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Abstract: An active cloaking strategy for the scalar Helmholtz equation in three dimensions is developed by placing active
sources at the vertices of Platonic solids. In each case, a “silent zone” is created interior to the Platonic solid and only the inci-
dent field remains in a defined region exterior to this zone. This distribution of sources ensures that implementation of the
cloaking strategy is efficient: once the multipole source amplitudes at a single source location are determined, the other ampli-
tudes are calculated by multiplying the multipole source vector by a rotation matrix. The technique is relevant to any scalar
wave field. VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Over the last two decades, excitement has been generated around the idea of rendering objects invisible to incident excitation
(Miller, 2006; Norris, 2008; Schurig et al., 2006), via passive (Cai et al., 2007; Silveirinha et al., 2007; Zhang et al., 2011) or
active (Miller, 2006; Vasquez et al., 2009a; Zheng et al., 2010) cloaking. The latter employs sources to suppress fields and has
been of interest since Lueg’s patent in 1936 (Guicking, 1990). Significant work on anti-sound/anti-vibration has been carried
out since then (Cheer, 2016; Fuller et al., 1996; Guicking, 2007; Nelson and Elliott, 1991). Specific choices for the active sources
ensure quiet zones and illusions (Ma et al., 2013; Zheng et al., 2010) and control arrangements can be optimised to reduce
acoustic scattering in a stationary fluid (Eggler et al., 2019a; House et al., 2020; Lin et al., 2021; O’Neill et al., 2015) and in a
convected flow field (Eggler et al., 2019b).

Recent interest has centred on object-independent active cloaking methods, e.g., Miller’s sensing method (Miller,
2006). This approach cannot provide a relationship between the incident field and source amplitudes however, so this was
addressed in (Vasquez et al., 2009a,b, 2011), using multipole sources to create silent zones in two dimensions (2D).
Further progress came in (Norris et al., 2012), where closed-form explicit formulas for the active source coefficients were
deduced. This was also extended to elastodynamics (Futhazar et al., 2015; Norris et al., 2014). This approach is attractive
because the active source coefficients are independent of the object to be cloaked. This is in contrast to object-dependent
approaches, which must be modified in resonant regimes (O’Neill et al., 2016). The latter approach, however, does not suf-
fer from large amplitudes in the vicinity of the active source regions.

Although there has been extensive work on active manipulation of sound in three dimensions (3D) (Ahrens,
2012; Egarguin et al., 2020; Elliott et al., 2012; Onofrei and Platt, 2018), the object-independent approach has thus far
been conducted in 2D only, with the sole exception of Vasquez et al. (2013), which considered the Helmholtz equation in
3D, where results were provided for the case of four active sources.

Here, we provide a framework for active cloaking in 3D. We derive expressions for the active source coefficients and
introduce a fast, efficient methodology by placing active sources on vertices of the Platonic solids and exploiting their symmetry.
Regardless of the incident field, once active source coefficients have been deduced for one of the active sources, the remaining
source amplitudes can subsequently be determined, thus providing a complete exposition of 3D active cloaking for the
Helmholtz equation.

2. Methodology

We consider active exterior cloaking for time-harmonic waves (with dependence e�ixt , where x is the
angular frequency and t is time) governed by the 3D, homogeneous Helmholtz equation ðr2 þ k2ÞuðxÞ ¼ 0, where

a)Also at: Department of Materials, University of Manchester, Manchester, M13 9PL, UK.

JASA Express Lett. 3 (6), 063601 (2023) VC Author(s) 2023. 3, 063601-1

ARTICLE asa.scitation.org/journal/jel

 18 July 2023 13:25:12

https://orcid.org/0000-0002-3676-9466
https://orcid.org/0000-0001-7536-5547
mailto:cheukhim.yeung@manchester.ac.uk
mailto:william.parnell@manchester.ac.uk
mailto:tom.shearer@manchester.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1121/10.0019906
https://scitation.org/journal/jel
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0019906&domain=pdf&date_stamp=2023-06-29


k ¼ x=c is the wavenumber, with c the wavespeed. For acoustics, the scalar field uðxÞ is the velocity potential at
x ¼ ðx; y; zÞ.

