and the radial and polar governing

equations reduce to

(λ + 2µ)

(

∂2u

∂r2
+

2

r

∂u

∂r
− 2

r2
u +

1

r

∂2v

∂r∂θ
− 1

r2

∂v

∂θ
+

cot θ

r

∂v

∂r
− cot θ

r2
v

)

+

µ

(

1

r2

∂2u

∂θ2
− 1

r

∂2v

∂r∂θ
− 1

r2

∂v

∂θ
+

cot θ

r2

∂u

∂θ
− cot θ

r

∂v

∂r
− cot θ

r2
v

)

= −ρω2u, (2.340)

and

(λ + 2µ)

(

1

r

∂2u

∂r∂θ
+

2

r2

∂u

∂θ
+

1

r2

∂2v

∂θ2
+

cot θ

r2

∂v

∂θ
− csc2 θ

r2
v

)

+

µ

(

∂2v

∂r2
− 1

r

∂2u

∂r∂θ
+

2

r

∂v

∂r

)

= −ρω2v, (2.341)

respectively.

Using separation of variables, it can be shown that a solution to the above equa-

tions can be written in the form

u(r, θ) =
∞

∑

n=0

fn(r)Pn(cos θ), v(r, θ) =
∞

∑

n=0

gn(r)
d

dθ
(Pn(cos θ)), (2.342)

where Pn(cos θ) is a Legendre polynomial of order n.
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Using the above form, equations (2.340) and (2.341) reduce to

(λ + 2µ)

(

f ′′(r) +
2

r
f ′(r) − 2

r2
f(r) − m

r
g′(r) +

m

r2
g(r)

)

+

µ
(m

r
g′(r) +

m

r2
g(r) − m

r2
f(r)

)

= −ρω2f(r), (2.343)

and

(λ + 2µ)

(

1

r
f ′(r) +

2

r2
f(r) − m

r2
g(r)

)

+

µ

(

g′′(r) +
2

r
g′(r) − 1

r
f ′(r)

)

= −ρω2g(r), (2.344)

where we have dropped the subscript n on f and g and m = n(n + 1).

It follows from the derivation in [36] of a solution in terms of potentials that the

incoming plane P wave can be expressed as (2.342) with

f (i)
n (r) = (2n + 1)

d

dr
(jn(Kr)), g(i)

n (r) =
(2n + 1)jn(Kr)

r
, (2.345)

where jn is an order n spherical Bessel function of the first kind and

K =

√

ρω2

λ + 2µ
. (2.346)

Similarly, the outgoing, scattered solution can be expressed as

f (s)
n (r) = An

d

dr
(hn(Kr)) − mBnhn(kr)

r
, (2.347)

and

g(s)
n (r) =

Anhn(Kr)

r
− Bn

r

d

dr
(rhn(kr)), (2.348)

where An and Bn are scattering coefficients, hn is an order n spherical Hankel function

of the first kind and

k =

√

ρω2

µ
. (2.349)

The scattering coeffifients can then be determined by applying traction-free boundary

conditions:

σ · n = 0, (2.350)

on r = a.
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In this case n = −er, and therefore the boundary conditions can be written as

σrr|r=a = σrθ|r=a = 0. (2.351)

The scattering coefficients can then be determined by subsituting the derived expres-

sions for ur and uθ into the above.

2.4.5 Scattering of shear waves from a spherical cavity

As mentioned above, in Chapter 6 we look at the scattering of shear waves from a

spherical cavity in an infinite, pre-stressed nonlinear elastic material in the absence of

body forces. In this section we discuss the scattering of shear waves from a spherical

cavity in an infinite, isotropic, linear elastic material and the results in this section

can be compared with the results in Chapter 6. One of the difficulties in Chapter

6 is that we assume that the host medium is incompressible and so P waves in that

medium have an infinite wavelength. It is, therefore, of interest to consider the infinite

wavelength (i.e. small wavenumber) limit of the results in this section.

Now we are considering shear waves, we no longer have the axisymmetry of the

previous section, and so we consider a more general form for the displacement:

u = ur(r, θ, φ)er + uθ(r, θ, φ)eθ + uφ(r, θ, φ)eφ, (2.352)

and since we are interested in time-harmonic waves we have

ur = ℜ(u(r, θ, φ)e−iωt), uθ = ℜ(v(r, θ, φ)e−iωt, uφ = ℜ(w(r, θ, φ)e−iωt), (2.353)

where ω is the angular frequency of the wave. For conciseness, we shall omit the ℜ

symbol in the following, however, the fact that we are interested in the real part of

the wave should henceforth be considered implicit.

Upon substituting the above forms of ur, uθ and uφ into (2.326) - (2.328), we

obtain the following expressions for the components of the linear strain tensor:

err =
∂u

∂r
e−iωt, eθθ =

(

1

r

∂v

∂θ
+

u

r

)

e−iωt, (2.354)

eφφ =

(

1

r sin θ

∂w

∂φ
+

u

r
+

v cot θ

r

)

e−iωt, (2.355)
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erφ =
1

2

(

1

r sin θ

∂u

∂φ
− w

r
+

∂w

∂r

)

e−iωt, (2.356)

erθ =
1

2

(

1

r

∂u

∂θ
− v

r
+

∂v

∂r

)

e−iωt, (2.357)

eφθ =
1

2

(

1

r

∂w

∂θ
− w cot θ

r
+

1

r sin θ

∂v

∂φ

)

e−iωt, (2.358)

Hence, upon using (2.193) (since the material we are considering is isotropic), the

only non-zero components of the linear Cauchy stress tensor we obtain are

σrr = λ △ +2µ
∂u

∂r
e−iωt, (2.359)

σθθ = λ △ +2µ

(

1

r

∂v

∂θ
+

u

r

)

e−iωt, (2.360)

σφφ = λ △ +2µ

(

u

r
+

cot θ

r
v +

1

r sin θ

∂w

∂φ

)

e−iωt, (2.361)

σrφ = µ

(

1

r sin θ

∂u

∂φ
− w

r
+

∂w

∂r

)

e−iωt, (2.362)

σrθ = µ

(

1

r

∂u

∂θ
+

∂v

∂r
− v

r

)

e−iωt, (2.363)

σφθ = µ

(

1

r

∂w

∂θ
− w cot θ

r
+

1

r sin θ

∂v

∂φ

)

e−iωt, (2.364)

where

△ = ∇ · u =

(

∂u

∂r
+

2

r
u +

1

r

∂v

∂θ
+

cot θ

r
v +

1

r sin θ

∂w

∂φ

)

e−iωt. (2.365)

The governing equations for a linear elastic solid can be written in spherical coordi-

nates as (see equation (2.26))

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

1

r sin θ

∂σrφ

∂φ
+

2σrr − σθθ − σφφ + σrθ cot θ

r
+ ρfr = ρ

∂2ur

∂t2
, (2.366)

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

1

r sin θ

∂σθφ

∂φ
+

3σrθ + (σθθ − σφφ) cot θ

r
+ ρfθ = ρ

∂2uθ

∂t2
, (2.367)

∂σrφ

∂r
+

1

r

∂σθφ

∂θ
+

1

r sin θ

∂σφφ

∂φ
+

3σrφ + 2σθφ cot θ

r
+ ρfφ = ρ

∂2uφ

∂t2
, (2.368)

where fr, fθ and fφ are the components of the body force in the radial, polar and

azimuthal directions, respectively. In this problem, there are no body forces, and so

fr = fθ = fφ = 0. (2.369)
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Upon substituting the relevant components of σ and u into the above, we obtain the

following three equations

(λ + 2µ)

(

∂2u

∂r2
+

2

r

∂u

∂r
− 2

r2
u +

1

r

∂2v

∂r∂θ
− 1

r2

∂v

∂θ
+

cot θ

r

∂v

∂r
− cot θ

r2
v − 1

r2 sin θ

∂w

∂φ
+

1

r sin θ

∂2w

∂r∂φ

)

+ µ

(

1

r2

∂2u

∂θ2
− 1

r

∂2v

∂r∂θ
− 1

r2

∂v

∂θ
+

cot θ

r2

∂u

∂θ
− cot θ

r

∂v

∂r
− cot θ

r2
v−

1

r sin θ

∂2w

∂r∂φ
+

1

r2 sin2 θ

∂2u

∂φ2
− 1

r2 sin θ

∂w

∂φ

)

= −ρω2u, (2.370)

(λ + 2µ)

(

1

r

∂2u

∂r∂θ
+

2

r2

∂u

∂θ
+

1

r2

∂2v

∂θ2
+

cot θ

r2

∂v

∂θ
− csc2 θ

r2
v +

1

r2 sin θ

∂2w

∂θ∂φ
−

cot θ

r2 sin θ

∂w

∂φ

)

+ µ

(

∂2v

∂r2
− 1

r

∂2u

∂r∂θ
+

2

r

∂v

∂r
− 1

r2 sin θ

∂2w

∂θ∂φ
− cot θ

r2 sin θ

∂w

∂φ

+
1

r2 sin2 θ

∂2v

∂φ2

)

= −ρω2v, (2.371)

λ + 2µ

r sin θ

(

∂2u

∂r∂φ
+

2

r

∂u

∂φ
+

1

r

∂2v

∂θ∂φ
+

cot θ

r

∂v

∂φ
+

1

r sin θ

∂2w

∂φ2

)

+

µ

(

∂2w

∂r2
+

2

r

∂w

∂r
− w

r2
+

1

r2

∂2w

∂θ2
+

cot θ

r2

∂w

∂θ
− 1

r sin θ

∂2u

∂r∂φ
− 1

r2 sin θ

∂2v

∂θ∂φ
+

cot θ

r2 sin θ

∂v

∂φ
− w cot2 θ

r2

)

= −ρω2w, (2.372)

We now expand u in terms of the vector spherical harmonics, Y lm, Ψlm and Φlm,

which are defined as follows:

Y lm = Y m
l er, Ψlm = r∇Y m

l , Φlm = r ×∇Y m
l , (2.373)

where er is a unit vector in the radial direction, r is a position vector, and Y m
l is a

scalar spherical harmonic, defined as follows:

Y m
l = Y m

l (θ, φ) = Pm
l (cos θ)eimφ, (2.374)

where Pm
l is an associated Legendre polynomial of degree l and order m.

The expansion is as follows:

u = ℜ
(

∞
∑

l=0

l
∑

m=−l

(fl(r)Y lm + gl(r)Ψlm + hl(r)Φlm)e−iωt

)

, (2.375)
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so that u, v and w can be expressed as

u(r, θ, φ) =
∞

∑

l=0

l
∑

m=−l

fl(r)P
m
l (cos θ)eimφ, (2.376)

v(r, θ, φ) =
∞

∑

l=0

l
∑

m=−l

(

gl(r)
d

dθ
(Pm

l (cos θ))eimφ + hl(r)
Pm

l (cos θ)

sin θ
imeimφ

)

, (2.377)

w(r, θ, φ) =
∞

∑

l=0

l
∑

m=−l

(

gl(r)
Pm

l (cos θ)

sin θ
imeimφ − hl(r)

d

dθ
(Pm

l (cos θ))eimφ

)

. (2.378)

Using the above expansion, the governing equations reduce to

(

(λ + 2µ)

(

f ′′(r) +
2

r
f ′(r) − 2

r2
f(r) − l(l + 1)

r
g′(r) +

l(l + 1)

r2
g(r)

)

+

µl(l + 1)

(

1

r
g′(r) +

1

r2
g(r) − 1

r2
f(r)

))

Pm
l (cos θ)eimφ = −ρω2f(r)Pm

l (cos θ)eimφ,

(2.379)

(

(λ + 2µ)

(

1

r
f ′(r) +

2

r2
f(r) − l(l + 1)

r2
g(r)

)

+

µ

(

g′′(r) +
2

r
g′(r) − 1

r
f ′(r)

))

d

dθ
(Pm

l (cos θ))eimφ+

(

h′′(r) +
2

r
h′(r) − l(l + 1)

r2
h(r)

)

Pm
l (cos θ)

sin θ
imeimφ =

− ρω2

(

g(r)
d

dθ
(Pm

l (cos θ))eimφ + h(r)
Pm

l (cos θ)

sin θ
imeimφ

)

, (2.380)

and

(

(λ + 2µ)

(

1

r
f ′(r) +

2

r2
f(r) − l(l + 1)

r2
g(r)

)

+

µ

(

g′′(r) +
2

r
g′(r) − 1

r
f ′(r)

))

Pm
l (cos θ)

sin θ
imeimφ−

(

h′′(r) +
2

r
h′(r) − l(l + 1)

r2
h(r)

)

d

dθ
(Pm

l (cos θ))eimφ =

− ρω2

(

g(r)
Pm

l (cos θ)

sin θ
imeimφ − h(r)

d

dθ
(Pm

l (cos θ))eimφ

)

, (2.381)

where we have dropped the subscripts on f and g.
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Due to the orthogonality of d
dθ

(Pm
l (cos θ))eimφ and

P m
l

(cos θ)

sin θ
imeimφ, the above equa-

tions can be separated as follows:

(λ + 2µ)

(

f ′′(r) +
2

r
f ′(r) − 2

r2
f(r) − l(l + 1)

r
g′(r) +

l(l + 1)

r2
g(r)

)

+

µl(l + 1)

(

1

r
g′(r) +

1

r2
g(r) − 1

r2
f(r)

)

= −ρω2f(r), (2.382)

(λ + 2µ)

(

1

r
f ′(r) +

2

r2
f(r) − l(l + 1)

r2
g(r)

)

+

µ

(

g′′(r) +
2

r
g′(r) − 1

r
f ′(r)

)

= −ρω2g(r), (2.383)

and

h′′(r) +
2

r
h′(r) − l(l + 1)

r2
h(r) = −ρω2h(r). (2.384)

These equations can be compared with those derived in Chapter 6.

In [29] it is stated that an incoming shear wave propagating in the z direction and

polarised such that the displacements are in the x direction can be expressed as

u(i) =
∞

∑

n=1

(2n + 1)in

n(n + 1)
(M 1

o1n(r) − iN 1
e1n(r)), (2.385)

where

M 1
σmn = (n(n + 1))

1
2 Cσ

mnjn(kr), (2.386)

and

N 1
σmn = n(n + 1)P σ

mn

1

kr
jn(kr) + (n(n + 1))

1
2 Bσ

mn

1

kr

d

dr
(rjn(kr)). (2.387)

Here the label σ is either e (even) or o (odd) and designates whether the even (real)

or odd (imaginary) part of the azimuthal function is to be employed, k is defined via

k2 =
ρω2

µ
, (2.388)

and P mn, Bmn and Cmn are defined by

P mn = erY
m
n (θ, φ), (2.389)
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Bmn =
(n(n + 1))

1
2

(2n + 1) sin θ

(

eθ

(

n − m + 1

n + 1
Y m

n+1 −
n + m

n
Y m

n−1

)

+ eφ
m(2n + 1)

n(n + 1)
iY m

n

)

= (n(n + 1))−
1
2

d

dθ
(Pm

n (cos θ))eimφeθ + (n(n + 1))−
1
2
Pm

n (cos θ)

sin θ
imeimφeφ

= er × Cmn, (2.390)

Cmn =
(n(n + 1))

1
2

(2n + 1) sin θ

(

eθ
m(2n + 1)

n(n + 1)
iY m

n − eφ

(

n − m + 1

n + 1
Y m

n+1 −
n + m

n
Y m

n−1

))

= (n(n + 1))−
1
2
Pm

n (cos θ)

sin θ
imeimφeθ − (n(n + 1))−

1
2

d

dθ
(Pm

n (cos θ))eimφeφ.

(2.391)

By comparing equations (2.385) with equations (2.376) - (2.378), we observe that

f
(i)
l (r) =







(2l + 1)il−1 jl(kr)
kr

l ≥ 1,

0 l ≤ 0,
(2.392)

g
(i)
l (r) =







(2l+1)il−1

l(l+1)
1
kr

d
dr

(rjl(kr)) l ≥ 1,

0 l ≤ 0,
(2.393)

and

h
(i)
l (r) =







(2l+1)il

l(l+1)
jl(kr) l ≥ 1,

0 l ≤ 0.
(2.394)

It is also stated in [29] that the scattered wave displacements can be expressed as

u(s) =
∑

n

(2n + 1)in

n(n + 1)
(ânM

3
o1n(r) − ib̂nN

3
e1n(r) + d̂nL3

e1n(r)), (2.395)

where ân, b̂n and d̂n are expansion coefficients to be determined from the boundary

conditions,

M 3
σmn = (n(n + 1))

1
2 Cσ

mnhn(kr), (2.396)

N 3
σmn = n(n + 1)P σ

mn

1

kr
hn(kr) + (n(n + 1))

1
2 Bσ

mn

1

kr

d

dr
(rhn(kr)), (2.397)

and

L3
σmn = P σ

mn

1

k

d

dr
(hn(kr)) + (n(n + 1))

1
2 Bσ

mn

hn(kr)

kr
. (2.398)

This corresponds to

f
(s)
l (r) =







bl
hl(kr)

r
+ dl

d
dr

(hl(Kr)) l ≥ 1,

0 l ≤ 0,
(2.399)
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g
(s)
l (r) =







bl

r
d
dr

(rhl(kr)) + dl
hl(Kr)

r
l ≥ 1,

0 l ≤ 0,
(2.400)

and

h
(s)
l (r) =







alhl(kr) l ≥ 1,

0 l ≤ 0,
(2.401)

where

K2 =
ρω2

λ + 2µ
. (2.402)

The scattering coefficients can then be determined by applying traction-free boundary

conditions:

σ · n = 0, (2.403)

on r = a. In this case n = −er, and therefore the boundary conditions can be written

as

σrr|r=a = σrθ|r=a = σrφ|r=a = 0. (2.404)

The scattering coefficients can then be determined by substituting the derived ex-

pressions for ur, uθ and uφ into the above. Upon doing so, we obtain (see [29]):

al = −
d
da

(

jl(ka)
a

)

d
da

(

hl(ka)
a

) , (2.405)

and bl and dl can be determined solving the following matrix equation:





E11 E12

E21 E22









bl

dl



 =





δ1

δ2



 , (2.406)

where

E11 = (λ + 2µ)
2l(l + 1)

2l + 1

d

da
(A1(a)) + λ

2l(l + 1)

2l + 1

A1(a)

a
+ λ(1 − 2l2)

B2(a)

a

+ λl(l + 1)
D2(a)

a
, (2.407)

E12 = (λ + 2µ)
2l(l + 1)

2l + 1

d

da
((A2(a)) + λ

2l(l + 1)

2l + 1

A2(a)

a
+ λ(1 − 2l2)

B3(a)

a

+ λl(l + 1)
D3(a)

a
, (2.408)
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E21 = a2 d

da

(

D2(a)

a

)

− A1(a), (2.409)

E22 = a2 d

da

(

D3(a)

a

)

− A2(a), (2.410)

δ1 = −
(

(λ + 2µ)
2l(l + 1)

2l + 1

d

da
E1(a) + λ

2l(l + 1)

2l + 1

E1(a)

a
+ λ(1 − 2l2)

F2(a)

a

+λl(l + 1)
G1(a)

a

)

, (2.411)

δ2 = E1(a) − a2 d

da

G1(a)

a
, (2.412)

and

A1(r) = −il+1(2l + 1)
hl(kr)

kr
, (2.413)

A2(r) =
in(2l + 1)

l(l + 1)

1

K

d

dr
(hl(Kr)), (2.414)

B2(r) = −il+1 1

kr

d

dr
(rhl(kr)), (2.415)

B3(r) = in
hl(Kr)

Kr
, (2.416)

D2(r) =
il+1(2l + 1)

l(l + 1)

1

kr

d

dr
(rhl(kr)), (2.417)

D3(r) = −il(2l + 1)

l(l + 1)

hl(Kr)

Kr
, (2.418)

E1(r) = −il+1(2l + 1)
jl(kr)

kr
, (2.419)

F2(r) = −il+1 1

kr

d

dr
(rjl(kr)), (2.420)

G1(r) =
il+1(2l + 1)

l(l + 1)

1

kr

d

dr
(rjl(kr)). (2.421)

The explicit analytical expressions for bl and dl are too long to reproduce here, but

they can be easily calculated using the above expressions. In Chapter 6 we plot the

scattering coefficients and cross-sections for a pre-stressed, incompressible material

and compare them with the case of no pre-stress.

For some papers featuring wave scattering from spheres, see Ying and Truell [110],

Einspruch et al. [29]. Iwashimizu [47], [48], Norris [66] or Ávila-Carrera and Sánchez-

Sesma [5]. In [110], Ying and Truell discuss the scattering of a plane longitudinal

wave by a spherical obstacle in an isotropic elastic solid; in [29], Einspruch et al. do
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the same, but for a transverse incoming wave; in [47] and [48], Iwashimizu considers

the scattering of longitudinal and shear waves by a movable rigid sphere and scat-

tering of shear waves by an elastic sphere, respectively; in [66], Norris discusses the

scattering of elastic waves by spherical inclusions with applications to low frequency

wave propagation in composites; and in [5], Ávila-Carrera and Sánchez-Sesma review

the classical solution for the scattering and diffraction of P and S waves by a spherical

obstacle.

2.4.6 Linear elastic waves in unstressed anisotropic elastic

solids

All of the problems above refer to unstressed isotropic materials. In the case of

anisotropy, waves propagate with different speeds in different directions. For example,

in transversely isotropic materials, shear waves polarised along and perpendicular to

the axis of symmetry of the material propagate with different wave speeds, as we

show below.

The stress strain relationship for a transversely isotropic material can be written

in contracted notation (see [107], [53], [49] or [18]) as































σ11

σ22

σ33

σ13

σ23

σ12































=































c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 1
2
(c11 − c12)





























































e11

e22

e33

2e13

2e23

2e12































. (2.422)

Now let us consider two time-harmonic, plane shear waves in Cartesian coordinates,

both polarised in the y direction, but propagating in different directions (the x and

z directions respectively). We can express these waves respectively as

u1 = u1(x, t)ey = ei(k1x−ωt)ey, (2.423)

u2 = u2(z, t)ey = ei(k2z−ωt)ey. (2.424)
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Using (2.423) and (2.424) in (2.201), the equations governing these waves can be

reduced to

∂σyx

∂x
= ρ

∂2u1

∂t2
, (2.425)

∂σyz

∂z
= ρ

∂2u2

∂t2
. (2.426)

Using (2.422) in the above, and by inserting the definition of the linear strains, we

obtain

1

2
(c11 − c12)

∂2u1

∂x2
= ρ

∂2u1

∂t2
, (2.427)

c44
∂2u2

∂z2
= ρ

∂2u2

∂t2
. (2.428)

Substituting (2.423) and (2.424) into the above, we obtain

−k2
1

2
(c11 − c12) = −ρω2, (2.429)

−c44k
2
2 = −ρω2. (2.430)

Therefore,

k2
1 =

ω2

c2
1

=
2ρω2

c11 − c12

, (2.431)

k2
2 =

ω2

c2
2

=
ρω2

c44

. (2.432)

Hence,

c1 =

√

c11 − c12

2ρ
, (2.433)

c2 =

√

c44

ρ
. (2.434)

As expected, we have observed that waves propagating in the x direction travel at a

different speed to those propagating in the z direction.

Wave propagation in anisotropic materials is of relevance to this thesis since the

application of homogeneous pre-stress in a nonlinear elastic material results in an

induced anisotropy. For some more examples of wave and pulse propagation in

anisotropic materials, see the papers by Morse [63], Norris [67] and Chadwick [15]. In

[63], Morse discusses compressional waves along an anisotropic circular cylinder with

hexagonal symmetry, in [67], Norris presents a general theory for pulse propagation
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in anisotropic solids, and in [15], Chadwick discusses the propagation of plane waves

in transversely isotropic media.

Of particular interest is wave propagation and scattering in composite materials.

Composites often induce anisotropy due to their distributed microstructure, although,

uniform distributions of, for example, spherical inclusions can ensure macroscopic

isotropy. For some examples of wave propagation and scattering in composite ma-

terials, see Norris [66], Shindo et al. [93], Sato and Shindo [89], [90] or Parnell and

Abrahams [83]. In [66], Norris discusses the scattering of elastic waves by spherical in-

clusions, with an emphasis on low frequency wave propagation in composites. In [93],

Shindo et al. discuss multiple scattering of antiplane shear waves in a fiber-reinforced

composite medium with graded interfacial layers, and in [89] and [90], this work was

extended to the case of general plane waves in fiber-reinforced and particle-reinforced

media. Finally, in [83], Parnell and Abrahams discuss mutliple point scattering to

determine the effective wavenumber and effective material properties of an inhomo-

geneous slab.

The effects of anisotropy on wave propagation can be exploited in certain situ-

ations, for example, in elastodynamic cloaking theory. Interest in cloaking theory

and its practical realisation has grown significantly since the early theoretical work

of Leonhart [54] and Pendry et al. [85] in optics and electromagnetism, respectively.

Methods have been largely based on the idea of coordinate transformations, [39],

which motivate the design of cloaking metamaterials that are able to guide waves

around a specific region of space. Since the early work, research has focused on the

possibility of cloaking in the context of acoustics, [20], [17], [68], surface waves in

fluids, [31], heat transfer, [56], fluid flow, [102], and linear elastodynamics, [60], [14],

[4], [70], and it is the latter application which is the concern of Chapter 5. In [60], in

was shown that elastodynamic cloaking is made difficult due to the lack of invariance

of Navier’s equations under general coordinate transformations which retain the sym-

metries of the elastic modulus tensor. A special case is that of flexural waves in thin

plates [32]. Invariance of the governing equations can be achieved for a more specific

class of transformations if assumptions are relaxed on the minor symmetries of the
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elastic modulus tensor as was described for the in-plane problem in [14]. Cosserat

materials were exploited in [70].

As noted in [14], another special case for elastodynamics is the antiplane elastic

wave problem, where cloaking can readily be achieved from a cylindrical region (us-

ing a cylindrical cloak) in two dimensions by virtue of the duality between antiplane

waves and acoustics in this dimension. Consider an unbounded homogeneous elastic

material with shear modulus µ0 and density ρ0 and introduce a Cartesian coordi-

nate system (X,Y, Z) and cylindrical polar coordinate system (R, Θ, Z) with some

common origin O. Planar variables are related in the usual manner, X = R cos Θ

and Y = R sin Θ. Suppose that there is a time-harmonic line source, polarised in

the Z direction and located at (R0, Θ0), with angular frequency ω and amplitude C

(which is a force per unit length in the Z direction). This generates antiplane elastic

waves with the only non-zero displacement component in the Z direction of the form

U = ℜ(W (X,Y )e−iωt). The displacement W is governed by

∇X · (µ0∇XW ) + ρ0ω
2W = Cδ(X − X0), (2.435)

where ∇X is the gradient operator in the “untransformed” frame, X = (X,Y ) and

X0 = (X0, Y0). Note that, when (X0, Y0) = (−∞, 0), we obtain the plane wave

problem considered in Section 2.4.3.

The assumed mapping for a cloak for antiplane waves (cf. acoustics) expressed in

plane cylindrical polar coordinates, takes the form

r = g(R), θ = Θ, z = Z, for 0 ≤ R ≤ R2, (2.436)

and the identity mapping for all R > R2 for some chosen monotonically increasing

function g(R) with g(0) ≡ r1 ∈ [0, R2], g(R2) = R2 ∈ R such that R2 < R0, i.e.,

the line source remains outside the cloaking region. The cloaking region is thus

defined by r ∈ [r1, r2], where r2 = R2. We use upper and lower case variables for the

untransformed and transformed problems, respectively. Under this mapping, the form

of the governing equation (2.435) remains unchanged for R = r > R2, whereas for

0 ≤ R ≤ R2, corresponding to the transformed domain r1 ≤ r ≤ R2, the transformed
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equation takes the form (in transformed cylindrical polar coordinates (r, θ = Θ))

1

r

∂

∂r

(

rµr(r)
∂w

∂r

)

+
µθ(r)

r2

∂2w

∂θ2
+ d(r)ω2w = 0, (2.437)

where (see equations (26) and (27) in [70])

µr(r) =
µ2

0

µθ(r)
= µ0

R

r

dg

dR
, d(r) = ρ0

R

r

(

dg

dR

)−1

. (2.438)

Hence, both the shear modulus and the density must be inhomogeneous and the shear

modulus must be anisotropic. Material properties of this form cannot be constructed

exactly since the shear modulus µθ becomes unbounded as r → r1 (the inner boundary

of the cloak). In this limit, the density behaves as d = (pcr1)
−1ρ0R

2−p + ..., where

p, c > 0 define the mapping in the vicinity of the inner boundary according to r =

r1 + cRp + ... as R → 0. In practice, of course, approximations are required, as

described in, e.g., [31], [92], and [111]. Note that, as expected [70], the total mass

is conserved since, regardless of the mapping, the integral of the density d(r) over

r ∈ [r1, r2] is πR2
2ρ0.

In general, both anisotropy and inhomogeneity are required for cloaking, which

can be acheived by creating a material with a complex microstructure. Varying

the microstructure of a material enables waves to be tuned by creating stop bands

and pass bands in their dispersion relations. Pre-stress can also be used as a tuning

mechanism by inducing anisotropy and inhomogeneity as we shall see in the following

section and in Chapters 3 and 5.

2.5 Linear elastic waves in pre-stressed solids

Of particular relevance to this thesis is the effect of pre-stress on the propagation

and scattering of time-harmonic waves in nonlinear elastic solids. Early work in

this area concentrated mainly on homogeneous pre-stress. Homogeneous pre-stress

induces anisotropy and, thus, modifies the wave speed in different directions, as we

show below.

Consider an infinite incompressible, neo-Hookean solid, which is stretched in the

z direction with stretch factor L. This deformation can be described in Cartesian
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coordinates by the follwoing equations:

x = L−
1
2 X, y = L−

1
2 Y, z = LZ. (2.439)

The Cauchy stress for such a deformation is given by

T =











µL−1 + Q 0 0

0 µL−1 + Q 0

0 0 µL2 + Q











(2.440)

If we assume that the applied stress is only in the z direction, then we must have

Q = −µL−1, and, therefore,

T =











0 0 0

0 0 0

0 0 µ(L2 − L−1)











. (2.441)

We now use the theory of small-on-large to consider the propagation of two time-

harmonic, plane shear waves in Cartesian coordinates, both polarised in the y direc-

tion, but propagating in different directions (the x and z directions respectively). We

can express these waves respectively as

u1 = u1(x, t)ey = ei(k1x−ωt)ey, (2.442)

u2 = u2(z, t)ey = ei(k2z−ωt)ey. (2.443)

Using (2.442) and (2.443) in (2.152), the equations governing these waves can be

reduced to

∂ζyx

∂x
= ρ

∂2u1

∂t2
, (2.444)

∂ζyz

∂z
= ρ

∂2u2

∂t2
. (2.445)

By using (2.130) in the above, and inserting the correct values for γ, we obtain

M1212
∂2u1

∂x2
= ρ

∂2u1

∂t2
, (2.446)

M3232
∂2u2

∂z2
= ρ

∂2u2

∂t2
. (2.447)
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Note that we have assumed that q is a constant, since the static deformation is not

spatially dependent.

Substituting (2.442) and (2.443) into the above, we obtain

−M1212k
2
1 = −ρω2, (2.448)

−M3232k
2
2 = −ρω2. (2.449)

Using (2.129), it can be shown that

M1212 = µL−1, (2.450)

M3232 = µL2. (2.451)

Therefore,

k2
1 =

ω2

c2
1

=
Lρω2

µ
, (2.452)

k2
2 =

ω2

c2
2

=
ρω2

L2µ
. (2.453)

Hence,

c1 =

√

µ

Lρ
, (2.454)

c2 =

√

L2µ

ρ
. (2.455)

Just as in the above example for waves propagating in a transversely isotropic mate-

rial, we have observed that waves propagating in the x direction travel at a different

speed to those propagating in the z direction. This is due the fact that the pre-stress

has induced anisotropy in the host material.

Recently there has been an increased focus on inhomogeneous pre-stress. Of con-

siderable interest is the question of whether pre-stress can be used to tune materials

or in other words to effect their properties in a such way that the material develops

some desirable characteristics. In Parnell [81] it is demonstrated how pre-stress can

be used to cloak a cylindrical void in an infinite neo-Hookean material from incoming

time-harmonic SH waves and in Parnell et al. [84] the same result is shown for a

finite cloak around a cylindrical void.
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For further examples of papers on waves in nonlinear elastic solids see, for ex-

ample, Ogden [71] or Abhyankar and Hanagud [2]. In [71], Ogden considers waves

in isotropic Hadamard, Green and harmonic materials and in [2], Abhyankar and

Hanagud consider coupled waves in a bar of Mooney-Rivlin material.

2.6 Structure of the thesis

In this chapter the literature relevant to the problems discussed in this thesis has been

reviewed and the appropriate background material has been provided. At each stage

we have also motivated the problems that we will study, referencing the important

aspect of a more simple problem that we will build on. In the following chapters we

will discuss some specific problems in detail which have not previously appeared in the

literature. The focus of these problems is wave propagation in pre-stressed nonlinear

elastic materials where inhomogeneous pre-stress has a significant influence.

In Chapter 3 we discuss torsional wave propagation in a pre-stressed, annular,

circular cylinder. First we discuss the static deformation of an annular circular cylin-

der under a homogeneous longitudinal stretch and a pressure applied to its inner and

outer surfaces. This deformation is radially inhomogenous and leads to an inhomo-

geneous stress field. Next, the theory of small-on-large is implemented to determine

how this pre-stress affects the torsional wave equation and this pre-stressed equation

is analysed via (a) numerical methods, and (b) a Liouville-Green approximation. Fi-

nally, we use these numerical and asymptotic solutions to determine the effect of the

pre-stress on the dispersion curves for torsional waves.

In Chapter 4 we discuss the scattering of SH waves from an infinite cylindrical

cavity in a pre-stressed, infinite, nonlinear elastic material. First we discuss the de-

formation of the infinite material under a homogeneous longitudinal stretch and a

pressure applied at infinity. Again, the deformation is radially inhomogeneous and

leads to an inhomogeneous stress field. Next, the theory of small-on-large is imple-

mented to determine how this pre-stress affects the SH wave equation. An analytical
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solution can be found if the material under consideration is neo-Hookean, but, unfor-

tunately, this is not the case if the material is Mooney-Rivlin. For a Mooney-Rivlin

material, we analyse the governing equation via (a) a hybrid analytical-numerical

method and (b) by discretising the material into multiple layers and treating each

one as homogeneous; as the number of layers increases, the solution obtained becomes

more accurate. Finally, we determine the effect of the pre-stress on the scattering

coefficients.

In Chapter 5 we build on the work of Chapter 4 and discuss how to employ pre-

stress to generate finite cloaks for antiplane elastic waves in a material characterised

by a neo-Hookean strain energy function. This work is summarised in the paper

by Parnell et al. [84]. We then extend this work to show how imperfect cloaks are

generated when the Mooney-Rivlin strain energy function is used.

In Chapter 6 we discuss the scattering of shear waves from a spherical cavity in a

pre-stressed, infinite, nonlinear elastic material. First we discuss the deformation of

the infinite material under a pressure applied at infinity. Again, the deformation is

radially inhomogeneous and leads to an inhomogeneous stress field. Next, the theory

of small-on-large is implemented to determine how this pre-stress affects the governing

equations for waves in an incompressible material in spherical coordinates. We reduce

the governing equations down to ordinary differential equations and analyse them

numerically, and finally, we determine the effect of the pre-stress on the scattering

coefficients.

We shall conclude in Chapter 7 by discussing the common features of the problems

discussed, and will indicate possible extensions of the work undertaken in this thesis.

We will also discuss how the problems considered can assist with the modelling of

composite materials, such as the one mentioned in Chapter 1. In particular, we note

that a compressed inclusion does not behave like a small inclusion.



Chapter 3

Torsional wave propagation in a

pre-stressed annular circular

cylinder

3.1 Overview

In Chapter 2, we saw how one can obtain the dispersion curves for torsional waves in

an unstressed annular cylinder. Here we shall consider how these can be modified by

the application of pre-stress. In particular we shall see that pre-stress acts as a tuning

mechanism, enabling us to turn waves “on and off” at a given frequency. Hydrostatic

pressure is applied to the inner and outer surfaces of an incompressible nonlinear

elastic annular cylinder, of circular cross-section, whose constitutive behaviour is

governed by a Mooney-Rivlin strain energy function. The pressure difference creates

an inhomogeneous deformation field and modifies the inner and outer radii of the

annular cylinder. We deduce the effect that this pre-stress, and a given axial stretch,

has on the propagation of small-amplitude torsional waves through the medium. We

use the theory of small-on-large to determine the linear wave equation that gov-

erns incremental torsional waves and then determine the dispersion relation for the

pre-stressed annulus by using an approximate scheme (the Liouville-Green transfor-

mation). We show that this scheme compares well to numerical solutions except in

96
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regions very close to turning points. In particular we stress that the inhomogeneous

deformation makes the coefficients of the governing ODE spatially dependent and

affects the location of the roots of the dispersion relation. We observe that, if the

pressure on the outer surface of the annular cylinder is greater (smaller) than that

on the inner, then the cut-on frequencies are spaced further apart (closer) than they

would be in the stress-free case. This result could potentially be used to tune the

propagation characteristics of the cylinder over a range of frequencies.

3.2 Introduction

Over the past few decades, much interest has been centred on the effect of pre-stress

on the propagation of incremental linear waves in elastic media using the theory of

small-on-large [38], [73], where a small perturbation is applied to a body which has

undergone a finite deformation. Since the perturbation is considered to be small in

relation to the initial deformation, a linearisation is applied in order to determine the

characteristics of wave propagation in the pre-stressed material. Attention has been

focused mainly on the effect of homogeneous deformation on wave propagation, which

induces anisotropy (examples of this are given in [27] and [51]). However, pre-stress

in an inhomogeneous material almost always leads to inhomogeneous deformations,

except in special cases (see [80], where the deformation of a one-dimensional com-

posite bar is assumed to be piecewise homogeneous). Dey [28] analysed the case of

initial tension in a solid rod of circular cross-section in the context of linear elasticity.

The interest was to determine how the presence of the tension affects the subsequent

propagation of torsional waves through the material. This work utilised the incre-

mental deformation theory derived by Biot [11]. We emphasise that the pre-stress

was homogeneous in this case, which meant that the incremental equations were

straightforward to solve. Of great interest, however, is how an initial inhomogenous

pre-stress affects subsequent torsional waves which propagate through inhomogeneous

media. In this chapter we consider the nonlinear deformation of a cylindrical annulus

and show that such a deformation leads to a more complicated azimuthal governing
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ODE whose coefficients are spatially dependent. As mentioned previously, nonlinear

pre-stress can be useful in practice, allowing us to tune materials in order to permit

or restrict waves of specific frequency ranges. Parnell described this property in [80]

and it is discussed further in subsequent articles in different contexts [9], [35].

Torsional wave propagation in the linear elastic (unstressed) regime is relatively

well understood [10]. However, if the host material is nonlinear-elastic (e.g. rubber)

we can expect pressures applied to the surfaces of an annular cylinder to lead to a

nonlinear deformation if such pressures are of the same order of magnitude as the

shear modulus of the material and hence we can postulate the following question: How

does the difference in pressure on the surfaces of a nonlinear-elastic, annular cylinder

affect the propagation of subsequent linear elastic torsional waves? In this chapter we

shall consider a torsional wave propagating in an annular cylinder which is capable

of finite deformation and is incompressible and Mooney-Rivlin in its constitutive

behaviour. A related initial value problem in the case of no pre-stress is discussed

in [30], and for a solid cylinder on pp. 148–155 of [10]. A related pre-stress problem

is that which was studied in [78]. However, in [78], the pre-stress was assumed to

be uniform, i.e. stress distributions in the host materials were homogeneous. This

is, therefore, a simpler problem than that to be discussed in this article, since the

only effect of this pre-stress would have been to induce anisotropy in the media under

consideration.

In Section 3.3 we use the condition of incompressibility to determine the form of

the applied radial deformation. The static equations of equilibrium are determined

and they are used to determine the effect of the applied pressures and longitudinal

stretch on the radii. In Section 3.4 we consider the propagation of small-amplitude,

time-harmonic waves through the finitely-deformed medium and give the relevant

governing equation and discuss the case of no pre-stress. In Section 3.4.3 we discuss

the governing ODE, which is hard to solve due to the spatial dependence of its coef-

ficients, as mentioned above, and in Section 3.4.4 we derive an approximate solution

for the ODE using the Liouville-Green method. In Section 3.5 we show the effect

of the pre-stress on the dispersion curves using both a numerical method and the
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Liouville-Green approximation.

3.3 Initial finite (static) deformation

Consider an incompressible, annular cylinder with circular cross-section and initial

inner and outer radii A and B respectively. We will assume that the annular cylinder

is isotropic and that its constitutive behaviour may be described by a strain energy

function, W = W (I1, I2, I3), where Ij are the principal strain invariants of the defor-

mation [38], [73]. Since it is incompressible, I3 = 1, and thus W = W (I1, I2). We

suppose that radial pressures are applied on the inner and outer radii of the cylin-

der (which would occur, for example, if the cylinder were immersed in an inviscid

fluid) so that under such loading the inner and outer radii are deformed to a and b,

respectively. The above deformation can be described by

R = R(r), Θ = θ, Z =
z

L
, (3.1)

where (R, Θ, Z) and (r, θ, z) are cylindrical polar coordinates in the undeformed and

deformed configurations respectively and R(r) is a function to be determined from

the radial equation of equilibrium. Note the convention introduced in (3.1) above, i.e.

that upper case variables correspond to the undeformed configuration whilst lower

case corresponds to the deformed configuration. Note, also, that it will be convenient

for us to derive equations in terms of coordinates in the deformed configuration,

hence the form assumed in (3.1). Position vectors in the undeformed and deformed

configurations are

X =











R cos Θ

R sin Θ

Z











=











R(r) cos θ

R(r) sin θ

z/L











, x =











r cos θ

r sin θ

z











. (3.2)

Using (3.1), it can be shown that the principal stretches for this deformation in the

radial, azimuthal and longitudinal directions are respectively

λr =
dr

dR
=

1

R′(r)
, λθ =

r

R
=

r

R(r)
, λz = L, (3.3)
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where prime denotes differentiation with respect to r. We define the deformation

gradient tensor by F = Grad x, where Grad represents the gradient operator with

respect to the undeformed configuration. In our case, we have

F =











λr 0 0

0 λθ 0

0 0 λz











=











1/R′(r) 0 0

0 r/R(r) 0

0 0 L











. (3.4)

For an incompressible material, we must have J = det F = 1, and so

λrλθλz =
Lr

R(r)R′(r)
= 1, (3.5)

which is an ordinary differential equation that we can solve straightforwardly to

obtain

R(r) =
√

L(r2 + α), (3.6)

where α is a constant defined by

α =
A2

L
− a2 =

B2

L
− b2. (3.7)

Note that (3.6) gives the same form for R as in [82] (α in this chapter is equivalent

to M in [82]).

From [26], the Cauchy stress tensor for an incompressible material is given by

T = F
∂W

∂F
+ QI, (3.8)

where W is the strain energy function of the material under consideration, I is the

identity tensor and Q is a Lagrange multiplier associated with the incompressibility

constraint and referred to as an arbitrary hydrostatic pressure. As discussed in the

introduction, 3.2, we will use the Mooney-Rivlin strain energy function:

W =
µ

2
(S1(I1−3)+S2(I2−3)) =

µ

2
(S1(λ

2
r +λ2

θ +λ2
z−3)+S2(λ

2
rλ

2
θ +λ2

rλ
2
z +λ2

θλ
2
z−3)).

(3.9)

Componentwise, (3.8) is equivalent to

Tij = Fiα
∂W

∂Fjα

+ Qδij, (3.10)
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where δij is the Kronecker delta. We note that since F is diagonal, so is T and

therefore for the strain energy function in (3.9) we find that

Trr =

[

χS1 +

(

1

L
+ L2χ

)

S2

]

µ

L
+ Q,

Tθθ =

[

S1

χ
+

(

1

L
+

L2

χ

)

S2

]

µ

L
+ Q, (3.11)

Tzz =

[

LS1 +

(

2 +
α2

r4χ

)

S2

]

Lµ + Q.

where for convenience we have defined χ = χ(r) = (r2 +α)/r2. In the case considered

here, the static equations of equilibrium, div T = 0 (where div signifies the divergence

operator with respect to the deformed configuration), reduce to

∂Trr

∂r
+

1

r
(Trr − Tθθ) = 0,

∂Tθθ

∂θ
= 0,

∂Tzz

∂z
= 0, (3.12)

which then become

∂Q

∂r
=

µα2S

r3(α + r2)
,

∂Q

∂θ
=

∂Q

∂z
= 0, (3.13)

where we have defined S = S1/L + LS2. Therefore, Q depends only on r and can be

expressed as

Q = −µS

2

(

log

(

r2

r2 + α

)

+
α

r2

)

+ Q0, (3.14)

where Q0 is a constant that can be deduced from the boundary conditions. This

result can be used in (3.12) to determine explicit expressions for the stresses Trr, Tθθ

and Tzz.

If we label the hydrostatic pressures applied to the inner and outer surfaces of

the annulus, respectively, as pin and pout, then, upon applying the boundary condi-

tions Trr|r=a = −pin and Trr|r=b = −pout, and rewriting the result in terms of the

undeformed radii A and B and the parameter α, we find that

pout − pin = µS

(

(B2 − A2)α

2(A2 − Lα)(B2 − Lα)
+ log

(

A

B

√

B2 − Lα

A2 − Lα

))

. (3.15)

Therefore, if we know the undeformed radii A and B, the applied pressure difference

pout − pin, the material constants µ, S1 and S2 and the applied stretch L, (3.15) can

be used to determine the value of α, which can in turn be used to determine the

deformed radii a and b from (3.7).
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Figure 3.1: Torsional waves in a pre-stressed annular cylinder.

3.4 Incremental deformations

We now consider the propagation of small-amplitude time-harmonic waves through

the finitely-deformed medium. We use the theory of small-on-large, i.e. linearisa-

tion about a non-linear deformation state [73]. The total displacement field may be

represented by

Ū = U + u. (3.16)

where U is the displacement field derived from the finite deformation (3.1) and u is

the incremental displacement. Let us assume that the incremental displacement is of

the form

u = ℜ((0, v(r), 0)ei(kz−ωt)), (3.17)

so that it is a torsional wave (see Figure 3.1). We will also assume that |u| ≪ |U |.

The gradient of u with respect to the deformed configuration is given by

γ = grad u =











0 −v
r

0

dv
dr

0 ikv

0 0 0











ei(kz−ωt). (3.18)

The push forward of the nominal stress for an incompressible material is given by

ζ = M : γ + qI − Qγ, (3.19)
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where M is the push forward of the elasticity tensor defined by

Mijkl = J−1 ∂2W

∂Fjm∂Fln

FimFkn, (3.20)

often denoted by A0 and q is the increment of Q. We will assume that q = q(r, z)

(i.e. independent of θ since there is no θ dependence in either the pre-stress or the

perturbation).

The incremental equations of motion are then given by

div ζ = ρ
∂2u

∂t2
, (3.21)

where ρ is the density of the body, which remains constant throughout the deforma-

tion, since we are considering an incompressible material.

Using (3.21), we observe that the radial and axial equations give respectively

∂ζ11

∂r
= 0,

∂ζ33

∂z
= 0, (3.22)

and the azimuthal equation is given by

∂ζ12

∂r
+

∂ζ32

∂z
+

ζ12 + ζ21

r
= −ρω2v(r)ei(kz−ωt). (3.23)

Now, from [26], we have

JMiijj = λiλjWij, (3.24)

and, when i 6= j, λi 6= λj,

JMijij =
λiWi − λjWj

λ2
i − λ2

j

λ2
i , JMijji =

λjWi − λiWj

λ2
i − λ2

j

λiλj, (3.25)

where

Wi =
∂W

∂λi

, Wij =
∂2W

∂λi∂λj

, (3.26)

and we note that, in the above, there is no implied summation over repeated indices

and, for all other combinations of i, j, k and l, we have Mijkl = 0.