Figure 1 illustrates the case when a planar incident field uiðxÞ is acted on by the active field udðxÞ generated by
L multipole active sources. The field subsequently scattered from an object interior to the active field is denoted by usðxÞ.
These fields are

uiðxÞ ¼ eik�x ¼
X1
n¼0

Xn
m¼�n

QnmU
m
n ðxÞ; (1)

udðxÞ ¼
XL
‘¼1

X1
n¼0

Xn
m¼�n

q‘;nmV
m
n ðx � x‘Þ; (2)

usðxÞ ¼
X1
n¼0

Xn
m¼�n

anmV
m
n ðxÞ; (3)

where Um
n ðxÞ ¼ jnðkjxjÞYm

n ðbxÞ and Vm
n ðxÞ ¼ hð1Þn ðkjxjÞYm

n ðbxÞ are incoming and outgoing spherical waves, respectively

(Martin, 2006), noting that jnðkjxjÞ is the spherical Bessel function of the first kind and hð1Þn ðkjxjÞ is the spherical Hankel
function of the first kind. Further, Ym

n ðbxÞ ¼ Am
n P

m
n ðcos hÞeimu is the normalized spherical harmonic function, where the

hat denotes a unit vector, Pm
n ðcos hÞ is the associated Legendre function of order m and degree n in terms of the polar

angle h and the azimuthal angle u and

Am
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
4p

ðn�mÞ!
ðnþmÞ!

s
: (4)

Referring to Fig. 1, we write k ¼ kbk where bk ¼ ðsin hi cosui; sin hi sinui; cos hiÞ is the unit propagating vector, where hi

and ui are the incident wave angles. For plane wave incidence, the expansion coefficients Qnm ¼ 4pinYm
n ðbkÞ thus depend

only on these incident angles, with overline denoting complex conjugation. For other types of incident fields, the values of
Qnm would be different, but the rest of the methodology presented below would be unchanged. The amplitude of the radi-
ation mode with order (n, m) in the ‘ th active source (which is located at x‘) is q‘;nm, where ‘ ¼ 1; 2;…; L and anm is the
scattering coefficient of the object.

To achieve active cloaking, q‘;nm are sought such that for some closed domain C surrounded by the active sour-
ces with x‘ 62 C, we have uiðxÞ þ udðxÞ ¼ 0 for x 2 C and udðxÞ ! 0 as jxj ! 1. Thus, while the scattered field from
any object is nullified in C, we also stipulate that the radiation of ud itself to the far field is zero, leaving minimal evidence
of the cloak.

The active sources are located at the vertices of an imaginary Platonic solid, thus limiting the number of sources
L to five values (Euclid, 2012) [see Figs. 2(a)–2(e)]. This geometry ensures that the sources reside on the circumsphere of
the Platonic solids such that jx‘j ¼ x0 for all ‘ in each case, where x0 is an arbitrary constant. We set x1 ¼ ð0; 0;�x0Þ in
every case such that the active source with ‘ ¼ 1 always has the lowest z-coordinate. To locate the remaining sources, we
note that a Platonic solid consisting of q p-sided regular polygonal faces around each vertex can be characterized by two
indices (p, q) [e.g., a cube with three squares around each vertex has the indices (4, 3)]. We define the length of each side
of a Platonic solid as sx0.

The position of each active source is determined from (p, q) and s, whose values are listed in Table 1 (see Part 2
of the supplementary material1). Since the source distribution is q-fold rotationally symmetric about the z-axis, if we assign

Fig. 1. In the active cloaking problem, the incident plane wave ui (propagating in the direction bk) impinges upon an object (the orange sphere
here) and is scattered (us). The amplitudes of the L active sources (smaller spheres) produce the active field ud, nullifying ui in a region con-
taining the object, thus cancelling the scattered field.
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the indices ‘ ¼ 2;…; qþ 1 to the q vertices located immediately above the source ‘ ¼ 1 in the counterclockwise direction,
their position vectors x‘ are given by

x‘ ¼ x0 r2 cosu‘; r2 sinu‘; z2ð Þ; (5)

where z2 ¼ ðs2 � 2Þ=2; r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22

p
and u‘ ¼ 2ð‘� 2Þp=q.