Therefore, using (3.19), we have

ζ11 = q, ζ22 = q, ζ33 = q, (3.27)
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ζ12 =

(

S2µ + L2Q

L2r
v(r) +

1

L

(

1 +
α

r2

)

(S1 + L2S2)µv′(r)

)

ei(kz−ωt), (3.28)

ζ21 = −
(

(S1 + L2S2)µr

L(α + r2)
v(r) +

S2µ + L2Q

L2
v′(r)

)

ei(kz−ωt), (3.29)

ζ23 = −ik

(

Lr2S2µ

α + r2
+ Q

)

v(r)ei(kz−ωt), (3.30)

ζ32 = ikL

(

αS2

r2
+ LS1 + S2

)

µv(r)ei(kz−ωt), (3.31)

which referring to (3.23) leads to the following governing equation for v(r):

(

1 +
α

r2

)

v′′(r) +
1

r

(

1 − α

r2

)

v′(r) +

(

β2 − 1 + αδ

r2
+

α

r4

)

v(r) = 0 (3.32)

where

β2 =
k2

0 − k2L2S1

S
− δ, δ =

k2LS2

S
, (3.33)

where k2
0 = ρω2/µ is the zeroth order torsional wavenumber of an unstressed cylinder,

ρ represents the mass density, α is defined in (3.7) and we remind the reader that

S = S1/L + LS2.

Finally (3.22) give

∂q

∂r
=

∂q

∂z
= 0 (3.34)

so that q = q(r, z) must be a constant. The boundary conditions, to be discussed

next, dictate this constant.

3.4.1 Boundary conditions

We apply the condition that the perturbation v(r) does not affect the pressure on

the surfaces r = a, b of the deformed annulus. For this to hold, it can be shown that

the following condition must be satisfied on the boundaries:

τn = TγT n + pγT n, (3.35)

where p represents either pin or pout, depending on which boundary is under consider-

ation, and n is the outer unit normal to the boundary in the deformed configuration.

τ is the perturbed Cauchy stress, given by

τ = ζ + γT . (3.36)
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Equation (3.35) simplifies to

v′(a) − v(a)

a
= v′(b) − v(b)

b
= 0, (3.37)

and q = 0.

3.4.2 The case of no pre-stress

To study the effects of pre-stress it is first useful to examine torsional waves in the

absence of such static loads. Zero pre-stress corresponds to the situation when α = 0

and L = 1 and in this case (3.32) reduces to

v′′(r) +
1

r
v′(r) +

(

ω2

c2
− k2 − 1

r2

)

v(r) = 0, (3.38)

where c2 = µ/ρ. This is Bessel’s equation and is the standard linear elastic torsional

wave equation [10]. The solution of (3.38) is thus

v(r) = C1J1(sr) + C2Y1(sr), (3.39)

where J1 and Y1 are the first order Bessel functions of the first and second kind

respectively and s2 = ω2/c2 − k2. Imposing the conditions (??), we obtain the

classical dispersion relation

asJ0(as) − 2J1(as)

bsJ0(bs) − 2J1(bs)
=

asY0(as) − 2Y1(as)

bsY0(bs) − 2Y1(bs)
. (3.40)

This dispersion relation leads to the well-known result that a thicker cylindrical

annulus (i.e. smaller value of a/b, with a = 0 in the solid cylinder limit) will allow

more modes of propagation for a given fixed frequency. Our main interest is thus

how this dispersion relation is modified by the nonlinear elastic pre-stress and its

dependence on the Mooney-Rivlin strain energy function parameter S1 = 1 − S2. In

Figure 3.2, we plot the distance from origin to the first, second and third roots of the

dispersion relation as a function of a/b with b = 1.

3.4.3 Non-zero pre-stress: Singularity structure

Note that in the case of non-zero pre-stress the governing equation (3.32) has regular

singular points at r = 0, r =
√

αi and r = −√
αi and an irregular singular point at
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Figure 3.2: The first (solid), second (dashed) and third (dotted) cut-on frequencies
of equation (3.40) as a function of a

b
.

r = ∞. All other points are ordinary points. To the authors’ knowledge (3.32) is not

a well-known and classified ODE, so we will investigate the solution. Note that it

is difficult to solve due to the spatial dependence of its coefficients and the singular

nature of the zero pre-stress limit.

Frobenius’ method can be used to determine an approximate solution in the case

when r < α up to two arbitrary constants in terms of an infinite series. Unfortunately,

however, this condition is extremely resrtictive. In order to correctly predict the

dispersion relations using this method, the entire annulus must be within the range

of validity of the expansion and, therefore, we must have b < α. This condition will,

in general, only hold for an extremely large pre-stress, so, instead, in the following

section, we present a Liouville-Green approximate solution for the ODE.

3.4.4 Liouville-Green solution

Here we consider an approach to determining solutions to the ODE, (3.32), based

on the Liouville-Green approximation. The Liouville-Green approximation is closely

related to WKB method (see Appendix A).
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Let us restate the original ODE for incremental waves :

(

1 +
α

r2

)

v′′(r) +
1

r

(

1 − α

r2

)

v′(r) +

(

β2 − 1 + αδ

r2
+

α

r4

)

v(r) = 0. (3.41)

First divide (3.41) by the term multiplying the highest derivative so that it can be

written in the form

v′′(r) + P (r)v′(r) + Q(r)v(r) = 0, (3.42)

with P (r) and Q(r) defined as

P (r) =
1

r

r2 − α

r2 + α
, Q(r) =

1

r2 + α

(

r2β2 −
(

(1 − αδ) − α

r2

))

. (3.43)

We can now eliminate the first derivative in (3.42) using the following transformation

of the dependent variable v,

v(r) = w(r)e−
1
2

R

P (r) dr (3.44)

so that (3.42) may be transformed into the following ODE

w′′(r) + q(r)w(r) = 0. (3.45)

Here the polynomial quotient function q(r) is defined as

q(r) =
q̂(r̂)

b2
, (3.46)

where

q̂(r̂) =
4β̂2r̂6 + (4α̂(β̂2 + δ̂) − 3)r̂4 + 2α̂(2α̂δ̂ − 3)r̂2 + α̂2

4r̂2(r̂2 + α̂)2
, (3.47)

r̂ =
r

b
, (3.48)

α̂ =
α

b2
=

1

L

(

B

b

)2

− 1, (3.49)

β̂2 = b2β2 =
k̂2

0 − k̂2L2S1

S
− δ̂, (3.50)

δ̂ = b2δ =
k̂2LS2

S
, (3.51)

k̂2
0 = b2k2

0, (3.52)

and

k̂2 = b2k2. (3.53)
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Note that the above variables are all non-dimensional. We have introduced the hat

notation (̂·) to signify this.

Assuming for now that q(r) is a positive and twice continuously differentiable

function, we apply the Liouville-Green transformation [76] by defining

ξ(r) =

∫ r
√

q(̺) d̺, W(ξ) = {ξ′(r)}1/2w(r(ξ)). (3.54)

Upon doing this we obtain the governing equation

d2W
dξ2

+ (1 − ϕ(ξ))W(ξ) = 0, (3.55)

where

ϕ(ξ(r)) = ψ(r) =
4 q(r)q′′(r) − 5 {q′(r)}2

16 {q(r)}3 = − 1

{q(r)}3/4

d2

dr2

(

1

{q(r)}1/4

)

. (3.56)

If the function ϕ is assumed small and hence neglected, then independent solutions of

(3.55) are e±i ξ. Restoring the original dependent (w) and independent (r) variables

we obtain

w(r) = C1

(

1

q(r)

)1/4

ei ξ(r) + C2

(

1

q(r)

)1/4

e−i ξ(r), (3.57)

where C1 and C2 are constants of integration. Notice that the restriction q(r) > 0

ensures that the solutions (3.57) are wave-like. When q(r) changes its sign in the

interval of r under consideration, we have then what are conventionally called turning

points or transition points of the ODE (i.e. zeros of q). In that case the appropriate

approximation functions are the Airy (one turning point) or Weber parabolic cylinder

functions (two turning points) [76]. The error in this approximation is obviously

dependent on the behaviour of the neglected function ϕ(ξ(r)) = ψ(r). If {q(r)}−1/4

is small or slowly varying we have then a good approximation for the ODE. Finally,

when q(r) is positive and the interval under consideration is far from the turning

point(s) it can be shown that the functions e±i ξ are suitable ones for the approximate

solution of the ODE.

Our final step is to transform back to the original dependent variable v using the

following transformation

v(r) = w(r)e−
1
2

R

P (r̂)dr = w(r)e−
1
2

log((α+r2)/r). (3.58)
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Upon doing this we obtain the final form of the approximate solution of the ODE

v(r) = C1

(

1

q(r)

)1/4

ei ξ(r)− 1
2

log((α+r2)/r) + C2

(

1

q(r)

)1/4

e−i ξ(r)− 1
2

log((α+r2)/r). (3.59)

Notice that the Liouville-Green approximation implies the transformation of the in-

dependent variable r into ξ(r), obtained via the integration of the square root of the

function q(r). For many problems, an explicit form for this integral is not generally

available. However in Appendix B we show that for the present problem this integral

can be explicitly evaluated in terms of the three incomplete elliptic integrals and

elementary functions in the form

ξ(r) =
|β|
2

{

2

d

√

1 − m sin2 φ
√

1 − sin2 φ

sin φ
+

2

d
E(φ|m) + D1 F (φ|m) +

D2 Π(n1; φ|m) + D3 Π(n2; φ|m)

}

, (3.60)

where φ = φ(r) is a known function, given in equation (B.9). The other terms present

in (3.60) are also defined in Appendix B.

In Figures 3.3 and 3.4 we give some plots of the regions where q̂(r̂) < 0 (and

hence q(r) < 0) for specific values of α̂ and δ̂ (the regions below the curves are the

regions where q̂(r̂) is negative). In the plots r̂ ranges over the horizontal axis and β̂

ranges over the vertical axis. We observe that increasing values of α̂ and δ̂ improve

the range over which the method is expected to work. Increasing |α̂| corresponds

to increasing pre-stress, α̂ > 0 corresponds to pout > pin and α̂ < 0 corresponds to

pout < pin. Increasing δ̂ corresponds to increasing dependence of the particular strain

energy function on the parameter S2.

We know that, for a stress-free annular cylinder with a = 0 (i.e. the solid cylinder

limit), the smallest non-zero value β̂ can take is ≈ 5.14. Increasing the inner radius

from 0 increases the smallest non-zero value of β̂ (see Figure 3.2 and note that in

this figure, increasing ω/c corresponds to increasing β̂). We have also shown that

increasing the value of α̂ improves the range of validity of the Liouville-Green method.

Therefore, in Figure 3.5, we show that for α̂ greater than ≈ 0.087 the Liouville-Green

method should work for all annular cylinders. We also show that for a greater value of
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Figure 3.3: Curves of q̂(r̂) = 0. Solid line: α̂ = 0, δ̂ = 0; dashed line: α̂ = 0.01,
δ̂ = 0.
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Figure 3.4: Curves of q̂(r̂) = 0. Solid line: α̂ = 0.1, δ̂ = 0; dashed line: α̂ = 0.1.
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Figure 3.5: Curves of q̂(r̂) = 0. Dashed line: α̂ = 0.087, δ̂ = 0; dotted line: α̂ =
0.0409.

δ̂ this critical value of α̂ is decreased. Note that Figure 3.7 reveals that, for negative

pressures, the distance to the first non-zero root of the dispersion curves decreases

slowly, and so we expect the region where the Liouville-Green method is inaccurate

increases slowly too.

3.5 Dispersion curves: Predictions via numerical

and Liouville-Green solutions

3.5.1 Neo-Hookean case

In the neo-Hookean case, we have S2 = 0 and, therefore, δ = 0, so the dispersion

relations can be determined simply by determining the values of β which satisfy

the boundary conditions. Using a numerical solver one can obtain an interpolating

polynomial solution for v(r). Alternatively, the Liouville-Green solution described in

the previous section can be used. Both methods can be employed to find values of β

which satisfy the boundary conditions, and thus define the dispersion curves for the

problem.
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The numerical solver used in this case was NDSolve in Mathematica 7. The numer-

ical method used by NDSolve is selected automatically unless specified by the user,

and was not specified in this case. For ordinary differential equations, NDSolve by de-

fault uses an LSODA (Livermore solver for ordinary differential equations) approach,

switching between a non-stiff Adams method and a stiff Gear backward differenti-

ation formula method. The AccuracyGoal, which specifies the absolute local error

allowed at each step in finding a solution, and the PrecisionGoal, which specifies the

relative local error allowed were left at their default settings, which are both equal to

MachinePrecision/2. The value of MachinePrecision on the computer which was used

in this case was (53 log10 2) ≈ 16. With AccuracyGoal set to a and PrecisionGoal set

to p, Mathematica attempts to make the numerical error in a result of size x be less

than 10−a + |x|10−p. NDSolve by default uses an infinity norm to measure the error

for this method.

For both methods, we apply the boundary condition derived in Appendix 3.4.1 on

r = a and also arbitrarily choose v(a) = 1. We then plot v′(b) − v(b)/b as a function

of β in order to determine the values of β which correspond to the cut-on frequencies

for the problem (i.e. the roots of these plots). In Figure 3.6 we plot v′(b) − v(b)/b

as a function of β for a = 0.5, b = 1, S2 = 0, α = 1. Note that, as expected, the

agreement is better for larger values of β. We note that the numerical solver always

predicts β = 0 as a root, which is the fundamental mode. In this case we have

k2
0 − k2L2 = 0, (3.61)

and hence

k2 =
k2

0

L2
. (3.62)

We observe from (3.62) that the only modification to the fundamental mode is a

change in gradient, which is dependent on the longitudinal stretch factor, L.

By plotting the dispersion curves for various values of a, b, L and α, it can be

observed that a positive value of α (which corresponds to (pout > pin) causes the

roots of the dispersion curves to be spaced further apart, whilst a negative value

of α (which corresponds to (pout < pin) causes them to be spaced more closely. It
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Figure 3.6: Prediction of cut-on frequencies using Liouville-Green method (black)
and a numerical solver (dashed) for a = 0.5, b = 1, S2 = 0, α = 1

can also be observed that for L > 1 (corresponding to a longitudinal stretch), the

cut-on frequencies are closer together and the dispersion curves are less steep, whilst

for L < 1 (corresponding to a longitudinal compression) the cut-on frequencies are

further apart and the dispersion curves are steeper.

In Figure 3.7, we plot the first, second and third cut-on frequencies as a function of

pout−pin

Sµ
for a neo-Hookean (S1 = 1, S2 = 0) annular cylinder with a = 0.5 and b = 1

using the numerical solution. In Figure 3.8, we do the same with A = 0.5 and B = 1.

In Figure 3.9 we give the dispersion curves for a neo-Hookean (S1 = 1, S2 = 0)

annular cylinder with a = 0.5 and b = 1, with L = 1 and pout−pin

Sµ
= 0, 1.96, and 3.55.

In Figure 3.10 we give the same, but for A = 0.5 and B = 1. Figures 3.9 and 3.10

were produced using NDSolve rather than the Liouville-Green method.

3.5.2 Mooney-Rivlin case

In the Mooney-Rivlin case, δ 6= 0, and so the dispersion relations cannot be deter-

mined by the value of β alone. In this case we evaluate the boundary condition

v′(b) − v(b)/b = 0 as a two-dimensional function of k and k0 = ω/c and plot the

regions where this function equals zero. These plots are our dispersion curves. In



CHAPTER 3. TORSIONAL WAVE PROPAGATION 114

-5 5

10

20

30

40

50

60

pout−pin

Sµ

ω
c

Figure 3.7: First (solid), second (dashed) and third (dotted) cut-on frequencies for a
pre-stressed cylinder as a function of pout−pin

Sµ
with a = 0.5 and b = 1.
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Figure 3.8: First (solid), second (dashed) and third (dotted) cut-on freqeuncies for a
pre-stressed cylinder as a function of pout−pin

Sµ
with A = 0.5 and B = 1.



CHAPTER 3. TORSIONAL WAVE PROPAGATION 115

5 10 15 20 25 30

5

10

15

20

25

30

k

ω
c

Figure 3.9: Dispersion curves for a neo-Hookean (S1 = 1, S2 = 0) annular cylinder
of deformed inner radius 0.5 and outer radius 1, with L = 1 and pout−pin

Sµ
= 0 (black),

1.96 (dashed), and 3.55 (dotted).
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Figure 3.10: Dispersion curves for a neo-Hookean (S1 = 1, S2 = 0) annular cylinder
of initial inner radius 0.5 and outer radius 1, with L = 1 and pout−pin

Sµ
= 0 (black),

1.96 (dashed), and 3.55 (dotted).
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Figure 3.11: Dispersion curves for a Mooney-Rivlin (S1 = 0.8, S2 = 0.2) annular
cylinder of deformed inner radius 0.5 and outer radius 1, with L = 1 and pout−pin

Sµ
= 0

(black), 1.96 (dashed), and 3.55 (dotted).

Figure 3.11 we plot the dispersion curves for a Mooney-Rivlin (S1 = 0.8, S2 = 0.2)

annular clyinder with a = 0.5 and b = 1, with L = 1 and pout−pin

Sµ
= 0, 1.96, and 3.55.

Figure 3.11 was produced using NDSolve.

The trends observed in the Mooney-Rivlin case are the same as those in the neo-

Hookean case except that in the neo-Hookean case (i.e. when S1 = 1, S2 = 0), α does

not affect the gradients of the dispersion curves, whereas in the Mooney-Rivlin case,

a positive value of α decreases their gradients and a negative value increases them.

3.6 Conclusions

In this chapter we have studied the problem of torsional wave propagation in a pre-

stressed, Mooney-Rivlin, annular cylinder. The pre-stress consists of a uniform lon-

gitudinal stretch and hydrostatic pressures imposed on the inner and outer surfaces

of the cylinder, thus altering the radii. Importantly, the latter generates an inhomo-

geneous deformation in the host domain.

The theory of small-on-large was used to derive the incremental equation in the
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pre-stressed configuration. It was then discussed that this equation was difficult to

solve due to the spatial dependence of its coefficients and the singular limit of the

equation in the case of zero pre-stress. In Section 3.4.4 we presented a Liouville-Green

approximation to the solution of the ODE and discussed when we expect this to be a

good approximation. It was shown that for α̂ > 0.087, we expect the Liouville-Green

approximation to be good for an annular cylinder of any size.

We noted that a positive value of α (which corresponds to pout > pin) causes the

roots of the dispersion curves to be spaced further apart, whilst a negative value

of α (which corresponds to pout < pin) causes them to be spaced more closely. In

the neo-Hookean case (i.e. when S1 = 1, S2 = 0), α does not affect the gradients

of the dispersion curves, whereas in the Mooney-Rivlin case, a positive value of α

decreases their gradients and a negative value increases them. We also noted that for

L > 1 (corresponding to a longitudinal stretch) the cut-on frequencies move closer

together and the dispersion curves are less steep, whilst for L < 1 (corresponding

to a longitudinal compression) the cut-on frequencies move further apart and the

dispersion curves are steeper.

The dependence of the cut-on frequencies on the pre-stress could potentially be

used to tune which modes are able to propagate over a given range of frequencies. For

example, if it was required to reduce the number of torsional modes which propagate

along an annular cylinder at a given frequency, we have demonstrated that applying

a large enough pressure on the outer surface would achieve this. Potential areas of

further work would be a study into the effect of the elastic parameter S2 on the

stated results, and an investigation of whether the behaviour of the cylinder would

be similar for other choices of strain energy function.



Chapter 4

Scattering of shear waves from a

cylindrical cavity in a pre-stressed

host medium

4.1 Overview

In Chapter 2, we discussed the scattering of out-of-plane shear waves from a cylin-

drical cavity in a stress-free linear elastic material. In this chapter we investigate the

scattering of these waves in a pre-stressed medium. The circular cylindrical cavity,

whose length to cross section ratio is so large that end effects can be neglected and

so can be considered as having infinite length, is located in an unbounded, nonlinear

elastic material. Pressure is applied in the “far-field” and on the surface of the cavity,

and a longitudinal stretch is applied, resulting in a nonlinear pre-stress throughout

the material. The main aim of this chapter is to study the effect of this pre-stress

on the scattering of incoming incremental horizontally polarised shear waves by the

cavity. The incremental displacements satisfy an ordinary differential equation whose

coefficients are spatially dependent. If a neo-Hookean strain energy function is used to

model the material under consideration an analytical solution may be found (see [82]);

however, if a Mooney-Rivlin strain energy function is employed the governing ordi-

nary differential equation is more complicated and it appears that explicit solutions

118
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cannot be determined. Due to the difficulty in solving such an ordinary differential

equation we analyse it numerically using two methods - firstly, using a numerical

solver and, secondly, by a semi-analytical method. In order to use a numerical solver

we separate the material into an inhomogeneous region in the vicinity of the cavity

and a homogeneous region far from the cavity, and then apply a continuity condi-

tion on the boundary between the two regions. In order to use the semi-analytical

method we discretise the material local to the cavity into N layers and treat each

layer as homogeneous. Upon applying continuity of traction and displacement on

the boundary of each layer it is possible to obtain an approximate solution to the

spatially dependent ordinary differential equation.

4.2 Introduction

In this chapter, we will consider the canonical problem of the effect of pre-stress on

the scattering of antiplane waves from a single cylindrical cavity. The pre-stress we

are considering is hydrostatic pressure applied at infinity and on the surface of the

cavity along with a longitudinal stretch of factor L. We assume the host material can

be modelled by a Mooney-Rivlin strain energy function and show the effect of this

pre-stress on the scattering coefficients for an incident plane wave propagating in the

positive x-direction.

Scattering of horizontally polarised shear waves by a cylindrical cavity in a linear

elastic material is well understood (see Chapter 2), as is wave scattering in linear

elastic materials in general. There are papers dealing with scattering of both longitu-

dinal and shear waves in many different geometries in linear elastic materials, [110],

[29], [19].

Recently, however, attention has focused on wave propagation and scattering in

pre-stressed nonlinear elastic materials. Most papers in the literature focus on the

effect of homogeneous pre-stress on the subsequent propagation of incremental waves

([51], [27], for example). It is of interest, however, to study the effect of inhomoge-

neous pre-stress on wave propagation and scattering. In [82], Parnell and Abrahams
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discussed the effect of an inhomogeneous pre-stress on the scattering of horizontally

polarised shear waves in a neo-Hookean material. It was shown that a pressure ap-

plied at infinity and a longitudinal stretch has no effect on the scattering coefficients

for these waves; perhaps a surprising and non-intuitive result. For unstressed ma-

terials, there is a strong correlation between the cavitiy size and magnitude of the

scattering coefficients for SH waves. The applied pressure will significantly modify

the cavity radius, and so, for the scattering coefficients to be completely unchanged

by this is a quite unexpected result.

In this chapter we extend the work in [82] to the case of a Mooney-Rivlin material.

Unfortunately, for a Mooney-Rivlin material, an analytic expression for the scattering

cofficients could not be found. Instead, the effect of the pre-stress on the scattering

coefficients was determined using two methods: firstly, numerically, and secondly, by

discretising the material into several layers and treating each as homogeneous.

In Section 4.3 we will analyse the initial deformation resulting from the pre-stress

before discussing the incremental deformation in Section 4.4. In Section 4.5.2, we

briefly present the result for a neo-Hookean material given in [82], before discussing

the methods we used for a Mooney-Rivlin material in Sections 4.6 and 4.7. Finally, in

Section 4.8, we plot some results, and compare the pre-stressed scattering coefficients

with the scattering coefficients of an unstressed material with the same void radius.