We note that, although the active sources are arranged symmetrically on the vertices of the Platonic solids, the
incident wave breaks this symmetry, and therefore, different values of q‘;nm are required for each source. To determine
q‘;nm and the geometric shape of the cloaked region C, we employ the procedure from Vasquez et al. (2013) as the starting
point and use the approach in Norris et al. (2012) to obtain explicit expressions (see Part 1 of the supplementary mate-
rial1) in the form

q‘;nm ¼ �ik2
X1
t¼0

Xt
s¼�t

Qtsq‘;nm;ts; (6)

q‘;nm;ts ¼
X1
�¼0

X�
l¼��

bSslt�ðx‘ÞD�ni
ml
n� ðx‘; @C‘Þ: (7)

We note that the expression for ql;nm depends on the orientation of the incoming wave via Qts and is, therefore, valid for
any angles of incidence. In Eq. (7), bSslt�ðx‘Þ [defined in Eqs. (8)–(11) of the supplementary material1] is a coefficient
depending on the position vector x‘, and the quantities D�n;i

ml
n� ðx‘; @C‘Þ are

D�n ¼ j�ðkax0Þj0nðkax0Þ � j0�ðkax0Þjnðkax0Þ; (8)

i
ml
n� ðx‘; @C‘Þ ¼

ð
@C‘

Ym
n ð dy � x‘ÞYl

� ð dy � x‘Þ dSðy � x‘Þ; (9)

where a prime denotes the derivative with respect to the argument, and finally

s
2 sin ðp=pÞ � a < 1 (10)

(see Part 2 of the supplementary material1). The surface integral iml
n� is evaluated over the face @C‘ and parameterized by

the vector y � x‘ for y 2 @C‘. It appears that an explicit form of iml
n� is not available; however, the integral can be simpli-

fied such that its numerical evaluation becomes significantly less expensive (see Part 4 of the supplementary material1).
The formulations in Eqs. (6)–(10) hold when the domain C is completely bounded by the union of faces @C‘, where
‘ ¼ 1; 2;…; L, and jy � x‘j ¼ ax0 for y 2 @C‘ such that @C‘ is a surface belonging to a sphere centered at x‘ with radius
ax0. The cloaked region C therefore consists of the domain interior to the union of surfaces formed by identical imaginary
spheres of radius ax0 located at the vertices and the source amplitude in the form of Eqs. (6)–(10) applies to a general

incident wave. The case of plane wave incidence [Qnm ¼ 4pinYm
n ðbkÞ] admits the following compact form:

q‘;nm ¼ �ik2eik�x‘
X1
�¼0

X�
l¼��

Q�lD�ni
ml
n� ðx‘; @C‘Þ: (11)

For computational purposes, the infinite series in Eq. (11) needs to be truncated. In Part 3 of the supplementary material,1 we
discuss how to choose this truncation parameter such that the source amplitude converges with a prescribed level of accuracy.

In Figs. 2(a)–2(e), we illustrate the respective cloaked regions inside each of the Platonic solids with a taken as
the lower bound in Eq. (10) (when the volume of the domain is a maximum). In each case, the surface of integration @C‘
is delimited by q identical circular arcs (q depends on L as indicated in Table 1). For non-Platonic distributions of sources,
these arcs are not identical.

We first evaluate i
ml
n� ðx1; @C1Þ for ‘ ¼ 1. A parametric form for the corresponding face @C1 is conveniently

derived using a local spherical coordinate system centred at x1 (see Part 2 of the supplementary material1). Since @C1

Table 1. Geometric properties of the Platonic distributions of active sources and the volumes of the cloaked regions v ¼ jCj (to four decimal
places) when the radius a takes the lower limit in Eq. (10). Here, / ¼ 1þ

ffiffiffi
5
p� �

=2.

L (p, q) s v (in units of x30)

4 (3, 3) 2
ffiffiffi
6
p

=3 0.0033
6 (3, 4)

ffiffiffi
2
p

0.0675
8 (4, 3) 2

ffiffiffi
3
p

=3 0.0538
12 (3, 5) 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð3� /Þ

p
=5 0.4562

20 (5, 3) 2
ffiffiffi
3
p
ð/� 1Þ=3 0.3692
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possesses q-fold rotational symmetry about the z-axis, it can be subdivided into q congruent segments, each being the
region bounded by

g‘ðuÞ � cos h � 1; (12)

u‘ � p=q � u � u‘ þ p=q; (13)

where

g‘ðuÞ ¼ 1þ a2h2 cos4ðu� u‘Þ � hð1� a2Þ�cos2ðu� u‘Þ�1=2
h o�

a 1þ h cos2ðu� u‘Þ
� �� 	

;

(
(14)

h ¼ ð1� z2Þ=ð1þ z2Þ; (15)

and u‘; z2 are defined as in Eq. (5). The surface @C1 is defined by the union of segments parameterized by Eqs. (12)–(15)
over ‘ ¼ 2;…; qþ 1. Since all surfaces of integration @C‘ have an identical shape within each Platonic distribution of
sources, this parametric form describes not only the face @C1 but also all other faces provided a suitable coordinate trans-
formation is applied to account for orientation. In Table 1, we state the volume v ¼ jCj of the cloaked region C by using
the divergence theorem on Eqs. (12)–(15).

Given the regularity and rotational symmetry of the Platonic source distribution, we determine the amplitudes of
all sources using only the knowledge of the formula from Eq. (11) and the integral iml

n� ðx1; @C1Þ, avoiding the integrations
for all L active sources. We write the coefficient q‘;nm as q‘;nmðbk ; x‘; @C‘Þ to indicate its dependence on the propagating
vector bk and the two geometric parameters. For brevity, we also denote the surface integral as i‘ by suppressing indices
and arguments in Eq. (9). Define a new coordinate system x0 ¼ ðx0; y0; z0Þ ¼ Rðbv ;HÞx where Rðbv ;HÞ is a rotation matrix,
with bv being the unit vector representing the rotation axis and H, the rotation angle. As illustrated in Fig. 3, we rotate the

Fig. 2. In (a)–(e), the cloaked regions are illustrated for the cases of the (a) tetrahedron (four vertices), (b) octahedron (six vertices), (c) cube
(eight vertices), (d) icosahedron (12 vertices), and (e) dodecahedron (20 vertices). In (f), a cross-section through the plane z¼ 0 in (b) is shown.

Fig. 3. Transformation between (a) the original space x ¼ ðx; y; zÞ and (b) the rotated space x0 ¼ ðx0; y0; z0Þ. The rotation Rðbv ;HÞ maps the ‘
th active source to the bottom-most position in the source distribution, replacing the source ‘ ¼ 1 (the red sphere) with the white sphere. The
incident propagating vector bk maps to bk 0 .
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original frame x such that in the rotated frame x0, the ‘ th active source, takes the bottom-most location, replacing the
source ‘ ¼ 1, and the corresponding bounding surface @C‘ has the same orientation as @C1 in the original frame x. Under
this transformation, the amplitude in Eq. (11) becomes

q0‘;nmðbk0 ; x0‘; @C0‘Þ ¼ �ik2eikbk0 �x0‘X1
�¼0

X�
l¼��

Q0�lD
0
�ni

0
‘; (16)

where bk 0; x0‘, and @C0‘ are the new forms of the propagating vector, position vector, and integration surface in the space

x0, respectively, and Q0�l ¼ 4pi�Yl
� ðbk0 Þ. By construction, x0‘ ¼ x1 and @C0‘ ¼ @C1. As the forms of D�n and i‘ suggest in

Eqs. (8) and (9), they are independent of bk . The rotational symmetry of the Platonic solids and our choice of R ensures
that they remain rotationally invariant across all ‘. In particular, we have D0�n ¼ D�n and i

0
‘ ¼ i1. The source amplitude

q‘;nmðbk ; x‘; @C‘Þ, is thus transformed to q1;nmðbk0 ; x1; @C1Þ in the rotated frame. While the former is calculated by integrat-
ing over @C‘ for all ‘, the latter can be evaluated by simply integrating over @C1 parameterized by Eqs. (12)–(15) and

replacing bk by bk 0. If we express the source coefficients as a vector q‘;n ¼ fq‘;nmg
n
m¼�n, then it can be shown that the sys-

tem of linear equations

Dnðc;b; aÞq‘;nðbk ; x‘; @C‘Þ ¼ q1;nðbk0 ; x1; @C1Þ (17)

holds, where Dnðc; b; aÞ [defined in Eqs. (103)–(105) of the supplementary material1] is the Wigner D-matrix (Wigner,
2012) with dimensions ð2nþ 1Þ � ð2nþ 1Þ and c;b; a are the Euler angles (Varshalovich et al., 1988) of the matrix
Rðbv ;HÞ such that

Rðbv ;HÞ ¼ Rðbez; cÞRðbey; bÞRðbez; aÞ; (18)

with bey;bez being the unit vectors along the y and z axes. By solving Eq. (17) for n ¼ 0; 1;…;N with N a positive integer,
we can retrieve the full set of amplitudes q‘;nmðbk ; x‘; @C‘Þ up to the Nth order multipole. The cloaking device is thus
devised by repeating this procedure with the corresponding bk 0 and Euler angles for each source. Employing active sources
on the vertices of the Platonic solids is beneficial because once one set of source coefficients is determined, those for the
others follow from simple post-processing operations. See Part 5 of the supplementary material1 for more details, including
the exact form of the rotation matrix R.