4.3 Initial finite (static) deformation

Consider an infinite, incompressible material containing a cylindrical cavity of initial

radius A and infinite length. We will assume that the host material is isotropic

and that its constitutive behaviour may be described by a strain energy function,

W = W (I1, I2, I3), where Ij are the principal strain invariants of the deformation

[38], [73]. Since it is incompressible, I3 = 1, and thus W = W (I1, I2). A pressure,

p∞, is applied at infinity, a pressure, pa, is applied on the surface of the cavity and a

longitudinal stretch L is also applied. The radius of the void after deformation will

be denoted a.
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The above deformation is described by

R = R(r), Θ = θ, Z =
z

L
, (4.1)

where (R, Θ, Z) and (r, θ, z) are cylindrical polar coordinates in the undeformed and

deformed configurations respectively and R(r) is a function to be determined from

the incompressibility condition. Note the convention introduced in (4.1) above, i.e.

that upper case variables correspond to the undeformed configuration whilst lower

case corresponds to the deformed configuration. It will be convenient for us to derive

equations in terms of coordinates in the deformed configuration as this will become

our reference state when we consider the incremental SH-waves. Position vectors in

the undeformed (upper case) and deformed (lower case) configurations are

X =











R cos Θ

R sin Θ

Z











=











R(r) cos θ

R(r) sin θ

z
L











, x =











r cos θ

r sin θ

z











. (4.2)

Using (4.1), it can be shown that the principal stretches for this deformation in the

radial, azimuthal and longitudinal directions, respectively, are

λr =
dr

dR
=

1

R′(r)
, λθ =

r

R
=

r

R(r)
, λz = L. (4.3)

The deformation gradient tensor, F , is given by

F = Grad x, (4.4)

where Grad represents the gradient operator in the undeformed configuration. In our

case, we have

F =











λr 0 0

0 λθ 0

0 0 λz











=











1
R′(r)

0 0

0 r
R(r)

0

0 0 L











. (4.5)

For an incompressible material, we must have J = det F = 1, and so

λrλθλz =
Lr

R(r)R′(r)
= 1. (4.6)

Solving the above, we obtain

R(r) =
√

L(r2 + α), (4.7)
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where α is a constant defined by

α =
A2

L
− a2. (4.8)

Note that (4.7) gives the same form for R as in [82] (α here is equivalent to M in

[82]).

From [26], the Cauchy stress tensor for an incompressible material is given by

T = F
∂W

∂F
+ QI, (4.9)

where W is the strain energy function of the material under consideration, I is the

identity tensor and Q is a Lagrange multiplier associated with the incompressibility

constraint and referred to as an arbitrary hydrostatic pressure.

Equation (4.9) can be written in index notation as

Tij = Fiα
∂W

∂Fjα

+ Qδij, (4.10)

where δij is the Kronecker delta. We note that since F is diagonal, so is T . In our

case, we have

T =











λr
∂W
∂λr

+ Q 0 0

0 λθ
∂W
∂λθ

+ Q 0

0 0 λz
∂W
∂λz

+ Q











. (4.11)

The static equations of equilibrium are then given by

div T = 0, (4.12)

where div signifies the divergence operator with respect to the deformed configuration.

In our case, (4.12) reduces to

∂Trr

∂r
+

1

r
(Trr − Tθθ) = 0,

∂Tθθ

∂θ
= 0,

∂Tzz

∂z
= 0. (4.13)

Since the principal stretches depend on r only, the latter two equations in the above

tell us that Q is a function of r only. A specific strain energy function must be

used in order to evaluate Q explicitly, along with the conditions Trr|r=a = −pa and

Trr → −p∞ as r → ∞.
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4.3.1 Specific strain energy functions

Here we give specific results for different types of strain energy function.

Neo-Hookean strain energy function

The neo-Hookean strain energy function is given by:

W =
µ

2
(I1 − 3) =

µ

2
(λ2

r + λ2
θ + λ2

z − 3), (4.14)

where µ is the ground state shear modulus of the material under consideration. For

this strain energy function we have

Trr =
1

L

(

1 +
α

r2

)

µ + Q, (4.15)

Tθθ =
r2

L(α + r2)
µ + Q, (4.16)

Tzz = L2µ + Q, (4.17)

and the radial equation of equilibrium becomes

∂Q

∂r
=

α2µ

Lr3(α + r2)
. (4.18)

Hence Q depends only on r and is determined by the equation

Q =

∫

α2µ

Lr3(α + r2)
dr = − µ

2L

(

α

r2
+ log

(

r2

r2 + α

))

+ Q0. (4.19)

Upon applying Trr|r=a = −pa, we determine Q0 to be such that

Trr =
µ

2L

(

α

(

1

r2
− 1

a2

)

− log

(

r2

a2

)

+ log

(

r2 + α

a2 + α

))

− pa. (4.20)

Hence, enforcing the condition that Trr → −p∞ as r → ∞, we obtain

p∞ − pa

µ
=

1

2L

(

A2

La2
− 1 + log

(

A2

La2

))

. (4.21)

In Figure 4.1 we plot a/A as a function of (p∞ − pa)/µ. Note that the results in this

section agree with those obtained in [82].
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Figure 4.1: Plot of a/A as a function of (p∞ − pa)/µ for the three prescribed values
of L = 0.7, 1, 1.3.

Mooney-Rivlin strain energy function

The Mooney-Rivlin strain energy function is given by:

W =
µ

2
(S1(I1 − 3) + S2(I2 − 3))

=
µ

2
(S1(λ

2
r + λ2

θ + λ2
z − 3) + S2(λ

2
rλ

2
θ + λ2

rλ
2
z + λ2

θλ
2
z − 3)), (4.22)

where µ is the shear modulus of the material under consideration, and S1 and S2 are

two constants which sum to one. For this strain energy function we have

Trr =
1

L

(

1 +
α

r2

)

S1µ +

(

1

L2
+ L

(

1 +
α

r2

)

)

S2µ + Q, (4.23)

Tθθ =
r2

L(α + r2)
S1µ +

(

1

L2
+

Lr2

α + r2

)

S2µ + Q, (4.24)

Tzz = L2S1µ + L

(

2 +
α2

r2(α + r2)

)

S2µ + Q, (4.25)

and we also obtain the following from the radial equilibrium equation:

∂Q

∂r
=

α2

Lr3(α + r2)
(S1 + L2S2)µ =

µSα2

r3(α + r2)
, (4.26)

where

S =
S1

L
+ LS2. (4.27)
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Using (4.26), we can determine Q:

Q =

∫

α2Sµ

r3(α + r2)
dr = −Sµ

2

(

log

(

r2

r2 + α

)

+
α

r2

)

+ Q0. (4.28)

Then, upon applying Trr|r=a = −pa, we can determine Q0 and, therefore, give an

explicit expression for Trr:

Trr =
Sµ

2

(

α

(

1

r2
− 1

a2

)

− log

(

r2

a2

)

+ log

(

r2 + α

a2 + α

))

− pa. (4.29)

Finally, upon applying the condition that Trr → −p∞ as r → ∞, we obtain

p∞ − pa

Sµ
=

1

2

(

A2

La2
− 1 + log

(

A2

La2

))

. (4.30)

Note that when L = 1, S = 1 and (4.21) and (4.30) are equivalent.

If we were to plot a/A for this strain energy function we would obtain the same

graph as in Figure 4.1 but with (p∞−pa)/µ replaced with (p∞−pa)/LSµ. Note that

by setting S1 = 1 and S2 = 0 we obtain the results for a neo-Hookean material.

4.4 Incremental deformation

We now consider the propagation of small-amplitude, time-harmonic waves through

the finitely-deformed medium. We use the theory of small-on-large, i.e. linearisa-

tion about a non-linear deformation state [73]. The total displacement field may be

represented by

Ū = U + u. (4.31)

where U is the displacement field derived from the finite deformation (4.1) and u is

the incremental displacement. Let us assume that the incremental displacement is of

the form

u = ℜ{(0, 0, w(r, θ))e−iωt}, (4.32)

so that it is an SH-wave (see Figure 4.2). We will also assume that |u| ≪ |U |.

The gradient of u, with respect to the deformed configuration, is given by

γ = grad u =











0 0 0

0 0 0

∂w
∂r

1
r

∂w
∂θ

0











e−iωt. (4.33)
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Figure 4.2: SH waves incident on a cylindrical cavity.

The push forward of the incremental nominal stress (see Chapter 2) for an incom-

pressible material is given by

ζ = M : γ + qI − Qγ, (4.34)

where M is the push forward of the elasticity tensor defined by

Mijkl = J−1 ∂2W

∂Fjm∂Fln

FimFkn, (4.35)

and q is the incremental form of Q.

Now, from [26], we have

JMiijj = λiλjWij, (4.36)

where

Wij =
∂2W

∂λi∂λj

, (4.37)

and, when i 6= j, λi 6= λj,

JMijij =
λiWi − λjWj

λ2
i − λ2

j

λ2
i , (4.38)

JMijji =
λjWi − λiWj

λ2
i − λ2

j

λiλj, (4.39)
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with

Wi =
∂W

∂λi

. (4.40)

In our case, the components of M are functions of r only, since they are dependent

on the principal stretches, which here are functions of r only. We will also assume

that q = q(r, θ) (i.e. independent of z since there is no z dependence in either the

pre-stress or the perturbation).

From the above, in our case, we have

ζ =











q 0 M1313γ31

0 q M2323γ32

(M3113 − Q)γ31 (M3223 − Q)γ32 0











. (4.41)

The incremental equations of motion are then given by

div ζ = ρu,tt, (4.42)

where ρ is the density of the body, which remains constant throughout the deforma-

tion, since we are considering an incompressible material.

Using (4.42), we observe that the radial and azimuthal equations give

∂ζ11

∂r
= 0, (4.43)

and

∂ζ22

∂θ
= 0, (4.44)

which reduce to

∂q

∂r
=

∂q

∂θ
= 0. (4.45)

Hence q is a constant.

The longitudinal equation is given by

∂ζ13

∂r
+

1

r

∂ζ23

∂θ
+

ζ13

r
= −ρω2w(r, θ)e−iωt, (4.46)

which reduces to

M1313
∂2w

∂r2
+

(

M ′

1313 +
M1313

r

)

∂w

∂r
+

M2323

r2

∂2w

∂θ2
= −ρω2w, (4.47)
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where the prime notation denotes differentiation with respect to r.

This can be rewritten as

1

r

∂

∂r

(

rµr(r)
∂w

∂r

)

+
µθ(r)

r2

∂2w

∂θ2
+ ρω2w = 0, (4.48)

where we define µr(r) = M1313 and µθ(r) = M2323 to be the anisotropic shear moduli

of the pre-stressed body.

Therefore, upon selecting a specific strain energy function, the above can be used

to determine the governing equation for w(r, θ).

4.4.1 Boundary conditions

Equation (4.48) is the governing equation for w(r, θ) and we will apply the condition

that the perturbation does not affect the pressure on the surface r = a. For this

to hold, it is shown in chapter 2 that, for an incompressible material, the following

condition must be satisfied on the boundary:

ζT n = pγT n, (4.49)

where p is the applied pressure on the boundary of the void, which in our case is

pa, ζ is the push forward of the incremental nominal stress, and n is the outer unit

normal to the boundary in the deformed configuration, which in our case is er. These

equations simplify to

∂w

∂r

∣

∣

∣

∣

r=a

= 0, (4.50)

and

q = 0. (4.51)

4.4.2 Specific strain energy functions

Here we give specific results for different types of strain energy function.
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Neo-Hookean strain energy function

Upon substitution of the neo-Hookean strain energy function (4.14) into the above

equations, we obtain the following anisotropic shear moduli:

µr(r) =
µ

L

(

1 +
α

r2

)

, (4.52)

and

µθ(r) =
µ

L

(

1 − α

r2 + α

)

. (4.53)

In this case, the governing equation for w(r, θ) can be written as

(

1 +
α

r2

) ∂2w

∂r2
+

1

r

(

1 − α

r2

) ∂w

∂r
+

1

r2 + α

∂2w

∂θ2
+ k2w = 0, (4.54)

where

k2 = LK2, K = ω

√

ρ

µ
. (4.55)

Mooney-Rivlin strain energy function

Substituting the Mooney-Rivlin strain energy function (4.22) into the displacement

equation (4.48), we obtain the following anisotropic shear moduli:

µr(r) =
Tµ

L2

(

1 +
m

r2

)

, (4.56)

and

µθ(r) =
Tµ

L2

(

1 − m

r2 + α

)

, (4.57)

where

m =
αLS1

T
, (4.58)

and

T = 1 + (L − 1)S1. (4.59)

In this case, the equation governing w(r, θ) can be written as

(

1 +
m

r2

) ∂2w

∂r2
+

1

r

(

1 − m

r2

) ∂w

∂r
+

r2 + α − m

r2(r2 + α)

∂2w

∂θ2
+ k2w = 0, (4.60)

where

k2 =
L2K2

T
, (4.61)

and K2 is defined in (4.55).

Note that by setting S1 = 1 we obtain the results for a neo-Hookean material.
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4.5 Analytical solutions

4.5.1 Neo-Hookean case

It was observed in [82] that, in the neo-Hookean case, an analytical solution for w(r, θ)

could be obtained. In fact, the scattering coefficients in the deformed configuration

an for a wave produced by a line source at (r0, θ0) in the deformed configuration were

shown to be unchanged from the scattering coefficients in the undeformed configura-

tion An:

an = An =
πC

2µin−1

J′
n(KA)

H
(1)′
n (KA)

H(1)
n (KR0), (4.62)

where C is the coefficient associated with the line source in the undeformed configu-

ration, H
(1)
n is an order n Hankel function of the first kind, and

R0 =
√

L(r2
0 + α). (4.63)

Note that in the above, the scattered field in the undeformed and deformed confir-

guations, respectively, are

Ws =
∞

∑

n=−∞

inAnH(1)
n (KR)ein(Θ−Θ0), ws =

∞
∑

n=−∞

inanH(1)
n (k

√
r2 + α)ein(θ−θ0).

(4.64)

In the limit as r0 → ∞, we have a propagating plane wave approaching the void from

θ = θ0, so when θ0 = π, we have a plane wave propagating in the positive x-direction,

as in Section 2.4. In [82], it was shown that, in this limit, the scattering coefficients

are

an = An = − J′
n(KA)

H
(1)′
n (KA)

, (4.65)

when the incoming wave has unit magnitude. This result can be compared with the

result of equation (2.323). The total solution, in the case of an incoming plane wave

propagating in the positive x-direction, can be written as

w(r, θ) = c

∞
∑

n=−∞

in(Jn(k
√

r2 + α) + anH(1)
n (k

√
r2 + α))einθ, (4.66)

where c is the amplitude of the incoming wave.
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4.5.2 Mooney-Rivlin case

To the author’s knowledge, it is not possible to obtain an analytical solution in

the Mooney-Rivlin case for all modes. However, for n = 0 (i.e. the mode with no

dependence on θ), equation (4.60) becomes

(

1 +
m

r2

) d2w

dr2
+

1

r

(

1 − m

r2

) dw

dr
+ k2w = 0. (4.67)

If we make the substitution

s =
√

r2 + m, (4.68)

then we obtain

d2w

ds2
+

1

s

dw

ds
+ k2w = 0. (4.69)

This is Bessel’s equation of order 0, hence the solution for this mode can be written

as

w = C1J0(ks) + C2H
(1)
0 (ks) = C1J0(k

√
r2 + m) + C2H

(1)
0 (k

√
r2 + m), (4.70)

where C1 and C2 are arbitrary constants.

4.6 Hybrid analytical-numerical method

In this section we divide the host domain into two regions (see Figure 4.3). We

assume that there exists some radius b ≫ 1, which is large enough such that for r > b

the anisotropic shear moduli, µr(r) and µθ(r), can be approximated by the constant

µ∞

r (r) = µ∞

θ (r) =
Tµ

L2
. (4.71)

In other words, we treat the region r > b as being homogeneous, and then use a

numerical solver in order to solve for the displacement in the inhomogeneous inner

region, r < b.

In the outer region, we will assume there is an incoming plane wave travelling

in the positive x-direction and polarised such that the displacements are in the z

direction. Such a wave can be expressed as

wi(r, θ) = ceikx = ceikr cos θ = c
∞

∑

n=−∞

inJn(kr)einθ, (4.72)
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r = a

r = b

inhomogeneous region

homogeneous region

Figure 4.3: Discretisation of material into inhomogeneous region local to cavity and
homogeneous region far from cavity.

where c is the amplitude, and the scattered field in this region will be given by

ws(r, θ) =
∞

∑

n=−∞

inanH(1)
n (kr)einθ. (4.73)

The total field is thus wi + ws. Here an are our scattering coefficients.

We apply continuity of displacement and traction in order to determine the bound-

ary condition for a numerical solver on r = b. In the following, the subscript I denotes

the inner solution (in the region r < b). We will assume wI(r, θ) takes the form

wI(r, θ) =
∞

∑

n=−∞

inFn(r)einθ, (4.74)

so that Fn must satisfy

d

dr

(

µr(r)
dFn

dr

)

+
µr(r)

r

dFn

dr
+

(

ρω2 − µθ(r)n
2

r2

)

Fn = 0. (4.75)

Continuity of displacement and stress on r = b gives us

w(b) = wI(b), (4.76)

and

∂w

∂r

∣

∣

∣

∣

r=b

=
∂wI

∂r

∣

∣

∣

∣

r=b

, (4.77)
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and thus

Fn(b) = cJn(kb) + anH(1)
n (kb), (4.78)

and

F ′

n(b) = ckJ′

n(kb) + ankH(1)′
n (kb). (4.79)

The coefficients an can be eliminated from the above in order to give us one boundary

condition on r = b:

Fn(b) − F ′
n(b)H

(1)
n (kb)

kH
(1)′
n (kb)

= c

(

Jn(kb) − J′
n(kb)

H
(1)′
n (kb)

H(1)
n (kb)

)

. (4.80)

The other boundary condition, on r = a, is

F ′

n(a) = 0, (4.81)

and so we can then use these to solve the ordinary differential equation using a

numerical solver.

Once Fn(b) has been found using a numerical solver, we can use the following equa-

tion, which is derived from (4.78), in order to determine our scattering coefficients,

an:

an =
Fn(b) − cJn(kb)

H
(1)
n (kb)

. (4.82)

As in Chapter 3, the numerical solver used in this case was NDSolve in Mathe-

matica 7 and the numerical method used by NDSolve was left to be automatically

selected. For linear boundary value problems, NDSolve uses a Gelfand-Lokutsiyevskii

chasing method [8]. NDSolve by default uses an infinity norm to measure the error for

this method. Again, the AccuracyGoal and PrecisionGoal were left at their default

setting of MachinePrecision/2.

4.7 Discretisation into N layers

In this section we discretise the material local to the cavity into N layers and treat

each layer as a material which is homogeneous. We define b to be the outer radius of
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the N th layer and we assume that b is large enough such that for r > b the anisotropic

shear moduli, µr(r) and µθ(r), can be approximated by

µ∞

r (r) = µ∞

θ (r) =
Tµ

L2
. (4.83)

For r < b, we define the inner radius, rp, of the pth layer, Dp, by

rp = a + (p − 1)∆, (4.84)

where

∆ =
b − a

N
. (4.85)

So we see that the pth layer, Dp, is given by

Dp = {r : rp ≤ r ≤ rp+1}, p = 1, ..., N. (4.86)

We shall approximate the anisotropic shear moduli in Dp by the constant value

µp
r = µr(rp) =

Tµ

L2

(

1 +
m

r2
p

)

, (4.87)

and

µp
θ = µθ(rp) =

Tµ

L2

(

1 − m

r2
p + α

)

, (4.88)

so that the partial differential equation to be solved in Dp is

wp
rr +

1

r
wp

r +
µp

θ

µp
r

1

r2
wp

θθ + k2
pw

p = 0, (4.89)

where wp is the displacement in Dp, and kp is the effective wavenumber in Dp, defined

by

k2
p =

ρω2

µp
r

. (4.90)

We assume that wp can be written in the form

wp(r, θ) =
∞

∑

n=−∞

inF p
n(r)einθ, (4.91)

so that F p
n must satisfy

F p′′
n +

1

r
F p′

n +

(

k2
p −

(γpn)2

r2

)

F p
n = 0, (4.92)
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where the prime notation denotes differentiation with respect to r, and

γ2
p =

µp
θ

µp
r
. (4.93)

The solution to (4.92) is

F p
n(r) = ap

nH(1)
γpn(kpr) + bp

nH(2)
γpn(kpr), (4.94)

where H
(1)
γpn(kpr) and H

(2)
γpn(kpr) are Hankel functions of the first and second kind,

respectively, of order γpn, and ap
n and bp

n are arbitrary constants, to be determined

from the boundary conditions on rp and rp+1. H
(1)
γpn(kpr) is an outgoing and H

(2)
γpn(kpr),

an incoming solution to (4.92) due to the e−iωt time dependence.

In the outermost region, we will assume that there is an incoming plane wave

which can be described as in the previous subsection, and that the scattered field will

be given by

ws(r, θ) =
∞

∑

n=−∞

inanH(1)
n (kr)einθ. (4.95)

Upon applying continuity of displacement and stress on the boundaries of the layers,

we obtain the following conditions:

F p(rp+1) = F p+1(rp+1), p = 1, ...N − 1, (4.96)

and

F p′(rp+1) = F p+1′(rp+1), p = 1, ..., N − 1. (4.97)

Continuity of displacement and stress on r = b gives us

Fn(b) = cJn(kb) + anH(1)
n (kb), (4.98)

and

F ′(b) = ckJ′

n(kb) + ankH(1)′
n (kb). (4.99)

We also have

F 1′(a) = 0. (4.100)

The above system of equations can then be solved in order to determine the coeffi-

cients ap
n, bp

n and an.
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Figure 4.4: Plot of w(r) from the analytical solution in the neo-Hookean case with
θ = 0, a = 1, α = 1, c = 1 and L = 1 for the three prescribed values of KA = 0.2, 1
and 5.

4.8 Comparison of results

4.8.1 Neo-Hookean material

Displacements

In Figure 4.4, we compare the analytic solutions in the neo-Hookean case, equation

(4.66), with θ = 0, a = 1, α = 1, c = 1 and L = 1 for KA = 0.2, 1 and 5. Note that

the infinite sum over modal angle is truncated for |n| > 60.

For the hybrid analytical-numerical method, a larger value of kb increases the

accuracy of the solution. In Figures 4.5 to 4.7, we compare the n = 0 analytic

solutions to the corresponding solutions obtained via the hybrid analytical-numerical

method with kb = 60. Figure 4.5 corresponds to KA = 0.2, Figure 4.6 to KA = 1

and Figure 4.7 to KA = 5. We observe that the hybrid analytical-numerical method

works better for small values of KA, but the accuracy can be increased by increasing

kb. In Figure 4.8, we show the KA = 5 result with kb = 600. Unfortunately, kb

cannot be increased indefinitely, however, due to storage limitations when solving

the ordinary differential equation numerically. Therefore, it is best to choose the

largest value of kb for which the ordinary differential equation can be solved within a

reasonable time. In Figures 4.9 to 4.11, we plot the absolute value of the maximum
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Figure 4.5: Comparison of the hybrid analytical-numerical method with the analytical
solution for KA = 0.2 and kb = 60 (n = 0 mode only).

error of the hybrid analytical-numerical method for the first three modes with θ = 0,

a = 1, α = 1, c = 1 and L = 1 for KA = 0.2, 1 and 5 respectively.

The N -layer method can also be used to plot the displacement. As the number of

layers is increased, the accuracy of the solution increases. In Figure 4.12 we compare

the N -layer solution for θ = 0, a = 1, α = 1, L = 1, KA = 0.2, kb = 60, c = 1 and

N = 100 with the corresponding analytical solution. Figure 4.13 shows the same, but

with N = 1000. Note that these figures also show part of the region where r > b.

Scattering coefficients

We are interested in how the pre-stress affects the scattering coefficients, an. It is

shown in [82] that, for a neo-Hookean material, the scattering coefficients are not

affected by the pre-stress, and our numerical methods confirm this. The values of

the scattering coefficients predicted by the hybrid analytical-numerical method are

independent of (p∞ − pa)/µ. Unfortunately, the N -layer method requires too many

layers to obtain a convergent value so this is not included in the figure.
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Figure 4.6: Comparison of the hybrid analytical-numerical method with the analytical
solution for KA = 1 and kb = 60 (n = 0 mode only).
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Figure 4.7: Comparison of the hybrid analytical-numerical method with the analytical
solution for KA = 5 and kb = 60 (n = 0 mode only).
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Figure 4.8: Comparison of the hybrid analytical-numerical method with the analytical
solution for KA = 5 and kb = 600 (n = 0 mode only).
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Figure 4.9: Maximum error in F (r) for n = 0 (solid), n = 1 (dashed) and n = 2
(dotted) as a function of kb using the hybrid analytical-numerical method for KA =
0.2.
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Figure 4.10: Maximum error in F (r) for n = 0 (solid), n = 1 (dashed) and n = 2
(dotted) as a function of kb using the hybrid analytical-numerical method for KA = 1.
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Figure 4.11: Maximum error in F (r) for n = 0 (solid), n = 1 (dashed) and n = 2
(dotted) as a function of kb using the hybrid analytical-numerical method for KA = 5.
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Figure 4.12: Comparison of the N -layer method with the analytical solution for
KA = 0.2, kb = 60 and N = 100 (n = 0 mode only).
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Figure 4.13: Comparison of the N -layer method with the analytical solution for
KA = 0.2, kb = 60 and N = 1000 (n = 0 mode only).
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Figure 4.14: Comparison of neo-Hookean and Mooney-Rivlin results for KA = 0.2
(n = 0 mode only).

4.8.2 Mooney-Rivlin material

Displacements

Here we compare the displacements in a neo-Hookean material with the displacements

in a Mooney-Rivlin material. In Figures 4.14 to 4.16, we compare the n = 0 solutions

obtained via the hybrid analytical-numerical method for S1 = 1, S1 = 0.8 and S1 =

0.2, with kb = 600, θ = 0, a = 1, α = 1, L = 1 and c = 1. Figure 4.14 corresponds to

KA = 0.2, Figure 4.15 to KA = 1 and Figure 4.16 to KA = 5. We observe that the

effect of Mooney-Rivlin material behaviour (as opposed to neo-Hookean) is greater

at higher frequencies.

Scattering coefficients

In Figure 4.17, we plot the absolute value of the scattering coefficients a0, a1 and

a2 as a function of (p∞ − pa)/Sµ for A =
√

6, KA = 1, kb = 600 using the hybrid

analytical-numerical method for S1 = 0.8. We observe that for this value of S1,

increasing (p∞ − pa)/Sµ decreases the magnitude of the scattering coefficients.

In Figure 4.18 we plot the absolute value of the scattering coefficients a0, a1 and

a2 as a function of Ka for A =
√

6, KA = 1, kb = 600 using the hybrid analytical-

numerical method for S1 = 0.8 along with the scattering coefficients in unstressed



CHAPTER 4. WAVE SCATTERING FROM A CYLINDRICAL CAVITY 143

4 6 8 10 12 14

-0.2

0.2

0.4

0.6

r

w(r)

S1 = 1

S1 = 0.8

S1 = 0.2

Figure 4.15: Comparison of neo-Hookean and Mooney-Rivlin results for KA = 1
(n = 0 mode only)
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Figure 4.16: Comparison of neo-Hookean and Mooney-Rivlin results for KA = 5
(n = 0 mode only).
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Figure 4.17: a0 (solid), a1 (long dashes) and a2 (short dashes) as a function of (p∞ −
pa)/Sµ for A =

√
6, KA = 1, kb = 600, L = 1 using the hybrid analytical-numerical

method for a Mooney-Rivlin material with S1 = 0.8.

materials with the same void radius a. In the legend, the scattering coefficients with

the superscript u are unstressed and those without are pre-stressed. We observe

that a pre-stressed material with a given cavity radius a after the large deformation

behaves more like it would have prior to the large deformation (i.e. an unstressed

material with cavity radius A) than an unstressed material of deformed cavity radius

a.

4.9 Conclusions

In this chapter, we have considered the canonical problem of the effect of pre-stress on

the scattering of antiplane waves from a single cylindrical cavity in a Mooney-Rivlin

material. The pre-stress consists of a uniform longitudinal stretch and hydrostatic

pressures imposed on the inner surface of the cavity, and at infinity, thus altering the

radii. Importantly, the latter generates an inhomogeneous deformation.

The theory of small-on-large was used to derive the incremental equation in the

pre-stressed configuration. It was then discussed that this equation was difficult to
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Figure 4.18: a0 (solid), a1 (long dashes) and a2 (short dashes) as a function of Ka
for A =

√
6, KA = 1, kb = 600, L = 1 using the hybrid analytical-numerical method

for a Mooney-Rivlin material with S1 = 0.8 and comparison with the scattering
coefficients in unstressed materials with the same cavity radius.

solve due to the spatial dependence of its coefficients. In Section 4.5.2, we examined

the fact that, for a neo-Hookean material, an analytical solution for the scattering

coefficients is available and that they are completely unaffected by pre-stress, whereas,

for a Mooney-Rivlin material, this is not the case.

In Section 4.6, we presented a hybrid analytical-numerical scheme to determine

the scattering coefficients in the Mooney-Rivlin case by discretising the material into

an inhomogeneous region close (r < b) to the cavity and a homogenous region far

(r > b) from the cavity. The governing equations were solved numerically in the inner

region and matched to an analytical solution in the outer region.

In Section 4.7 the inner region was descretised into N layers and each was treated

as homogeneous. This allowed an approximate solution to be found in each layer. We

expect the overall solution to increase in accuracy as the number of layers increases,

but unfortunately, this also increases the required computation power and time taken

to reach a solution.
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Finally, in Section 4.8, we compared the displacement fields and scattering coef-

ficients for neo-Hookean and Mooney-Rivlin materials over a range of values of kA.

It was shown that, unlike in the neo-Hookean case, the scattering coefficients for a

Mooney-Rivlin material are dependent on the pre-stress. They do, however, take

values very different to those for a cavity of equal size in an unstressed material, so it

is, therefore, important to take account of the pre-stress when calculating scattering

cofficients in these problems.

Potential areas of further work would be a study into the effect of the elastic

parameter S2 on the stated results, and an investigation of whether the same trends

could be observed for other choices of strain energy function.



Chapter 5

Employing pre-stress to generate

finite cloaks for antiplane elastic

waves

5.1 Overview

In Chapter 2, we discussed how anisotropy can be utilised to create cloaks for certain

types of elastic waves, specifically antiplane waves. We also briefly mentioned that

pre-stress can be used to generate the necessary anisotropy to acheive this effect.

In this chapter, we investigate in detail the potential use of pre-stress to generate

cloaks in neo-Hookean and Mooney-Rivlin materials. We observe that neo-Hookean

materials are optimal for this type of cloaking, but that Mooney-Rivlin materials can

still be used to generate “near cloaks”.

5.2 Neo-Hookean cloak

The work in this section builds on the work in parts of Chapter 4 and also appears

in [84]. Note that Figure 2 from [84] contains an error which is corrected in Figure

5.2.

In this section, it is shown that nonlinear pre-stress of neo-Hookean hyperelastic

147
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materials can be used as a mechanism to generate finite cloaks and thus theoretically

render objects near-invisible to incoming antiplane elastic waves. This approach

appears to negate the requirement for special cloaking metamaterials with inhomoge-

neous and anisotropic material properties in this case. These properties are induced

naturally by virtue of the pre-stress. This appears to provide a mechanism for broad-

band cloaking since dispersive effects due to metamaterial microstructure will not

arise.

In [81], a method to generate elastic cloaks was proposed which used the notion

of nonlinear pre-stress. This was possible due to the fact that the antiplane wave

field scattered from a cylindrical cavity is invariant under pre-stress for an incom-

pressible neo-Hookean material. Scattering coefficients in the deformed configuration

depend only on the initial cavity radius, R1, and therefore, provided that this is

small compared with the incident wavelength, scattering from the inflated cavity of

radius r1 will be negligible regardless of the relative size of r1 and the incident wave-

length. Therefore, we can conclude that an object placed inside the inflated cavity

region would be nearly undetectable (i.e. cloaked) upon choosing R1 appropriately.

In [81], the pre-stress affected the entire elastic domain however, and therefore its

influence was felt by both the source and receiver. In this chapter, we show how this

theory may be adapted in order to create a finite cloak by means of an additional

deformation taking the form of an axial stretch.

With reference to Figure 5.1, let us consider an elastic material within which is

located a cylindrical cavity of radius R2. Let us assume that the density of this

medium is ρ0 and its axial shear modulus (corresponding to shearing on planes par-

allel to the axis of the cylindrical cavity) is µ0. Additionally, we take a cylindrical

annulus of isotropic incompressible neo-Hookean material with associated shear mod-

ulus µ and density ρ and with inner and outer radii R1 and R2, respectively, with

R1 ≪ R2. The exact nature of this latter relationship will be described shortly. We

shall consider deformations of the cylindrical annulus in order that it can act as an

elastodynamic cloak to incoming antiplane elastic waves. We deform the material so

that its inner radius is significantly increased (to r1) but its outer radius R2 remains
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Figure 5.1: The incompressible neo-Hookean cylindrical annulus is pre-stressed as
depicted on the right. This annulus then creates a cloak when slotted into a cylindrical
cavity in an unbounded elastic medium, as illustrated on the left.

unchanged. The deformed cylindrical annulus can then slot into the existing cylin-

drical cavity region within the unbounded (unstressed) domain. We choose µ and ρ

so that subsequent waves satisfy the necessary continuity conditions on r = R2.

The constitutive behaviour of an incompressible neo-Hookean material is de-

scribed by the strain energy function [73]

W =
µ

2
(λ2

r + λ2
θ + λ2

z − 3), (5.1)

where λj, j = r, θ, z are the radial, azimuthal and axial principal stretches of the large

deformation. We consider the initial deformation of the cylindrical annulus domain

as depicted in Figure 5.1. Since the material is incompressible and R2 is required to

be fixed, the deformation is induced either by applying a uniform axial stretch L or a

radial pressure difference po − pi, where po and pi denote the pressures applied to the

outer and inner face of the cylindrical annulus, respectively. The ensuing deformation

is described via the relations

R = R(r), Θ = θ, Z =
z

L
, (5.2)

where (R, Θ, Z) and (r, θ, z) are cylindrical polar coordinates in the undeformed and

deformed configurations. Note the convention introduced in equation (5.2), i.e., that
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upper case variables correspond to the undeformed configuration whilst lower case

corresponds to the deformed configuration. This is analagous to the notation used

for untransformed and transformed configurations in equation (2.436).

The principal stretches for this deformation are

λr =
dr

dR
=

1

R′(r)
, λθ =

r

R(r)
, λz = L. (5.3)

For an incompressible material λrλθλz = 1, implying

R(r) =
√

L(r2 + α) (5.4)

where α = R2
2(L

−1 − 1) is a constant determined by imposing that the outer wall

of the cylindrical annulus remains fixed, i.e., R(R2) = R2. The deformation defined

by equation (5.4) is easily inverted to obtain r(R). Given incompressibility and the

fixed outer wall of the annulus, in order to induce this deformation we may either (i)

prescribe the axial stretch L which then determines the deformed inner radius r1 and

the radial pressure difference required to maintain the deformation or (ii) prescribe

the radial pressure difference which then determine the deformed inner radius r1 and

the axial stretch L.

We shall discuss the radial pressure difference shortly, but either way, we can

obtain L and thus feed this into equation (5.4). Imposing the requirement that

R(r1) = R1 and using the form of α gives rise to the useful relation

L =
R2

2 − R2
1

R2
2 − r2

1

. (5.5)

The Cauchy stress for an incompressible material is [73]

T = F
dW

dF
+ QI, (5.6)

where W , in this case, is the neo-Hookean strain energy function introduced in equa-

tion (5.1), F is the deformation gradient tensor, I is the identity tensor, and Q is

the scalar Lagrange multiplier associated with the incompressibility constraint.

Only diagonal components of the Cauchy stress are non-zero, being given by (no

sum on the indices)

Tjj = µj(r) + Q, (5.7)
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for j = r, θ, z, where

µr(r) =
µ2

L2

1

µθ(r)
=

µ

L

(

r2 + α

r2

)

, µz = L2µ. (5.8)

The second and third of the static equations of equilibrium div T = 0 (where div

signifies the divergence operator in the deformed configuration) merely yield Q =

Q(r). The remaining equation

∂Trr

∂r
+

1

r
(Trr − Tθθ) = 0, (5.9)

can be integrated using equations (5.7) and (5.8) to obtain Q(r).

Writing Trr|r=R2 = −po, Trr|r=r1 = −pi, we find

L(pi − po)

µ
=

1

2L

(

1 − R2
1

r2
1

)

+ log

(

r1

R1

)

. (5.10)

Given L and thus r1 via equation (5.5) this equation prescribes the required pressure

difference.

Now assume that the cylindrical annulus has been pre-stressed in an appropriate

manner and slotted into the unbounded elastic material with perfect bonding at r =

R2. We consider wave propagation in this medium given a time-harmonic antiplane

line source located at (R0, Θ0) with R0 > R2. In r > R2, the antiplane wave with

corresponding displacement which we shall denote by w(r, θ), is again governed by

equation (2.435). In the region r1 ≤ r ≤ R2, the wave satisfies a different equation

since this annulus region has been pre-stressed according to the deformation defined

by equations (5.2) and (5.4). We can obtain the governing equation using the theory of

small-on-large [73]. It was shown in [81] that the wave in this region satisfies equation

(2.437) but now with µr(r) and µθ(r) defined by equation (5.8) and with d(r) = ρ,

where ρ is the (constant) density of the cloaking material. Note, in particular, that

the density is homogeneous inside the cloak region.

Let us introduce the identity mapping for r > R2 and

R2 = L(r2 + α), Θ = θ, for r1 ≤ r ≤ R2, (5.11)

which corresponds to the actual physical deformation (see equation (5.4)). Finally,

define W (R, Θ) = w(r(R), θ(Θ)). It is then straightforward to show that the equa-

tion governing wave propagation in the entire domain R ≥ R1 is equation (2.435),
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provided that we choose µ = Lµ0 and ρ = Lρ0. These relations ensure that the

wavenumbers in the exterior and cloak regions are the same and they also maintain

continuity of traction on R = R2. Furthermore, since equation (5.11) corresponds to

the actual deformation, the inner radius r1 maps back to R1. Therefore, with the

appropriate choice of cloak material properties, the scattering problem in the unde-

formed configuration is equivalent to that in the deformed configuration. We can,

therefore, solve the equation in the undeformed configuration and then map back to

the deformed configuration to find the physical solution. Decomposing the solution

into incident and scattered parts W = Wi +Ws, we have Wi = C
4iµ0

H0(KS), where we

have defined the wavenumber K via K2 = ρ0
ω2

µ0
and S =

√

(X − X0)2 + (Y − Y0)2.

Here, Hn = H
(1)
n is the Hankel function of the first kind of order n. The scattered

field is written in the form [81]

Ws(R, Θ) =
∞

∑

n=−∞

(−i)nanHn(KR)ein(Θ−Θ0). (5.12)

Satisfaction of the traction free boundary condition on R = R1 gives an. We want

the wave field with respect to the deformed configuration, so we map back in order to

find w = wi +ws. The incident wave is most conveniently determined by using Graf’s

addition theorem in order to distinguish between the regions r < R0 and r > R0, as

was described in [81]. The incident and scattered fields are then, respectively,

wi(r, θ) =
C

4iµ0

∞
∑

n=−∞

ein(θ−θ0)

×



















Hn(KR0)Jn(K
√

L(r2 + α)), r1 ≤ r ≤ R2,

Hn(KR0)Jn(Kr), R2 ≤ r ≤ R0,

Hn(Kr)Jn(KR0), r > R0,

(5.13)

ws(r, θ) = − C

4iµ0

∞
∑

n=−∞

ein(θ−θ0) J′
n(KR1)

H′
n(KR1)

Hn(KR0)

×







Hn(K
√

L(r2 + α)), r1 ≤ r ≤ R2,

Hn(Kr), r ≥ R2.
(5.14)

The key to cloaking is to ensure that the scattered field is small compared with the

incident field, i.e., an ≪ 1. Note from equation (5.14) that an are solely dependent
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Figure 5.2: Cloaking of antiplane shear waves. Line source is located at Kr = KR0 =
8π, Θ0 = 0, shown as a white circle. Total displacement field is plotted. Upper left:
a region of (nondimensionalised) radius Kr1 = 2π is cloaked using a classic linear

elastic cloak g(R) = r1 +R
(

R2−r1

R2

)

in 2π ≤ Kr ≤ 4π. Upper right: scattering from a

cavity of radius KR1 = 2π
20

in an unstressed medium. Lower left: a “pre-stress” cloak
in 2π ≤ Kr ≤ 4π generated from an annulus with initial inner radius KR1 = 2π

20
.

Lower right: scattering from a cavity with radius KR1 = 2π in an unstressed medium.
Scattering and the shadow region presence in the latter is significant, as compared
with that for an equivalent sized cavity for the “pre-stress” cloak.

on the initial annulus inner radius R1 (and source distance R0) but are independent

of the deformed inner radius r1. Therefore, we must choose R1 such that KR1 ≪ 1

which will ensure negligible scattering regardless of the size of r1. We illustrate with

some examples in Figure 5.2, showing that the “pre-stress” cloak appears to work

well. In the figure, the “pre-stress” cloak is in the bottom left.

In conclusion, we have shown how a finite cloak for antiplane elastic waves can

be generated by employing nonlinear pre-stress of an incompressible neo-Hookean

hyperelastic material. The performance of the cloak is limited only by the size of

the initial radius of the cylindrical cavity inside the annulus region. The anisotropic,

inhomogeneous material moduli in the cloaking region, defined by equation (5.8),

are induced naturally by the pre-stress and therefore exotic metamaterials are not
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required. Dispersive effects, which naturally arise in metamaterials due to their inher-

ent inhomogeneity at some length scale, will not be present in the pre-stress context

and we also note that the density of the cloak is homogeneous. In order to acheive

the required pre-stress, a radial pressure difference is required across the cylindrical

annulus. It would be inconvenient to prescribe po on the outer face. However, since

we only need a pressure difference we can prescribe pi with po = 0, ensuring the pre-

scribed deformation and eliminating this difficulty. The incompressible neo-Hookean

model is an approximation to reality, holding in general for rubber-like materials

and moderate deformations. If the material is not neo-Hookean, invariance of the

scattering coefficients is not guaranteed in general and therefore similar exact results

will not hold. However, it is of interest to ascertain whether scattering from inflated

cavities in other hyperelastic pre-stressed media is still significantly reduced as com-

pared with an equivalent sized cavity in an unstressed medium. In the next section,

we investigate the cloaking properties of Mooney-Rivlin materials.

Finally, we remark that one of the fundamental advantages of the pre-stress ap-

proach is that pre-stress generates equations with incremental moduli (analogies of

the elastic moduli) which do not possess the minor symmetries. Therefore, this ap-

proach can be used for cloaking in the more general elastodynamic setting, where

classical linear elastic materials cannot be used [69].

5.3 Mooney-Rivlin cloak

In this section, we investigate the effectiveness of Mooney-Rivlin cloaks. The method-

ology is exactly the same as in the previous section, except now we use the Mooney-

Rivlin strain energy function instead of the neo-Hookean strain energy function:

W =
µ

2
(S1(λ

2
r + λ2

θ + λ2
z − 3) + S2(λ

2
rλ

2
θ + λ2

rλ
2
z + λ2

θλ
2
z − 3)), (5.15)

which leads to the following forms for the anistropic shear moduli:

µr(r) =
Tµ

L2

(

1 +
m

r2

)

, (5.16)
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and

µθ(r) =
Tµ

L2

(

1 − m

r2 + α

)

, (5.17)

where

m =
αLS1

T
, (5.18)

and

T = 1 + (L − 1)S1. (5.19)

These forms for µr(r) and µθ(r) lead to a slightly modified version of equation (5.10):

L(pi − po)

Sµ
=

1

2L

(

1 − R2
1

r2
1

)

+ log

(

r1

R1

)

, (5.20)

where

S =
S1

L
+ LS2. (5.21)

We also obtain a modified governing ordinary differential equation for w(r, θ) in the

cloaking region:

(

1 +
m

r2

) ∂2w

∂r2
+

1

r

(

1 − m

r2

) ∂w

∂r
+

r2 + α − m

r2(r2 + α)

∂2w

∂θ2
+ k2w = 0, (5.22)

where

k2 =
L2K2

T
, (5.23)

which, to the author’s knowledge, cannot be solved analytically, and so a numerical

solver is used in order to produce the data for Figure 5.3, where the effect of a

Mooney-Rivlin cloak on an incoming plane wave propagating the positive x-direction

is plotted. For this figure, S1 = 0.8, and the same values of Kr1 and KR1 were

selected as in the previous section (i.e. Kr1 = 2π and KR1 = π/10).

It can be observed that the Mooney-Rivlin cloak is not perfect as there is a

significant shadow region as well as some scattering in all directions. By comparison

with Figure 5.4, however, it does appear that there is less scattering for a Mooney-

Rivlin cloak than for an unstressed medium with Kr1 = 2π. We quantify the amount

of scattering in each case via the scattering cross-section (see [108], [55] and [69]).

The scattering cross-section is defined by

γ =
2

Kr1

∞
∑

n=0

en|an|2, (5.24)
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Figure 5.3: A Mooney-Rivlin cloak with S1 = 0.8, Kr1 = 2π and KR1 = π/10.

Figure 5.4: Scattering of SH waves from a cylindrical cavity of radius 2π.
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Figure 5.5: The scattering cross-section for horizontally polarised shear waves scat-
tered from a cylindrical cavity in a stress-free medium as a function of Kr1 with lines
corresponding to the value of γ for Kr1 = 2π in an unstressed medium (solid) and in
a pre-stressed medium with KR1 = π/10 (dashed).

where

en = 1 if n = 0,

= 2 if n ≥ 1. (5.25)

Using this definition, we determine the scattering cross-section in the stress free case

to be 1.71605 and, in the case of the Mooney-Rivlin cloak to be 1.28866. This confirms

our obervations from Figures 5.3 and 5.4 - that there is less scattering in the cloaked

case.

In Figure 5.5 we plot the scattering cross-section for horizontally polarised shear

waves scattered from a cylindrical cavity in a stress-free medium as a function of Kr1,

with horizontal lines corresponding to the value of γ corresponding to Kr1 = 2π in an

unstressed medium (solid) and in a pre-stressed medium with KR1 = π/10 (dashed).

We can see that the dashed line crosses the plotted function at a much lower value

of Kr1. In fact, this value can be determined to be Kr1 = 1.72460 (compared with

Kr1 = 6.28319 for the unstressed medium).

We conclude that, whilst not as effective as a neo-Hookean cloak (whose scattering
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Figure 5.6: A Mooney-Rivlin cloak with S1 = 0.9, Kr1 = 2π and KR1 = π/10.

cross-section for a cloak with Kr1 = 2π and KR1 = π/10 is 0.00536), a Mooney-Rivlin

cloak still significantly reduces the amount of energy scattered from a cylindrical

cavity in the cloaked region.

In Figure 5.6 we plot a Mooney-Rivlin cloak with S1 = 0.9. It can be observed

that, in this case, the cloak is more effective, but still not as effective as a neo-Hookean

cloak. The scattering cross-section in this case is 0.61282, which corresponds to an

unstressed cavity with Kr1 = 0.64608.

In Figure 5.7 we plot a Mooney-Rivlin cloak with S1 = 0.2. It can be observed

that, in this case, the cloak is not very effective. In fact, its scattering cross-section is

6.12203, which indicates that there is more scattering in this case than in the stress-

free case. This indicates that materials which are strongly dependent on the second

strain invariant are unsuitable for cloaking.