3. Results

The method is illustrated in Fig. 4, with L¼ 20 active sources distributed at the vertices of a regular dodecahedron with
source distance kx0 ¼ 5p, which was produced using a Mathematica code that is available to download from https://
github.com/himyeung1025/3d_silent_zone_cloaking. We consider the problem in the context of acoustics, but the princi-
ples are similar for other scalar waves. In Figs. 4(a)–4(d), the incident plane wave propagates in the positive x direction
with hi ¼ p=2;ui ¼ 0; in Fig. 4(e)–4(h), it has angles of incidence hi ¼ p=2;ui ¼ p=4. In Figs. 4(a), 4(b), 4(e), and 4(f),
the scattering object inside the cloaked region C is a sound-soft sphere with radius kA ¼ 3ð1� aÞkx0 � 0:8579p, where
a ¼ 2

ffiffiffi
6
p

=3
� �

=½2 sin ðp=3Þ�, and a is chosen to be the minimum permissible radius of the imaginary spheres bounding C
for L¼ 4, which means that the scattering sphere has a radius three times that of the inscribed sphere of C when L¼ 4. In

Fig. 4. The real part of the total wave field u on the cross section z¼ 0 with a sound-soft sphere subject to an incident plane wave with angles
of incidence hi ¼ p=2;ui ¼ 0 (a)–(d) and hi ¼ p=2;ui ¼ p=4 (e)–(h) when the cloaking devices are switched off (a), (c), (e), (g) and on (b),
(d), (f), (h), in the presence (a), (b), (e), (f) and absence (c), (d), (g), (h) of a scatterer. The source distance is kx0 ¼ 5p and the sphere radius is
kA � 0:8579p. A total of L¼ 20 multipole active sources are used, including up to N¼ 10.
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Figs. 4(c), 4(d), 4(g), and 4(h), we show the case where there is no scattering object. In all subplots, the real part of the
total wave field u on the cross-section z¼ 0 is shown. In Figs. 4(a), 4(c), 4(e), and 4(g), the cloaking devices are inactive
and a prominent scattering pattern, including distorted wavefronts and a shadow region behind the sphere, is observed.
In Figs. 4(b), 4(d), 4(f), and 4(h), the cloaking devices are activated and the multipole order of each active source is taken
as N¼ 10. The series expansions for the source coefficients in Eq. (11) are truncated such that the active field produced by
each source is within 1% relative error. The spheres now reside in quasi-silent regions. The straighter wavefronts and the
absence of the shadow region in the figures indicate that the incident wave is scattered only slightly by the sphere inside
the quiet zone and the sources radiate little into the exterior of the silent region, demonstrating the cloak’s effectiveness.
The wave field diverges within small neighbourhoods of the active point sources. In practice, these large fields are confined
within the finite-sized sources. We have cropped the plot at ReðuÞ ¼ 1:2.

Global effectiveness can be assessed by defining the sound power level (SWL),

SWL ¼ 10 logr; r ¼Wðud 6¼ 0Þ
Wðud ¼ 0Þ : (19)

For acoustic waves, the SWL is the ratio between the sound power W in the far field after (ud 6¼ 0) and before (ud¼ 0)
cloak activation (see Part 6 of the supplementary material1). In Fig. 5, we plot the SWL in the case of scattering from a
sound-soft sphere for the source distributions depicted in Fig. 2. The order N, the sphere radius A and the direction of the
incident wave are as in Fig. 4.

For each kA, the truncation parameter is chosen to achieve a relative error of less than 1% in the active field
generated by each source. We require r < 1 and thus 10 logr < 0. For all cases, the SWL remains negative for the range
of kA studied here with increased efficacy at lower frequencies. As the source number L increases the cloaking effect gen-
erally improves, with a maximum reduction of approximately 70 decibels achieved when L¼ 20 at kA � 0:1716p. Further
parameter studies can be found in Part 6 of the supplementary material.1

4. Conclusion

In conclusion, we have formulated an efficient, 3D, active exterior cloaking strategy for the scalar Helmholtz equation. The
Platonic distribution of the active sources means that we only need to determine the source amplitudes at one location;
those at other locations follow from post-processing, exploiting the symmetry and regularity of the Platonic solids.
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