In Figure 5.8, we plot scattering cross-sections for various various values of S1 with

KR1 = π/10. The solid line corresponds to S1 = 0.8, the dashed line corresponds

to S1 = 0.9 and the dotted line corresponds to S1 = 0.2. The dot-dashed line

corresponds to a neo-Hookean material. We note that, for Mooney-Rivlin materials,

as expected, the greater the value of S1, the better the cloak.
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Figure 5.7: A Mooney-Rivlin cloak with S1 = 0.2, Kr1 = 2π and KR1 = π/10.
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Figure 5.8: Scattering cross-sections for various values of S1 with KR1 = π/10.
The solid line corresponds to S1 = 0.8, the dashed line corresponds to S1 = 0.9
and the dotted line corresponds to S1 = 0.2. The dot-dashed line corresponds to a
neo-Hookean material.
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Figure 5.9: Scattering cross-sections for various values of S1 with KR1 = π/10,
compared with scattering cross-section in an unstressed material. The solid line
corresponds to an unstressed material, the dashed line corresponds to S1 = 0.8 and
the dotted line corresponds to S1 = 0.2.

In Figure 5.9, we compare the scattering cross-sections of Mooney-Rivlin pre-

stress cloaks with S1 = 0.8 and S1 = 0.2 with the scattering cross-section of an

unstressed material. We observe that the cloak with S1 = 0.8 performs better than

an unstressed material over the whole range of Kr1 considered, whereas the cloak

with S1 = 0.2 performs better over a small range of Kr1, but then performs worse

than an unstressed material for larger Kr1.

5.4 Conclusions

We observe that, for cloaks with KR1 = π/10 and Kr1 = 2π, as S1 tends from

1 towards 0 (in other words, as the material becomes less dependent on the first

strain invariant, and more dependent on the second strain invariant), there is more

scattering from the cloaking region. Hence, an ideal cloak will be dependent on

the first strain invariant only. This explains why a neo-Hookean material is a good

material for cloaking purposes in this context.
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For materials which are strongly dependent on the second strain invariant the

scattering cross-section for larger values of Kr1 is greater than the scattering cross-

section for an unstressed material, hence these materials are unsuitable for this type

of pre-stress cloaking.

Potential areas of further work would be an investigation into pre-stress cloak-

ing using other strain energy functions and a comparison of the pre-stress cloaking

method with metamaterial cloaking.



Chapter 6

Scattering of shear waves from a

spherical cavity in a pre-stressed

host medium

6.1 Overview

In Chapter 2, we studied the scattering of dilatational and shear waves from a spher-

ical cavity in an unstressed linear elastic material. In this chapter we shall consider

the scattering of shear waves from a spherical cavity in a pre-stressed host medium.

A spherical void is located in an unbounded, nonlinear-elastic material. Pressure is

applied on the inner surface, and at infinity, modifying the radius of the cavity and

creating an inhomogeneous deformation field in the region close to the cavity. We aim

to show the effect that this pre-stress has on the scattering of small-amplitude shear

waves through the medium. We use the theory of small-on-large to determine the

linear wave equations that govern incremental waves in a spherical coordinate system

in the context of the applied pre-stress. We emphasise that the inhomogeneous de-

formation makes the coefficients of the governing ODEs spatially dependent. We will

show that if the pressure at infinity is greater than that on the surface of the cavity

then the resulting inhomogeneous stress region acts to magnify the scattering of one

component of shear wave and reduce the scattering of (infinitely long) dilatational

162
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waves.

In Section 6.2 we use the condition of incompressibility to determine the form of

the applied radial deformation. The static equations of equilibrium are determined

and they are used to determine the effect of the applied pressures on the radii. In

Section 6.3 we consider the propagation of small-amplitude time-harmonic waves

through the finitely-deformed medium and give the relevant governing equations. In

Section 6.4 we discuss the governing ODEs, which are hard to solve due to the spatial

dependence of their coefficients, as mentioned above, and describe the numerical

method used to solve them. In Section 6.5 we use the numerical method to determine

the effect of the pre-stress on the scattering coefficients and plot the scattering cross-

sections for the two components of the scattered shear waves.

6.2 Initial finite (static) deformation

Consider an unbounded, nonlinear-elastic medium. A spherical void of initial radius

A is located at the origin. We will assume that the host material is isotropic and

hyperelastic so that its constitutive behaviour may be described by a strain energy

function, W , which may be written as a function of either the principal stretches

λj, or the strain invariants ij or Ij (see [73], [34], [38] or Section 2.2.4). Pressure

will be applied on the inner surface of the void, and at infinity, which will have the

effect of deforming the radius of the void to a. Since we are working in curvilinear

coordinates, it will be convenient to use the tensorial notation of [73].

When we impose the above deformation, it is described by

R = R(r), Θ = θ, Φ = φ, (6.1)

where (R, Θ, Φ) and (r, θ, φ) are spherical polar coordinates in the undeformed and

deformed configurations respectively. Here, R and r measure the radial distance, Θ

and θ measure the inclination angle and Φ and φ measure the azimuthal angle. Note

the convention introduced in (6.1) above, i.e. that upper case variables correspond
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to the undeformed configuration whilst lower case corresponds to the deformed con-

figuration. It will be convenient for us to derive equations in terms of coordinates in

the deformed configuration. Position vectors with respect to a Cartesian basis, in the

undeformed (upper case) and deformed (lower case) configurations are

X =











R sin Θ cos Φ

R sin Θ sin Φ

R cos Θ











=











R(r) sin θ cos φ

R(r) sin θ sin φ

R(r) cos θ











, x =











r sin θ cos φ

r sin θ sin φ

r cos θ











. (6.2)

The deformation gradient tensor is given by F = Grad x, [73], where we use Grad to

represent the gradient operator with respect to the undeformed configuration.

In our case, we have

F =











λr 0 0

0 λθ 0

0 0 λφ











=















1

R′(r)
0 0

0
r

R(r)
0

0 0
r

R(r)















, (6.3)

where λr, λθ and λφ are the principal stretches in the radial, circumferential and

azimuthal directions respectively.

For an incompressible material, we must have J = det F = 1, and so

λrλθλφ =
r2

R2R′
= 1. (6.4)

Solving the above, we obtain

R(r) = (r3 + α)
1
3 , (6.5)

where α is a constant defined by

α = A3 − a3. (6.6)

As given in equation (2.81), the Cauchy stress tensor for an incompressible material

is

T = F
∂W

∂F
+ QI, (6.7)

where W is the strain energy function of the material under consideration, I is the

identity tensor and Q is a Lagrange multiplier associated with the incompressibility

constraint and referred to as an arbitrary hydrostatic pressure.
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Equation (6.7) can be written in index notation as

Tij = Fiα
∂W

∂Fjα

+ Qδij, (6.8)

where δij is the Kronecker delta. We note that since F is diagonal, so is T . In our

case, we have

T =











λr
∂W
∂λr

+ Q 0 0

0 λθ
∂W
∂λθ

+ Q 0

0 0 λφ
∂W
∂λφ

+ Q











. (6.9)

If we neglect body forces, then the static equations of equilibrium are given by

div T = 0, (6.10)

where as usual div to represent the divergence operator in the deformed configuration.

For our deformation, the only equation not trivially satisfied is the radial equation:

r
d

dr
Trr + 2(Trr − Tθθ) = 0, (6.11)

where we have used the fact that Tθθ = Tφφ.

If we assume that a hydrostatic pressure, pa, is applied to the inner surface and a

pressure, p∞, is applied at infinity, then we also have the following boundary condi-

tions:

Trr(a) = −pa, Trr → −p∞ as r → ∞. (6.12)

The radial equation of equilibrium can be used to determine the constant α in R(r)

given in (6.5). This is, however, dependent on our choice of strain energy function.

In Chapter 4.5 of [34], six classes of compressible material are presented for which

an analytic solution for R(r) may be found. Unfortunately, however, to the author’s

knowledge, none of these strain energy functions has been shown to exhibit results

which agree with experiments on rubber. Therefore, we shall use the incompressible

neo-Hookean and Mooney-Rivlin models.
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6.2.1 Specific strain energy functions

Neo-Hookean strain energy function

Here we present some results for a neo-Hookean material. The neo-Hookean strain

energy function is given by:

W =
µ

2
(I1 − 3) =

µ

2
(λ2

r + λ2
θ + λ2

z − 3), (6.13)

where µ is the shear modulus of the material under consideration. Upon substituting

the neo-Hookean strain energy function into equation (6.9), we obtain

Trr =
(r3 + α)

4
3

r4
µ + Q, (6.14)

Tθθ = Tφφ =
r2

(r3 + α)
2
3

µ + Q. (6.15)

We can then substitute the above into (6.11) in order to determine Q. Upon doing

so, we obtain

dQ

dr
=

2α2µ

r5(r3 + α)
2
3

, (6.16)

which gives

Q =
µ

2r4
(3r3 − α)(r3 + α)

1
3 + Q0, (6.17)

where Q0 is a constant to be determined from the boundary conditions.

Applying the boundary condition at infinity, we obtain

Q0 = −5µ + 2p∞
2

, (6.18)

and using the boundary condition on r = a, we obtain the following condition on α:

(5a3 + α)(a3 + α)
1
3

2a4
− 5

2
=

p∞ − pa

µ
. (6.19)

Via equation (6.6), we can eliminate α from the above in order to obtain

(4a3 + A3)A

2a4
− 5

2
=

p∞ − pa

µ
, (6.20)

which can we rewritten as

(4ā3 + 1)

2ā4
− 5

2
=

p∞ − pa

µ
, (6.21)

where

ā =
a

A
. (6.22)
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Mooney-Rivlin strain energy function

Here we present some results for a Mooney-Rivlin material. The Mooney-Rivlin strain

energy function is given by:

W =
µ

2
(S1(I1 − 3) + S2(I2 − 3))

=
µ

2
(S1(λ

2
r + λ2

θ + λ2
z − 3) + S2(λ

2
rλ

2
θ + λ2

rλ
2
z + λ2

θλ
2
z − 3)), (6.23)

where µ is the shear modulus of the material under consideration, and S1 and S2 are

two constants which sum to one. This strain energy function yields

Trr =

(

S1
(r3 + α)

4
3

r4
+ 2S2

(r3 + α)
2
3

r2

)

µ + Q, (6.24)

and

Tθθ = Tφφ =

(

S1
r2

(r3 + α)
2
3

+ S2

(

(r3 + α)2
3

r2
+

r4

(r3 + α)
4
3

))

µ + Q. (6.25)

We can then substitute the above into (6.11) in order to determine Q. Upon doing

so, we obtain

dQ

dr
=

2α2µ

r7

(

S1
r2

(r3 + α)
2
3

+ S2
r4

(r3 + α)
4
3

)

, (6.26)

which gives

Q =

(

S1

2r4
(3r3 − α)(r3 + α)

1
3 − S2

r2(r3 + α)
1
3

(3r3 + α)

)

µ + Q0, (6.27)

where Q0 is a constant to be determined from the boundary conditions.

Upon applying the boundary condition at infinity, we obtain

Q0 =
(2S2 − 5S1)µ − 2p∞

2
, (6.28)

and so the boundary condition on r = a gives the following condition on α:

(

(5a3 + α)(a3 + α)
1
3

2a4
− 5

2

)

S1 +

(

α − a3

a2(a3 + α)
1
3

+ 1

)

S2 =
p∞ − pa

µ
. (6.29)

Using equation (6.6), we can eliminate α from the above in order to obtain

(

(4a3 + A3)A

2a4
− 5

2

)

S1 +

(

A3 − 2a3

a2A
+ 1

)

S2 =
p∞ − pa

µ
, (6.30)
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which can we rewritten as

(

(4ā3 + 1)

2ā4
− 5

2

)

S1 +

(

1

ā
− 2ā + 1

)

S2 =
p∞ − pa

µ
, (6.31)

where again

ā =
a

A
. (6.32)

6.3 Incremental deformations

We now consider the propagation of small-amplitude, time-harmonic shear waves

through an incompressible medium. We use the theory of small-on-large, i.e. lineari-

sation about a non-linear deformation state [73]. The total displacement field may

be represented by

Ū = U + u. (6.33)

where U is the displacement field derived from the finite deformation (6.1) and u is

the incremental displacement. As mentioned, the incident field is a plane harmonic

shear wave which we will assume is propagating in the postive z-direction and is

polarised such that the displacements are in the x direction (see Figure 6.1). This

incremental displacement takes the form

u = ℜ{(u(r, θ, φ), v(r, θ, φ), w(r, θ, φ))e−iωt}, (6.34)

where ω is the frequency of the wave, and u, v and w are the displacements in

the radial, polar and azimuthal directions, respectively. We will also assume that

|u| ≪ |U |.

It can be shown that the equations of motion governing u, in the absence of body

forces, are given by

div ζ = ρ
∂2u

∂t2
, (6.35)

where ρ is the density of the pre-stressed body, and ζ is the so-called push forward of

the incremental nominal stress tensor (see equation (2.130)), which can be expressed

as

ζ = M : γ + qI − Qγ, (6.36)
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Figure 6.1: Shear waves incident on a spherical cavity.
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where γ = grad u, q is the perturbation to the Lagrange multiplier Q, and M is a

fourth order tensor, whose only non-zero components are given by

Miijj = J−1λiλjWij, (6.37)

Mijij = λ2
i (λiWi − λjWj)/(λ

2
i − λ2

j), λi 6= λj, i 6= j, (6.38)

Mijij =
1

2
(Miiii − Miijj + λiWi), λi = λj, i 6= j, (6.39)

Mjiij = Mijji = Mijij − J−1λiWi, i 6= j, (6.40)

where Wij = ∂2W/∂λi∂λj, etc.

In our case, we have

γ =

















∂u

∂r

1

r

(

∂u

∂θ
− v

)

1

r sin θ

∂u

∂φ
− w

r
∂v

∂r

1

r

(

∂v

∂θ
+ u

)

1

r sin θ

∂v

∂φ
− w cot θ

r
∂w

∂r

1

r

∂w

∂θ

u

r
+

v cot θ

r
+

1

r sin θ

∂w

∂φ

















e−iωt, (6.41)

and (6.35) can be written in spherical coordinates as follows:

∂ζ11

∂r
+

1

r

∂ζ21

∂θ
+

1

r sin θ

∂ζ31

∂φ
+

1

r
(2ζ11 − ζ22 − ζ33) +

cot θ

r
ζ21 = ρ

∂2u1

∂t2
,

∂ζ12

∂r
+

1

r

∂ζ22

∂θ
+

1

r sin θ

∂ζ32

∂φ
+

1

r
(2ζ12 + ζ21) +

cot θ

r
(ζ22 − ζ33) = ρ

∂2u2

∂t2
,

∂ζ13

∂r
+

1

r

∂ζ23

∂θ
+

1

r sin θ

∂ζ33

∂φ
+

1

r
(2ζ13 + ζ31) +

cot θ

r
(ζ23 + ζ32) = ρ

∂2u3

∂t2
. (6.42)

For our problem, (6.42) can be written in full as

(M1111 − Q)urr + (rM ′

1111 + 2M1111 − (rQ′ + 2Q))
ur

r
+ 2(rM ′

2211 + M2211 − M2222−

M2233+Q)
u

r2
+M2121

uθθ

r2
+cot θM2121

uθ

r2
+cot θ(M2211+M2112−Q)

vr

r
+(M2211+M2112−

Q)
wrθ

r sin θ
+(rM ′

2211+M2211−M2222−M2233−M2121+Q)
vθ

r2
+(M2211+M2112−Q)

vrθ

r
+

cot θ(rM ′

2211 +M2211−M2222−M2233−M2121 +Q)
v

r2
+

M2121

sin2 θ

uφφ

r2
+(rM ′

2211 +M2211−

M2222 − M2233 − M2121 + Q)
wφ

r2 sin θ
+

∂q

∂r
= −ρω2u, (6.43)
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M1212vrr + (rM ′

1212 + 2M1212)
vr

r
− (rM ′

2112 + M2112 + M2233 + M2121 + cot2 θM2222−

Q cot2 θ−(rQ′+Q))
v

r2
+(M2222−Q)

vθθ

r2
+cot θ(M2222−Q)

vθ

r2
+(M2112+M2211−Q)

urθ

r
+

(rM ′

2112+M2112+M2222+M2233+M2121−(rQ′+2Q))
uθ

r2
−(M2222+M3232−Q) cot θ

wφ

r2 sin θ

+ (M2233 + M2332 − Q)
wθφ

r2 sin θ
+ M3232

vφφ

r2 sin2 θ
+

1

r

∂q

∂θ
= −ρω2v, (6.44)

M1212wrr +(rM ′

1212 +2M1212)
wr

r
− (rM ′

2112 +M2112 −M2332 +M2121 +cot2 θM3232−

rQ′)
w

r2
+(M2222−Q)

wφφ

r2 sin2 θ
+M2323

wθ

r2
+(M2112+M2211−Q)

urφ

r sin θ
+(rM ′

2112+M2112+

M2222+M2233+M2121−(rQ′+2Q))
uφ

r2 sin θ
+M2323

wθθ

r2
+(M2233+M2332−Q)

vθφ

r2 sin θ
+

(M2222 + M3232 − Q) cot θ
vφ

r2 sin θ
+

1

r sin θ

∂q

∂φ
= −ρω2w, (6.45)

where subscripts on u, v and w denote partial differentiation and M ′
ijkl = dMijkl/dr.

We now expand u in terms of the vector spherical harmonics, Y lm, Ψlm and Φlm,

which are defined as follows:

Y lm = Y m
l er, Ψlm = r∇Y m

l , Φlm = r ×∇Y m
l , (6.46)

where er is a unit vector in the radial direction, r is a position vector, and Y m
l is a

scalar spherical harmonic, defined as follows:

Y m
l = Y m

l (θ, φ) = Pm
l (cos θ)eimφ, (6.47)

where Pm
l is an associated Legendre polynomial of degree l and order m.

The expansion is as follows:

u = ℜ
(

∞
∑

l=0

l
∑

m=−l

(fl(r)Y lm + gl(r)Ψlm + hl(r)Φlm)e−iωt

)

, (6.48)

so that u, v and w can be expressed as

u(r, θ, φ) =
∞

∑

l=0

l
∑

m=−l

fl(r)P
m
l (cos θ)eimφ, (6.49)

v(r, θ, φ) =
∞

∑

l=0

l
∑

m=−l

(

gl(r)
d

dθ
(Pm

l (cos θ))eimφ + hl(r)
Pm

l (cos θ)

sin θ
imeimφ

)

, (6.50)
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w(r, θ, φ) =
∞

∑

l=0

l
∑

m=−l

(

gl(r)
Pm

l (cos θ)

sin θ
imeimφ − hl(r)

d

dθ
(Pm

l (cos θ))eimφ

)

. (6.51)

We also expand q in terms of a scalar spherical harmonic as follows:

q =
∞

∑

l=0

l
∑

m=−l

Bl(r)Y
m
l (θ, φ) =

∞
∑

l=0

l
∑

m=−l

Bl(r)P
m
l (cos θ)eimφ. (6.52)

Upon making the above expansions, and exploiting incompressibility, equations (6.43)

- (6.45) reduce to:

(

M1111f
′′ + (rM ′

1111 + 2M1111 − rQ′)
f ′

r
+ (2rM ′

2211 + 2M2211 − 2M2222 − 2M2233−

l(l + 1)M2121)
f

r2
− l(l + 1)

(

(M2211 + M2112)
g′

r
+ (rM ′

2211 + M2211 − M2121 − M2222 −

M2233)
g

r2

)

+ ρω2f + B′(r)
)

Pm
l (cos θ)eimφ = 0, (6.53)

(

M1212g
′′ + (rM ′

1212 + 2M1212)
g′

r
− (rM ′

2112 + M2112 + M2233 + M2121 + (l(l + 1)−

1)M2222 − rQ′)
g

r2
+ (M2112 + M2211)

f ′

r
+ (rM ′

2112 + M2112 + M2233 + M2121 + M2222

−rQ′)
f

r2
+ ρω2g +

B(r)

r

)

d

dθ
(Pm

l (cos θ))eimφ +

(

M1212h
′′ + (rM ′

1212 + 2M1212)
h′

r
−

(rM ′

2112 + M2112 + M2233 + M2121 − M2222 + l(l + 1)M3232 − rQ′)
h

r2
+

ρω2h
) Pm

l (cos θ)

sin θ
imeimφ = 0, (6.54)

(

M1212g
′′ + (rM ′

1212 + 2M1212)
g′

r
− (rM ′

2112 + M2112 + M2233 + M2121 + (l(l + 1)−

1)M2222 − rQ′)
g

r2
+ (M2112 + M2211)

f ′

r
+ (rM ′

2112 + M2112 + M2233 + M2121 + M2222

−rQ′)
f

r2
+ ρω2g +

B(r)

r

)

Pm
l (cos θ)

sin θ
imeimφ +

(

M1212h
′′ + (rM ′

1212 + 2M1212)
h′

r
−

(rM ′

2112 + M2112 + M2233 + M2121 − M2222 + l(l + 1)M3232 − rQ′)
h

r2
+

ρω2h
) d

dθ
(Pm

l (cos θ))eimφ = 0, (6.55)

where we have dropped the subscript l on f(r), g(r), h(r) and B(r).
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Due to the orthogonality of d
dθ

(Pm
l (cos θ))eimφ and

P m
l

(cos θ)

sin θ
imeimφ, the above equa-

tions can be separated as follows:

M1111f
′′ + (rM ′

1111 + 2M1111 − rQ′)
f ′

r
+ (2rM ′

2211 + 2M2211 − 2M2222 − 2M2233−

l(l + 1)M2121)
f

r2
− l(l + 1)

(

(M2211 + M2112)
g′

r
+ (rM ′

2211 + M2211 − M2121 − M2222 −

M2233)
g

r2

)

+ ρω2f + B′(r) = 0, (6.56)

M1212g
′′ + (rM ′

1212 + 2M1212)
g′

r
− (rM ′

2112 + M2112 + M2233 + M2121 + (l(l + 1)−

1)M2222 − rQ′)
g

r2
+ (M2112 + M2211)

f ′

r
+ (rM ′

2112 + M2112 + M2233 + M2121 + M2222

− rQ′)
f

r2
+ ρω2g +

B(r)

r
= 0, (6.57)

M1212h
′′+(rM ′

1212+2M1212)
h′

r
−(rM ′

2112+M2112+M2233+M2121−M2222+l(l+1)M3232

− rQ′)
h

r2
+ ρω2h = 0, (6.58)

Note that the incompressibility condition, div u = 0, gives us a condition on f and

g:

div u = 0 ⇒ 1

r2

∂

∂r
(r2u) +

1

r sin θ

∂

∂θ
(v sin θ) +

1

r sin θ

∂w

∂φ
= 0 (6.59)

⇒ ∂f

∂r
+

2

r
f − l(l + 1)

r
g = 0 (6.60)

⇒ g(r) =
1

l(l + 1)
(rf ′(r) + 2f(r)). (6.61)

Using this condition, we can eliminate g from (6.56) and (6.57) as follows:

(M1111 +M2211 +M2112)f
′′ +(rM ′

1111 +2M1111−rM ′

2211−4M2211−3M2112 +M2121+

M2222 + M2233 − rQ′)
f ′

r
+ (2 − l(l + 1))M2121)

f

r2
+ ρω2f + B′(r) = 0, (6.62)

rM1212f
(3)+(rM ′

1212+6M1212)f
′′−(rM ′

2112+(1−l(l+1))M2112−3rM ′

1212−6M1212+

M2233+M2121+(l(l+1)−1)M2222−l(l+1)M2211−rQ′)
f ′

r
−(2−l(l+1))(rM ′

2112+M2112+

M2233 + M2121 − M2222 − rQ′)
f

r2
+ ρω2rf ′ + 2ρω2f + l(l + 1)

B(r)

r
= 0. (6.63)
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6.3.1 Neo-Hookean material

If we use the neo-Hookean strain energy function, then the components of the tensor

M can be explicitly evaluated:

M1111 = M1212 =
(r3 + α)

4
3

r4
µ, (6.64)

M1122 = M2211 = M1133 = M3311 = M2233 = M3322 = M1221 = M2112 = M2332

= M3223 = 0, (6.65)

M2222 = M3333 = M2121 = M2323 = M3232 =
r2

(r3 + α)
2
3

µ, (6.66)

and equations (6.62), (6.63) and (6.58) simplify to

(r3 + α)
4
3

r4
f ′′ +

4(r6 − α2)

r5(r3 + α)
2
3

f ′ +

(

2 − l(l + 1)

(r3 + α)
2
3

+ k2

)

f +
B′(r)

µ
= 0, (6.67)

(r3 + α)
4
3

r3
f (3) +

2(3r6 + 4r3α + α2)

r4(r3 + α)
2
3

f ′′ +

(

r6(6 − l(l + 1)) − 4α2

r5(r3 + α)
2
3

+ rk2

)

f ′+

2

(

(2 − l(l + 1))α2

r6(r3 + α)
2
3

+ k2

)

f + l(l + 1)
B(r)

µr
= 0, (6.68)

(r3 + α)
4
3

r4
h′′ +

2(r6 − α2)

r5(r3 + α)
2
3

h′ +

(

2α2 − l(l + 1)r6

r6(r3 + α)
2
3

+ k2

)

h = 0, (6.69)

where

k2 =
ρω2

µ
. (6.70)

B(r) can be eliminated from (6.67) and (6.68) in order to obtain

(r3 + α)
4
3

r2
f (4) + 8(r3 + α)

1
3 f (3)+

(

2(6 − l(l + 1))r6 − 2(2 + l(l + 1))r3α − (10 + l(l + 1))α2

r4(r3 + α)
2
3

+ r2k2

)

f ′′+

2

(

l(l + 1)
(−2r9 − 3r6α + r3α2 + α3)

r5(r3 + α)
5
3

+
2(3r6α + 7r3α2 + 5α3)

r5(r3 + α)
5
3

+ 2rk2

)

f ′+

(l(l + 1) − 2)

(

2(7r3α2 + 5α3)

r6(r3 + α)
5
3

+
l(l + 1)

(r3 + α)
2
3

− k2

)

f = 0. (6.71)

We now have two ordinary differential equations ((6.71) and (6.69)) in two unknowns

(f and h).
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6.3.2 Boundary conditions

It was shown in equation (2.163) that, for an incompressible material, on r = a the

following boundary condition must be satisfied:

ζT n = paγ
T n, (6.72)

where pa is the pressure applied on r = a and n is the outer unit normal to the

boundary. In our case, n = er.

In the case considered here, we obtain the following:

(

(M1111 − Q − pa)f
′(r) − M1122l(l + 1)

g(r)

r
+ 2M1122

f(r)

r
+

B(r)) Pm
l (cos θ)eimφ

∣

∣

r=a
= 0, (6.73)

and

(

M1212g
′(r) + (M1221 − Q − pa)

f(r) − g(r)

r

)

d

dθ
(Pm

l (cos θ))eimφ+

(

M1212h
′(r) − (M1221 − Q − pa)

h(r)

r

)

Pm
l (cos θ)

sin θ
imeimφ

∣

∣

∣

∣

r=a

= 0. (6.74)

Using the relationship between f and g, and the orthogonality of d
dθ

(Pm
l (cos θ))eimφ

and
P m

l
(cos θ)

sin θ
imeimφ, the above equations can be simplified as follows:

(M1111 − M1122 − Q − pa)f
′(r) + B(r)|r=a = 0, (6.75)

M1212(rf
′′(r) + 3f ′(r)) + (M1221 − Q − pa)

(

l(l + 1)
f(r)

r
− f ′(r) − 2

f(r)

r

)∣

∣

∣

∣

r=a

= 0,

(6.76)

M1212h
′(r) − (M1221 − Q − pa)

h(r)

r

∣

∣

∣

∣

r=a

= 0. (6.77)

6.4 Hybrid analytical-numerical method

In this section we divide the host domain into two regions (see Figure 6.4). We

assume that there exists some radius b, which is large enough such that for r > b the

quantities in equations (6.64) and (6.66) can be approximated by

M1111 = M1212 = M2222 = M3333 = M2121 = M2323 = M3232 = µ. (6.78)
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r = a

r = b

inhomogeneous region

homogeneous region

Figure 6.2: Discretisation of material into inhomogeneous region local to void and
homogeneous region far from void.

In other words, we treat the region r > b as being homogeneous, and then use a

numerical solver in order to analyse the inhomogeneous inner region, r < b.

Upon using the above approximation, equations (6.62) and (6.63) reduce, for

r > b, to

f ′′ +
4

r
f ′ +

(

2 − l(l + 1)

r2
+ k2

)

f +
B′(r)

µ
= 0, (6.79)

and

rf (3) + 6f ′′ +

(

6 − l(l + 1)

r
+ rk2

)

f ′ + 2k2f +
B(r)

µr
= 0, (6.80)

and equation (6.58) reduces to

h′′ +
2

r
h′ +

(

k2 − l(l + 1)

r2

)

h = 0. (6.81)

Once again we can eliminate B(r) from equations (6.79) and (6.80) in order to obtain

r2f (4) + 8rf (3) + (2(6 − l(l + 1)) + r2k2)f ′′ + 4

(

rk2 − l(l + 1)

r

)

f ′+

(l(l + 1) − 2)

(

l(l + 1)

r2
− k2

)

f = 0. (6.82)

The general solution of this equation can be written as

fl(r) = C
(1)
l

jl(kr)

r
+ C

(2)
l

hl(kr)

r
+ C

(3)
l r−(l+2) + C

(4)
l rl−1, (6.83)
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where C
(1)
l , C

(2)
l , C

(3)
l and C

(4)
l are constants.

The third and fourth terms in the above are algebraic, but in fact correspond to

spherical Bessel functions of the second and first kind, respectively, in the limit as the

wavelength tends to infinity (see Appendix C). The infinite wavelength is due to the

fact that as a material tends towards incompressibility, the wavenumber for P-waves

tends to 0. Therefore, the third and fourth terms in the above can be interpreted

as infinite wavelength scattered P-waves which have been excited by the incoming

shear waves. These are required in order to satisfy the boundary conditions. We

immediately choose C
(4)
l = 0 since for l > 1, the fourth term is unbounded as r → ∞.

The general solution of equation (6.81) can be written as

hl(r) = D
(1)
l jl(kr) + D

(2)
l hl(kr), (6.84)

where D
(1)
l and D

(2)
l are constants.

In the outer region, we will assume there is an incoming plane wave propagating in

the positive z-direction and polarised such that the displacement is in the x-direction.

In [29] it is given that the displacement vector for such a wave may be written as

ui =
∞

∑

n=1

(n + 1)in

n(n + 1)
(M 1

o1n(r) − iN 1
e1n(r))e−iωt, (6.85)

where M and N are defined, as in [62] and [29], by

M 1
σmn = (n(n + 1))

1
2 Cσ

mnjn(kr), (6.86)

and

N 1
σmn = n(n + 1)P σ

mn

1

kr
jn(kr) + (n(n + 1))

1
2 Bσ

mn

1

kr

d

dr
(rjn(kr)), (6.87)

in which the label σ is either e (even) or o (odd) and designates whether the even

(real) or odd (imaginary) part of the azimuthal function is to be employed,

P mn = Y nm = erY
m
n (θ, φ), (6.88)



CHAPTER 6. WAVE SCATTERING FROM A SPHERICAL CAVITY 178

Bmn =
(n(n + 1))

1
2

(2n + 1) sin θ

(

eθ

(

n − m + 1

n + 1
Y m

n+1 −
n + m

n
Y m

n−1

)

+ eφ
m(2n + 1)

n(n + 1)
iY m

n

)

= (n(n + 1))−
1
2

(

eθ
d

dθ
(Pm

n (cos θ))eimφ + eφ
Pm

n (cos θ)

sin θ
imeimφ

)

,

= (n(n + 1))−
1
2Ψnm

= er × Cmn, (6.89)

and

Cmn =
(n(n + 1))

1
2

(2n + 1) sin θ

(

eθ
m(2n + 1)

n(n + 1)
iY m

n − eφ

(

n − m + 1

n + 1
Y m

n+1 −
n + m

n
Y m

n−1

))

= (n(n + 1))−
1
2

(

eθ
Pm

n (cos θ)

sin θ
imeimφ − eφ

d

dθ
(Pm

n (cos θ))eimφ

)

= (n(n + 1))−
1
2Φnm. (6.90)

Using the above, we can rewrite M and N as

M 1
σmn = jn(kr)Φnm, (6.91)

and

N 1
σmn = n(n + 1)

jn(kr)

kr
Y nm +

1

kr

d

dr
(rjn(kr))Ψnm. (6.92)

Therefore, by refering to (6.48), we see that the incoming wave has the following

components:

f i
l (r) =







−(2l + 1)il+1 jl(kr)
kr

l ≥ 1

0 l ≤ 0
, (6.93)

gi
l(r) =







− (2l+1)il+1

l(l+1)
1
kr

d
dr

(rjl(kr)) l ≥ 1

0 l ≤ 0
, (6.94)

hi
l(r) =







(2l+1)il

l(l+1)
jl(kr) l ≥ 1

0 l ≤ 0
. (6.95)

Note that f i
l (r) and gi

l(r) satisfy

∂f i
l

∂r
+

2

r
f i

l −
l(l + 1)

r
gi

l = 0, (6.96)

as required.
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We now consider the scattered part of the wave. The shear portion of the scattered

field can be written, similarly to the above, as

uss =
∞

∑

n=1

(2n + 1)in

n(n + 1)
(anM

3
o1n(r) − ibnN

3
e1n(r))e−iωt, (6.97)

where an and bn are scattering coefficients,

M 3
σmn = (n(n + 1))

1
2 Cσ

mnh
(1)
n (kr), (6.98)

and

N 3
σmn = n(n + 1)P σ

mn

1

kr
h(1)

n (kr) + (n(n + 1))
1
2 Bσ

mn

1

kr

d

dr
(rh(1)

n (kr)). (6.99)

This corresponds to the following forms for f ss
l (r), gss

l (r) and hss
l (r):

f ss
l (r) =







−bl(2l + 1)il+1 h
(1)
l

(kr)

kr
l ≥ 1

0 l ≤ 0
, (6.100)

gss
l (r) =







−bl
(2l+1)il+1

l(l+1)
1
kr

d
dr

(rh
(1)
l (kr)) l ≥ 1

0 l ≤ 0
, (6.101)

hss
l (r) =







al
(2l+1)il

l(l+1)
h

(1)
l (kr) l ≥ 1

0 l ≤ 0
, (6.102)

and we can show that f ss
l (r) and gss

l (r) satisfy

∂f ss
l

∂r
+

2

r
f ss

l − l(l + 1)

r
gss

l = 0, (6.103)

as required. The part of the scattered field which takes the form of a compressional

wave with infinite wavelength can be written as

usc =
∞

∑

n=1

(2n + 1)in

n(n + 1)
dnL̂

3

e1n(r)e−iωt, (6.104)

where dn is a scattering coefficient, and

L̂
3

e1n = in(n + 1)P σ
mn

r−(n+2)

k
− in(n(n + 1))

1
2 Bσ

mn

r−(n+2)

k
. (6.105)

This gives the following forms for f sc
l (r), gsc

l (r) and hsc
l (r):

f sc
l (r) =







dl
(2l+1)il+1

k
r−(l+2) l ≥ 1

0 l ≤ 0
, (6.106)
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gsc
l (r) =







−dl
(2l+1)il+1

k(l+1)
r−(l+2) l ≥ 1

0 l ≤ 0
, (6.107)

hsc
l (r) = 0. (6.108)

Note that f sc
l (r) and gsc

l (r) satisfy

∂f sc
l

∂r
+

2

r
f sc

l − l(l + 1)

r
gsc

l = 0, (6.109)

as required.

The total scattered field is given by

us = uss + usc, (6.110)

and the total field is given by

u = ui + us. (6.111)

Therefore, we have

fl(r) = −(2l + 1)il+1 jl(kr)

kr
− bl(2l + 1)il+1h

(1)
l (kr)

kr
− dl

(2l + 1)il+1

k
r−(l+2), (6.112)

gl(r) = −(2l + 1)il+1

l(l + 1)

1

kr

d

dr
(rjl(kr)) − bl

(2l + 1)il+1

l(l + 1)

1

kr

d

dr
(rh

(1)
l (kr))+

dl
(2l + 1)il+1

k(l + 1)
r−(l+2), (6.113)

hl(r) =
(2l + 1)il

l(l + 1)
jl(kr) + al

(2l + 1)il

l(l + 1)
h

(1)
l (kr), (6.114)

for l ≥ 1, and

fl(r) = gl(r) = hl(r) = 0, (6.115)

for l ≤ 0.

We now apply continuity of displacement and traction in order to determine the

boundary conditions for a numerical solver on r = b. In the following, the superscript

I denotes the inner solutions (in the region r < b). We will assume that

f I
l (r) = −(2l + 1)il+1

k
Fl(r), (6.116)



CHAPTER 6. WAVE SCATTERING FROM A SPHERICAL CAVITY 181

and

hI
l (r) =

(2l + 1)il

l(l + 1)
Hl(r). (6.117)

We note that Fl(r) satisfies

(r3 + α)
4
3

r2
F

(4)
l + 8(r3 + α)

1
3 F

(3)
l +

(

2(6 − l(l + 1))r6 − 2(2 + l(l + 1))r3α − (10 + l(l + 1))α2

r4(r3 + α)
2
3

+ r2k2

)

F ′′

l +

2

(

l(l + 1)
(−2r9 − 3r6α + r3α2 + α3)

r5(r3 + α)
5
3

+
2(3r6α + 7r3α2 + 5α3)

r5(r3 + α)
5
3

+ 2rk2

)

F ′

l +

(l(l + 1) − 2)

(

2(7r3α2 + 5α3)

r6(r3 + α)
5
3

+
l(l + 1)

(r3 + α)
2
3

− k2

)

Fl = 0, (6.118)

and Hl(r) satisfies

(r3 + α)
4
3

r4
H ′′

l +
2(r6 − α2)

r5(r3 + α)
2
3

H ′

l +

(

2α2 − l(l + 1)r6

r6(r3 + α)
2
3

+ k2

)

Hl = 0. (6.119)

Continuity of displacement and traction on r = b gives us

fl(b) = f I
l (b), (6.120)

f ′

l (b) = f I′
l (b), (6.121)

f ′′

l (b) = f I′′
l (b), (6.122)

f
(3)
l (b) = f

I(3)
l (b), (6.123)

hl(b) = hI
l (b), (6.124)

and

h′

l(b) = hI′
l (b), (6.125)

and thus

Fl(b) =
jl(kb)

b
+ bl

h
(1)
l (kb)

b
+ dlb

−(l+2), (6.126)

F ′

l (b) = k
j′l(kb)

b
− jl(kb)

b2
+ bl

(

k
h

(1)′
l (kb)

b
− h

(1)
l (kb)

b2

)

− dl(l + 2)b−l(l+3), (6.127)

F ′′

l (b) = k2 j′′l (kb)

b
− 2k

j′l(kb)

b2
+ 2

jl(kb)

b3
+

bl

(

k2h
(1)′′
l (kb)

b
− 2k

h
(1)′
l (kb)

b2
+ 2

h
(1)
l (kb)

b3

)

+ dl(l + 2)(l + 3)b−(l+4), (6.128)
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and

F
(3)
l (b) = k3 j

(3)
l (kb)

b
− 3k2 j′′l (kb)

b2
+ 6k

j′l(kb)

b3
− 6

jl(kb)

b4
+

bl

(

k3h
(1)(3)
l (kb)

b
− 3k2h

(1)′′
l (kb)

b2
+ 6k

h
(1)′
l (kb)

b3
− 6

h
(1)
l (kb)

b4

)

−

dl(l + 2)(l + 3)(l + 4)b−(l+5), (6.129)

with

Hl(b) = jl(kb) + alh
(1)
l (kb), (6.130)

and

H ′

l(b) = kj′l(kb) + alkH
(1)′
l (kb). (6.131)

The scattering coefficients al, bl and dl can be eliminated from the above equations

to give us two boundary conditions on Fl(r) and one boundary condition on Hl(r)

on r = b. The other boundary conditions are

2
(a3 + α)

4
3

a4
F ′

l (a) + B(a) = 0, (6.132)

F ′′

l (a) + 2
F ′

l (a)

a
+ (l(l + 1) − 2)

Fl(a)

a2
= 0, (6.133)

and

H ′

l(a) − Hl(a)

a
= 0, (6.134)

and so we can then use these to solve the two ordinary differential equations using a

numerical solver.

Once Fl(b), F ′
l (b) and Hl(b) have been evaluated numerically, we can use equations

(6.126) and (6.127) in order to determine the scattering coefficients bl and dl, and

equation (6.130) in order to determine the scattering coefficients al.

As in previous chapters, the numerical solver used in this case was NDSolve

in Mathematica 7. The numerical method was, again, automatically selected by

NDSolve, and since the problem considered here is a boundary value problem, the

Gelfand-Lokutsiyevskii chasing method [8] was used. The AccuracyGoal and Preci-

sionGoal were both set to 25 digits, and the WorkingPrecision was set to 50.
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Figure 6.3: |a1| as a function of kA for various values of (p∞ − pa)/µ. The solid line
corresponds to (p∞ − pa)/µ = 0, the dashed line corresponds to (p∞ − pa)/µ = 1.3
and the dotted line corresponds to (p∞ − pa)/µ = −0.5.

6.5 Results

Using the hybrid analytical-numerical method described above, we can plot the effect

of the pre-stress on the scattering coefficients. In Figure 6.3, we give the absolute

value of the scattering coefficient a1 as a function of kA for various values of (p∞ −

pa)/µ. The solid line corresponds to (p∞ − pa)/µ = 0, the dashed line corresponds

to (p∞ − pa)/µ = 1.3 and the dotted line corresponds to (p∞ − pa)/µ = −0.5. These

values of (p∞ − pa)/µ have been chosen as they corresponds to α = 0 and α = ±1.

In Figure 6.4, we plot |a1| as a function of (p∞ − pa)/µ for various values of kA.

The solid line corresponds to kA = 1, the dashed line corresponds to kA = 2 and the

dotted line corresponds to kA = 0.5.

In Figure 6.5, we plot the scattering cross-section γa, defined as

γa =
2

(ka)2

∞
∑

l=1

(2l + 1)|al|2, (6.135)

as a function of kA for various values of (p∞ − pa)/µ. The solid line corresponds to

(p∞ − pa)/µ = 0, the dashed line corresponds to (p∞ − pa)/µ = 1.3 and the dotted

line corresponds to (p∞ − pa)/µ = −0.5. The above infinite sum was truncated at a
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Figure 6.4: |a1| as a function of (p∞ − pa)/µ for various values of kA. The solid line
corresponds to kA = 1, the dashed line corresponds to kA = 2 and the dotted line
corresponds to kA = 0.5.

value of L such that the magnitude of al for l ≥ L was so small that its contribution

to γa could not be observed in the figures given. For the range of (p∞ − pa)/µ and

kA considered here, this value was L = 5 and this truncation number was used in

Figures 6.5 and 6.6.

In Figure 6.6, we plot the scattering cross-section γa as a function of (p∞ − pa)/µ

for various values of kA. The solid line corresponds to kA = 1, the dashed line

corresponds to kA = 2 and the dotted line corresponds to kA = 0.5.

We observe that the magnitude of a1 is strongly dependent on the (nondimension-

alised) pressure difference (p∞ − pa)/µ. This dependence is not always monotonic as

can be seen in Figure 6.4. However, the overall trend appears to be that as (p∞−pa)/µ

increases, so does |a1|. This is, perhaps, counterintuitive as it means that the scat-

tering of this mode decreases even though the radius of the cavity increases.

The scattering cross-section γa is also strongly dependent on (p∞ − pa)/µ, as is

illustrated in Figure 6.6. Note that the scattering cross-section is at a minimum at a

different value of (p∞ − pa)/µ for different values of kA.
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Figure 6.5: The scattering cross-section γa as a function of kA for various values
of (p∞ − pa)/µ. The solid line corresponds to (p∞ − pa)/µ = 0, the dashed line
corresponds to (p∞ − pa)/µ = 1.3 and the dotted line corresponds to (p∞ − pa)/µ =
−0.5.
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Figure 6.6: The scattering cross-section γa as a function of (p∞ − pa)/µ for various
values of kA. The solid line corresponds to kA = 1, the dashed line corresponds to
kA = 2 and the dotted line corresponds to kA = 0.5.
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Figure 6.7: |b1| as a function of kA for various values of (p∞ − pa)/µ. The solid line
corresponds to (p∞ − pa)/µ = 0, the dashed line corresponds to (p∞ − pa)/µ = 1.3
and the dotted line corresponds to (p∞ − pa)/µ = −0.5.

In Figure 6.7, we plot the absolute value of the scattering coefficient b1 as a

function of kA for various values of (p∞ − pa)/µ. The solid line corresponds to

(p∞ − pa)/µ = 0, the dashed line corresponds to (p∞ − pa)/µ = 1.3 and the dotted

line corresponds to (p∞ − pa)/µ = −0.5.

In Figure 6.8, we plot |b1| as a function of (p∞ − pa)/µ for various values of kA.

The solid line corresponds to kA = 1, the dashed line corresponds to kA = 2 and the

dotted line corresponds to kA = 0.5.

In Figure 6.9, we plot the scattering cross-section γb, defined as

γb =
2

(ka)2

∞
∑

l=1

(2l + 1)|bl|2, (6.136)

as a function of kA for various values of (p∞ − pa)/µ. The solid line corresponds to

(p∞ − pa)/µ = 0, the dashed line corresponds to (p∞ − pa)/µ = 1.3 and the dotted

line corresponds to (p∞ − pa)/µ = −0.5. As with γa, the infinite sum in γb was

truncated at a value of L such that the magnitude of bl for l ≥ L was so small that

its contribution could not be observed in Figures 6.9 and 6.10. For the range of

(p∞ − pa)/µ and kA considered here, this value was L = 5.
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Figure 6.8: |b1| as a function of (p∞ − pa)/µ for various values of kA. The solid line
corresponds to kA = 1, the dashed line corresponds to kA = 2 and the dotted line
corresponds to kA = 0.5.
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Figure 6.9: The scattering cross-section γb as a function of kA for various values
of (p∞ − pa)/µ. The solid line corresponds to (p∞ − pa)/µ = 0, the dashed line
corresponds to (p∞ − pa)/µ = 1.3 and the dotted line corresponds to (p∞ − pa)/µ =
−0.5.
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Figure 6.10: The scattering cross-section γb as a function of (p∞ − pa)/µ for various
values of kA. The solid line corresponds to kA = 1, the dashed line corresponds to
kA = 2 and the dotted line corresponds to kA = 0.5.

In Figure 6.10, we plot the scattering cross-section γb as a function of (p∞−pa)/µ

for various values of kA. The solid line corresponds to kA = 1, the dashed line

corresponds to kA = 2 and the dotted line corresponds to kA = 0.5.

We observe that, as for a1, the magnitude of b1 is strongly dependent on the

(nondimensionalised) pressure difference (p∞ − pa)/µ. The overall trend appears

to be that as (p∞ − pa)/µ increases, so does |b1|. This trend is borne out by the

dependence of the scattering cross-section γb on (p∞ − pa)/µ, as is illustrated in

Figure 6.10.

In Figure 6.11, we plot the absolute value of the scattering coefficient d1 as a

function of kA for various values of (p∞ − pa)/µ. The solid line corresponds to

(p∞ − pa)/µ = 0, the dashed line corresponds to (p∞ − pa)/µ = 1.3 and the dotted

line corresponds to (p∞ − pa)/µ = −0.5.

In Figure 6.12, we plot |d1| as a function of (p∞ − pa)/µ for various values of kA.

The solid line corresponds to kA = 1, the dashed line corresponds to kA = 2 and the

dotted line corresponds to kA = 0.5.

In general, the scattering cross section for dilatational waves scattered from a
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Figure 6.11: |d1| as a function of kA for various values of (p∞ − pa)/µ. The solid line
corresponds to (p∞ − pa)/µ = 0, the dashed line corresponds to (p∞ − pa)/µ = 1.3
and the dotted line corresponds to (p∞ − pa)/µ = −0.5.
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Figure 6.12: |d1| as a function of (p∞ − pa)/µ for various values of kA. The solid line
corresponds to kA = 1, the dashed line corresponds to kA = 2 and the dotted line
corresponds to kA = 0.5.
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sphere is given by [29]:

γd =
2ka

(Ka)3

∞
∑

l=1

2l + 1

l(l + 1)
|dl|2, (6.137)

where K is the wavenumber of the dilatational wave. In our case, however, we

effectively have K = 0 and, therefore, the above expression is undefined. Hence, in

Figure 6.13, we instead plot the absolute value of the displacement on r = b associated

with the scattered compressional (long) wave

β =

∣

∣

∣

∣

∣

N
∑

l=1

f sc
l (b)

∣

∣

∣

∣

∣

, (6.138)

where f sc
l (r) is given in (6.106), as a function of the pressure difference (p∞ − pa)/µ

for various values of kA. In the figure, the dot-dashed lines correspond to kA = 1, the

dashed linesto kA = 2 and the dotted lines to kA = 0.5; the black lines correspond

to N = 1, the blue lines to N = 2, and the red lines to N = 3; the value of b

selected was 100. We observe that the N = 1 term is dominant, and the other terms

provide higher order corrections, which become more significant for larger values of

(p∞ − pa)/µ. We observe that the overall trend for all values of kA is that the

magnitude of the displacement on r = b associated with the scattered compressional

(long) wave decreases as (p∞−pa)/µ increases. This appears to indicate that a greater

pressure at infinity than on r = a leads to reduced dilatational wave scattering, and

a greater pressure on r = a than at infinity leads to enhanced dilatational wave

scattering.

6.6 Conclusions

In this chapter we have studied the problem of shear wave scattering from a spherical

cavity in a pre-stressed Mooney-Rivlin material. The pre-stress consists of hydrostatic

pressures imposed on the inner surface of the cavity, and at infinity. Importantly,

this generates an inhomogeneous deformation in the host domain.

The theory of small-on-large was used to derive the incremental equations in the

pre-stressed configuration. It was then discussed that these equations are difficult



CHAPTER 6. WAVE SCATTERING FROM A SPHERICAL CAVITY 191

0.5 1.0

3.´10-7

4.´10-7

5.´10-7

6.´10-7

7.´10-7

8.´10-7

9.´10-7

p∞−pa

µ

β

Figure 6.13: β as a function of (p∞− pa)/µ for various values of kA. The dot-dashed
line corresponds to kA = 1, the dashed line corresponds to kA = 2 and the dotted
line corresponds to kA = 0.5. The black lines correspond to N = 1, the blue lines to
N = 2, and the red lines to N = 3; b = 100.

to solve due to the spatial depdence of their coefficients. In Section 6.4 we pre-

sented a numerical scheme to analyse the governing equations, and used it to plot

the scattering coefficients and cross-sections of the scattered waves in Section 6.5.

The dependence of the scattering cross-sections γa and γb on the pre-stress is

displayed in Figures 6.6, and 6.10, respectively. We observe that as (p∞ − pa)/µ

increases, γb increases, i.e. the pre-stress has the effect of increasing the scattering

of this type of shear wave for (p∞ − pa)/µ > 0 and decreasing the scattering for

(p∞ − pa)/µ < 0. This may appear initially counterintuitive, as the scattering of this

type of shear wave is increasing despite the fact that the size of the cavity is decreas-

ing ; however, the inhomogeneous region around the cavity is clearly enhancing the

scattering in this situation. The dependence of γa on (p∞ − pa)/µ is non-monotonic,

and takes a different minimum value for each value of kA that has been analysed.

Further work could be undertaken to establish the reason for the non-monotonicity.

As discussed above, the scattering cross-section is undefined for dilatational waves

as their wavelength is infinite in this incompressible limit. However, the effect of the
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pre-stress on the magnitude of the corresponding displacement, β (see eqref6.beta), is

shown to be that as (p∞− pa)/µ increases, β decreases, and vice versa. This appears

to indicate that a greater pressure at infinity than on r = a leads to increased shear

wave scattering and reduced dilatational wave scattering, and a greater pressure on

r = a than at infinity leads to enhanced dilatational wave scattering and reduced

shear wave scattering.

The dependence of the scattering coefficients and cross-sections on the pre-stress

could potentially be used to modify the magnitudes of specific types of scattered

waves from a cavity of a given size. Potential areas of further work would be a study

of the effect of the elastic parameter S2 (of the Mooney-Rivlin strain energy function)

on the stated results, and an investigation of whether the behaviour of the scattered

waves would be similar for other choices of strain energy function.



Chapter 7

Conclusions

7.1 Summary of results

In this thesis we have considered the effect of pre-stress on the propagation and

scattering of waves through nonlinear elastic media. A key feature of this work is

that inhomogeneous pre-stress has been considered, whereas most previous work in

this area has involved homogeneous pre-stress. We have observed that this type of

pre-stress can significantly alter the propagation characteristics of the waves under

consideration.

In Chapter 3 we studied the problem of torsional wave propagation in a pre-

stressed, Mooney-Rivlin, annular cylinder. The pre-stress consisted of a uniform

longitudinal stretch and hydrostatic pressures imposed on the inner and outer sur-

faces of the cylinder, thus altering the radii. Importantly, the latter generated an

inhomogeneous deformation in the host domain.

The theory of small-on-large was used to derive the incremental equation in the

pre-stressed configuration. It was then discussed that this equation was difficult to

solve due to the spatial dependence of its coefficients and the singular limit of the

equation in the case of zero pre-stress. In Section 3.4.4 we presented a Liouville-

Green approximation to the solution of the ODE and discussed when we expect this

approximation to be accurate. It was shown that for α̂ > 0.087 (α̂ is defined in

equation (3.49)), we expect the Liouville-Green approximation to be good for an
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annular cylinder of any size.

We noted that a positive value of α (which corresponds to pout > pin) causes the

roots of the dispersion curves to be spaced further apart, whilst a negative value

of α (which corresponds to pout < pin) causes them to be spaced more closely. In

the neo-Hookean case (i.e. when S1 = 1, S2 = 0), α does not affect the gradients

of the dispersion curves, whereas in the Mooney-Rivlin model, a positive value of α

decreases their gradients and a negative value increases them. We also noted that for

L > 1 (corresponding to a longitudinal stretch) the cut-on frequencies move closer

together and the dispersion curves are less steep, whilst for L < 1 (corresponding

to a longitudinal compression) the cut-on frequencies move further apart and the

dispersion curves are steeper.

In Chapter 4 we investigated the effect of a longitudinal stretch and pressure,

applied both to the inner surface of a cylindrical cavity and at infinity, on the propa-

gation and scattering of horizontally polarised shear waves in an unbounded medium.

It was shown that, for certain parameter values, the scattering coefficients obtained in

a pre-stressed medium are closer to those that would be obtained in the undeformed

configuration than those that would be obtained in the deformed configuration if the

pre-stress were neglected. This result was utilised in Chapter 5 where the cloaking

of a cylindrical cavity from horizontally polarised shear waves was examined. It was

shown that, for cloaks with KR1 = π/10 and Kr1 = 2π, neo-Hookean materials are

optimal. A stonger dependence of the strain energy function on the second strain

invariant (for a Mooney-Rivlin material) led to a less efficient cloak.

We observed that, for cloaks with KR1 = π/10 and Kr1 = 2π, as S1 tends

from 1 towards 0 (in other words, as the material becomes less dependent on the

first strain invariant, and more dependent on the second strain invariant), there is

more scattering from the cloaking region. Hence an ideal cloak will be dependent on

the first strain invariant only. This explains why a neo-Hookean material is a good

material for cloaking purposes in this context.

For materials which are strongly dependent on the second strain invariant the
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scattering cross-section for larger values of Kr1 is greater than the scattering cross-

section for an unstressed material; hence these materials are unsuitable for this type

of pre-stress cloaking.

Finally, in Chapter 6 we studied the effect of pressure, applied both to the inner

surface of a spherical cavity and at infinity, on the propagation and scattering of shear

waves in an unbounded medium. It was shown that the scattering coefficients and

cross-sections for this problem are strongly dependent on the pre-stress considered.

We observed that as (p∞ − pa)/µ increases, the scattering cross-section γb increases.

This corresponds to the pre-stress having the effect of increasing the scattering of this

type of shear wave for (p∞−pa)/µ > 0 and decreasing the scattering for (p∞−pa)/µ <

0. This is initially counterintuitive as the scattering of this type of shear wave is

increasing despite the fact that the size of the cavity is decreasing, but indicates that

the inhomogeneous deformation around the cavity actually enhances the scattering

in this case. The dependence of γa on (p∞ − pa)/µ is non-monotonic, and takes a

different minimum value for each value of kA that has been analysed.

We noted that the scattering cross-section for the part of the solution correspond-

ing to the dilatational waves is undefined as they have infinite wavelength. However,

the effect of the pre-stress on the magnitude of the corresponding displacement, β

(see (6.138)), is shown to be that as (p∞ − pa)/µ increases, β decreases, and vice

versa. This appears to indicate that a greater pressure at infinity than on r = a

leads to enhanced shear wave scattering and diminished dilatational wave scattering,

whereas a greater pressure on r = a than at infinity leads to the opposite effect.

7.2 Implications for materials modelling and ap-

plications

The canonical problems considered in this thesis show that it is important to consider

the underlying stress and not just geometrical effects when determining how waves

propagate and are scattered by single cavities in pre-stressed materials. Therefore,
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the pre-stress must be taken into account in any homogenisation scheme which aims

to deal with scattering from multiple cavities in a pre-stressed material. If one were

to only consider geometrical changes then inaccurate results would be obtained. This

finding has implications in various areas of application. In particular, in the nonde-

structive evaluation of engineering materials, or in the detection of tumours, we have

shown that the presence of pre-stress will greatly affect the far field response of a

material. Hence, predictions of crack sizes in engineering materials, or tumour sizes

in biological imaging could potentially be extremely inaccurate.

In two papers by Varadan et al. [105], [104], a theory for the multiple scattering

of elastic waves by cylinders of arbitrary cross-section is formulated in terms of the

scattering coefficients of each individual scatterer. The results in this thesis could

potentially be used to modify this theory to take account of pre-stress. Hence, by

building upon the work in this thesis, it may be possible to construct a general theory

of multiple scattering in arbitrarily pre-stressed materials.



Appendix A

WKB approximation

The Wentzel-Kramers-Brillouin (or WKB) approximation is a method for finding ap-

proximate solutions to linear ordinary differential equations with spatially varying

coefficients. The method is typically used for approximating the solution of a differ-

ential equation whose highest derivative is multiplied by a small parameter, ǫ say, and

is particularly useful in high frequency wave problems. The method of approximation

is as follows.

Given an equation of the form:

ǫ
dny

dxn
+ a(x)

dn−1y

dxx−1
+ ... + k(x)

dy

dx
+ m(x)y = 0, (A.1)

we use an ansatz of the form

y(x) ∼ exp

(

1

δ

∞
∑

n=0

δnSn(x)

)

, (A.2)

in the limit δ → 0. Substitution of the above ansatz into the differential equation,

cancelling out the exponential terms and equating orders of the coefficients allows

one to solve for an arbitrary number of terms Sn(x) in the expansion. It also permits

a choice of δ = ǫm for some m ∈ R.

In Chapter 3, we are interested in solving an equation of the form

d2y

dx2
+ q(x)y(x) = 0, (A.3)

where q(x) is a real, continously differentiable function.
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If we make the substitution

X = ǫx, (A.4)

then the above equations becomes

ǫ2 d2Y

dX2
+ Q(X)Y (X) = 0, (A.5)

where

Y (X) = y

(

X

ǫ

)

, (A.6)

and

Q(X) = q

(

X

ǫ

)

, (A.7)

so we can use the above WKB approximation, and we expect it to improve as ǫ → 0

when Q(X) is continously differentiable. Upon doing so, we obtain

ǫ2





1

δ2

(

∞
∑

n=0

δnS ′

n

)2

+
1

δ

∞
∑

n=0

δnS ′′

n



 = −Q(X). (A.8)

To leading order the above can be approximated as

ǫ2

δ2
S ′2

0 +
2ǫ2

δ
S ′

0S
′

1 +
ǫ2

δ
S ′′

0 = −Q(X). (A.9)

In the limit δ → 0, the dominant balance is given by

ǫ2

δ2
S ′2

0 ∼ −Q(X). (A.10)

So δ is proportional to ǫ. Setting them equal and comparing powers renders, at

leading order,

S ′2
0 = −Q(X), (A.11)

and so,

S0(X) = ±i

∫

√

Q(X)dX. (A.12)

This is equivalent to ±iξ, where the definition of ξ is given in (3.54).

At first order, we have

2S ′

0S
′

1 + S ′′

0 = 0. (A.13)

Therefore,

2(±i
√

Q(X))S ′

1 ±
iQ′(X)

2
√

Q(X)
= 0. (A.14)
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Hence,

S ′

1 = − Q′(X)

4Q(X)
, (A.15)

which leads to

S1 = −1

4
log(Q(X)) = log(Q(X))−

1
4 . (A.16)

Finally, substituting the derived expressions for S0, S1 and δ into (A.2), we obtain

Y (X) = exp

(

1

ǫ
S0(X) + S1(X) + O(ǫ)

)

= (Q(X))−
1
4 exp

(

± i

ǫ

∫

√

Q(X)dX + O(ǫ)

)

(A.17)

= (q(x))−
1
4 exp

(

±i

∫

√

q(x)dx + O(ǫ)

)

.

By comparing this with (3.57), we note that the Liouville-Green solution presented

in Chapter 3 can be seen as a first-order WKB approximation.
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Elliptic integral representation of

ξ(̺)

Consider the following integral representation of ξ(r) as defined in 3.4.4,

ξ(r) =

∫ r
√

q(̺)d̺ =

∫ r
√

4β2(̺6 + a2̺4 + a1̺2 + a0)

2̺(̺2 + α)
d̺, (B.1)

with a2 = [4α(β2 + δ)− 3]/(4β2), a1 = 2α(2αδ − 3)/(4β2), a0 = α2/(4β2) and noting

that α, β2, δ ∈ R with δ ≥ 0. If we make a change of integration variable via z = ̺2

(B.1) can be recast, after rationalizing the numerator, as
∫ r

√

q(ρ) dρ =
|β|
2

∫ ζ R(z)
√

Ω(z)
dz (B.2)

with ζ = r2 and with R(z) and
√

Ω(z) defined as

R(z) =
(z + z1)(z + z2)(z + z3)

z(z + α)
,

√

Ω(z) =
√

(z + z1)(z + z2)(z + z3). (B.3)

Here −z1, −z2, and −z3 are the roots of the cubic equation with real coefficients

Ω(z) = z3 + a2z
2 + a1z + a0. The integrand of (B.2) is a rational function of z

and
√

Ω(z). For repeated roots of Ω(z), the integral can be expressed in terms of

elementary functions. For non-repeated roots, the integral can be expressed in terms

of three incomplete elliptic integrals as follows

F (φ|m) =

∫ φ

0

dθ
(

1 − m sin2 θ
)1/2

, E(φ|m) =

∫ φ

0

(

1 − m sin2 θ
)1/2

dθ

Π(n; φ|m) =

∫ φ

0

dθ
(

1 − n sin2 θ
) (

1 − m sin2 θ
)1/2

. (B.4)
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These Legendre integrals are known, respectively, as elliptic integrals of the first,

second and third kinds. We shall use here elliptic integrals in the most general form,

with φ defined as the real or complex amplitude, m the real or complex modulus and n

the real or complex parameter. Additionally, we assume 1− sin2 φ ∈ C\(−∞, 0] and

1−m sin2 φ ∈ C\(−∞, 0], except that one of them may be 0 and 1−n sin2 φ ∈ C\{0}

(see [77]).

Using polynomial long division and partial fraction expansion, we may rewrite

R(z) as

R(z) = C1 + z +
C2

z
+

C3

(z + α)
, (B.5)

with C1 = E1 −α, C2 = E3/α, and C3 = (α3 −E1 α2 +E2 α−E3)/α and the so called

elementary symmetric polynomials E1 = z1 + z2 + z3, E2 = z1z2 + z1z3 + z2z3, and

E3 = z1z2z3. Hence, ξ(ζ) can be expressed in four parts by

I1(ζ) =
|β|
2

C1

∫ ζ 1
√

Ω(z)
dz, I2(ζ) =

|β|
2

∫ ζ z
√

Ω(z)
dz,

I3(ζ) =
|β|
2

C2

∫ ζ 1

z
√

Ω(z)
dz, I4(ζ) =

|β|
2

C3

∫ ζ 1

(z + α)
√

Ω(z)
dz. (B.6)

Notice that ξ(ζ) is defined here in terms of anti-derivatives, hence we will be using

indefinite integrals, with no lower limits, as opposed to the elliptic integrals which

are definite integrals. Given the definite integral with e.g. 0 < φ1 < φ

∫ φ

φ1

(·) dθ =

∫ φ

0

(·) dθ −
∫ φ1

0

(·) dθ, (B.7)

its anti-derivative will be defined here by neglecting the second integral on the right

hand side of (B.7).

B.1 Integration of I1

The cubic polynomial Ω(z) can be transformed into a bi-quadratic one using the

substitution z = t2 − z1. Traditionally z1 is chosen as the real root, however this

is not a restriction here, since we shall use elliptic integrals in their most general

form (i.e. with complex arguments). Hence, defining d = 1/
√

z3 − z1, and after two
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additional transformations, d2t2 + 1 = u−2 and u = sin θ, I1 becomes

I1 =
|β|
2

C1

∫ τ 2cd
√

(1 + c2t2)(1 + d2t2)
dt = −(2d)

|β|
2

C1

∫ υ du√
1 − m u2

√
1 − u2

= −(2d)
|β|
2

C1

∫ φ

0

dθ
√

1 − m sin2 θ
= −(2d)

|β|
2

C1 F (φ|m),

(B.8)

where I1(̺) is expressed in terms of the real or complex modulus m and the real or

complex amplitude φ defined hereafter as

m = 1 − d2

c2
, φ = arcsin

{

1

[1 + d2 (̺2 + z1)]
1/2

}

, (B.9)

with c = 1/
√

z2 − z1 and d = 1/
√

z3 − z1.

B.2 Integration of I2

Using z = t2 − z1 we can rewrite I2(τ) = I21(τ) + I22(τ) as

I21 =
|β|
2

∫ τ −2cd z1
√

(1 + c2t2)(1 + d2t2)
dt, I22 =

|β|
2

∫ τ 2cd t2
√

(1 + c2t2)(1 + d2t2)
dt. (B.10)

Hence I21 can be easily derived, following B.1, as

I21(̺) = (2d z1)
|β|
2

F (φ|m). (B.11)

The derivation of I22 is considerably more lengthy. Using d2t2 + 1 = u−2 we may

write

I22 =−(
2

d
)
|β|
2

{∫ υ du

u2
√

1 − m u2
√

1 − u2
−

∫ υ du√
1 − m u2

√
1 − u2

}

(B.12)

Now using the following relations

d

du

(
√

1 − m u2
√

1 − u2

u

)

=
m u2

√
1 − m u2

√
1 − u2

− 1

u2
√

1 − m u2
√

1 − u2
, (B.13)

∫ υ m u2

√
1 − m u2

√
1 − u2

du =

∫ υ du√
1 − m u2

√
1 − u2

−
∫ υ

√
1 − m u2

√
1 − u2

du, (B.14)

∫ υ
√

1 − m u2

√
1 − u2

du =

∫ φ

0

√

1 − m sin2 θ dθ = E(φ|m), (B.15)

we may finally express I2(̺), after using relations (B.13)-(B.15) to obtain I22, as

I2 =
|β|
2

{

2

d

√

1 − m sin2 φ
√

1 − sin2 φ

sin φ
+

2

d
E(φ|m) + 2dz1 F (φ|m)

}

. (B.16)
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B.3 Integration of I3 and I4

Using z = t2 − z1 and d2t2 + 1 = u−2 we may recast I3 as

I3 =
|β|
2
C2

∫ τ 2cd

(t2 − z1)
√

(1 + c2t2)(1 + d2t2)
dt

=
2d3

(z1 d2 + 1)

|β|
2
C2

∫ υ u2

(u2 − ν2)

1√
1 − m u2

√
1 − u2

du,

(B.17)

with ν2 = 1/(z1d
2 + 1). Using u2/(u2 − ν2) = 1 + ν2/(u2 − ν2) and then u = sin θ we

obtain

I3 =
2d3

(z1 d2 + 1)

|β|
2
C2

{

∫ υ du√
1 − mu2

√
1 − u2

+

∫ υ ν2 du

(u2 − ν2)
√

1 − mu2
√

1 − u2

}

=
2d3

(z1 d2 + 1)

|β|
2
C2

{

∫ φ

0

dθ
√

1 − m sin2 θ
−

∫ φ

0

dθ
(

1 − n1 sin2 θ
)

√

1 − m sin2 θ

}

=
2d3

(z1 d2 + 1)

|β|
2
C2

{

F (φ|m) − Π(n1; m|φ)

}

,

(B.18)

with n1 = (z1 d2 + 1). The derivation of I4 is obtained following the same steps as in

I3, hence

I4 =
2d3

((z1 − α) d2 + 1)

|β|
2
C3

{

F (φ|m) − Π(n2; m|φ)

}

, (B.19)

with n2 = ((z1 − α) d2 + 1).

Adding I1, I2, I3, and I4 we can finally obtain an integral representation for the

independent variable ξ in the Liouville-Green transformation

ξ(̺) =
|β|
2

{

2

d

√

1 − m sin2 φ
√

1 − sin2 φ

sin φ
+

2

d
E(φ|m) + D1 F (φ|m) +

D2 Π(n1; φ|m) + D3 Π(n2; φ|m)

}

, (B.20)

with constants D1, D2, and D3 defined as

D1 = 2d (z1 − C1) + C2
2d3

n1

+ C3
2b3

n2

, D2 = −C2
2d3

n1

, D3 = −C3
2d3

n2

. (B.21)
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Asymptotic behaviour of Bessel

functions with small argument

Upon solving the linear elastic wave equation in spherical coordinates, the radial

component of the dilatational part of the solution can be expressed as

fl(r) = Al
d

dr
(jl(kr)) + Bl

d

dr
(yl(kr)), (C.1)

where Al and Bl are constants, jl(kr) and yl(kr) are the spherical Bessel functions,

of order l, of the first and second kind, respectively and

k2 =
ρω2

λ + 2µ
, (C.2)

where ρ is the density of the material under consideration, ω is the frequency of the

wave, and λ and µ are the Lamé coefficients. As we approach the incompressible

limit for an elastic material, λ → ∞ and, therefore, k → 0. Note that in this limit,

the wavelength, l ∼ 1/k → ∞.

The spherical Bessel functions can be related to the Bessel functions via the

following expressions:

jn(z) =

√

π

2z
Jn+ 1

2
(z), (C.3)

yn(z) =

√

π

2z
Yn+ 1

2
(z), (C.4)

where Jn+ 1
2
(z) and Yn+ 1

2
(z) are the Bessel functions, of order n + 1

2
, of the first and

second kind, respectively.
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When the argument, z, of the Bessel functions tends to 0 (as is the case as we

approach incompressibility), we have the following results from [3]:

Jν(z) ∼
(z

2

)ν

Γ(ν + 1), (ν 6= −1,−2,−3, ...), (C.5)

Yν(z) ∼ − 1

π
Γ(ν)

(z

2

)−ν

, (ℜ(ν) > 0), (C.6)

where Γ is the gamma function.

Therefore, in the same limit, the spherical Bessel functions take on the following

form:

jn(z) ∼ αnz
n,

(

n 6= −3

2
,−5

2
,−7

2
, ...

)

, (C.7)

yn(z) ∼ βnz−(n+1),

(

ℜ(n) > −1

2

)

, (C.8)

where

αn =

√
π

2nΓ(n + 3/2)
, (C.9)

and

βn = −2nΓ(n + 1/2)√
π

. (C.10)

Hence, in the incompressible limit, equation (C.1) can be expressed as

fl(r) = Âlr
l−1 + B̂lr

−(l+2), (C.11)

where

Âl = lAlαlk
l, (C.12)

B̂l = −(l + 1)Blβlk
−(l+1), (C.13)
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