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The effect of a longitudinal stretch and a pressure-
induced inhomogeneous radial deformation on the
scattering of antiplane elastic waves from a cylindrical
cavity is determined. Three popular nonlinear strain
energy functions are considered: the neo-Hookean, the
Mooney–Rivlin and a two-term Arruda–Boyce model.
A new method is developed to analyse and solve the
governing wave equations. It exploits their properties
to determine an asymptotic solution in the far-field,
which is then used to derive a boundary condition
to numerically evaluate the equations local to the
cavity. This method could be applied to any linear
ordinary differential equation whose inhomogeneous
coefficients tend to a constant as its independent
variable tends to infinity. The effect of the pre-
stress is evaluated by considering the scattering cross
section. A longitudinal stretch is found to decrease
the scattered power emanating from the cavity,
whereas a compression increases it. The effect of
the pressure difference depends on the strain energy
function employed. For a Mooney–Rivlin material, a
cavity inflation increases the scattered power and a
deflation decreases it; for a neo-Hookean material,
the scattering cross section is unaffected by the
radial deformation; and for a two-term Arruda–Boyce
material, both inflation and deflation are found to
decrease the scattered power.

1. Introduction
Canonical wave scattering problems have been of great
interest for many decades, with applications in numerous
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areas, including water waves, electromagnetics, acoustics, seismology and non-destructive
evaluation. The objective is to determine the scattered field given information regarding the
form of the incident wave and scattering obstacle or inhomogeneity. In particular, the type of
boundary conditions imposed on the boundary between the obstacle and the surrounding host
medium is key [1,2]. The case of cavities, cracks and other defects in an elastic medium is
one of tremendous importance [3–6] due to the fact that their presence frequently leads to a
degradation in material performance. The primary aim of non-destructive evaluation is to predict
the presence of such flaws in a medium and, although this is always framed as an inverse
model, the forward scattering problem must be understood in order to deduce conclusions about
the inverse problem [7]. In many cases there may well be a number of such inhomogeneities
present in the medium, and so much effort has gone into the prediction of the so-called effective
wavenumber of inhomogeneous media. This theory has been developed in the case of flawed
media as well as fibre-reinforced or particulate composites, which themselves may possess
imperfections associated with their adherence to the host phase (e.g. [8]).

The propagation of elastic waves in an inhomogeneous material depends strongly on the
distribution and properties of the inhomogeneities inside the material. At low frequency, the
medium generally responds as an effective homogeneous medium with properties defined
by the leading order scattering characteristics of the inhomogeneities, i.e. the Rayleigh limit
[9–11]. At higher frequencies, complex frequency-dependent behaviour can develop, for example,
attenuation in random media [12] and complete reflection in periodic media in the so-called band
gaps [13]. Inhomogeneous materials are implicitly required in order to construct metamaterials,
media that are generally strongly anisotropic and frequency dependent [14,15]. Such media are
generally not found in nature and enable rather surprising effects such as cloaking and negative
refraction [16–18].

Recently, nonlinear elastic materials have been used in order to construct tunable band gaps
that can be shifted in real time [19–22]. This work employs the theory of small-on-large [23,24]
to derive the governing pressure-dependent incremental wave equations by linearizing about
the nonlinear equilibrium state. Shearer et al. [25] used this theory to consider the propagation
of torsional waves through an inhomogeneously pre-stressed annular cylinder. In the main,
however, interest has centred on the influence of homogeneous stretch distributions (and hence
the influence of induced anisotropy alone) on subsequent wave propagation (e.g. [26,27]).
When the medium in question is inhomogeneous (for example, a fibre-reinforced, or particulate
composite, material) and the host phase is nonlinear elastic, pre-stress will almost always lead
to non-homogeneous as well as anisotropic stretch distributions, except in very special cases
(e.g. [19]).

It is, therefore, of interest to investigate how an initial static pre-stress, which leads to
inhomogeneous stress and strain fields in a nonlinear elastic body, influences the propagation
and scattering of small-amplitude waves. In this article, we consider a canonical scattering
problem, i.e. that of scattering of horizontally polarized shear waves from a cylindrical cavity in
an incompressible, pre-stressed, nonlinear elastic medium. Note that a similar problem involving
homogeneous initial deformations was studied by Leungvichcharoen & Wijeyewickrema [28].
We extend the work of Parnell & Abrahams [29], in which antiplane wave scattering from a
cylindrical cavity in a neo-Hookean material was investigated, by considering more complex
constitutive models, namely the Mooney–Rivlin and Arruda–Boyce strain energy functions.
Parnell & Abrahams [29] showed that, in the neo-Hookean case, the scattering coefficients
are completely unaffected by the application of a hydrostatic pressure in the radial direction
along with a longitudinal stretch. Parnell and co-workers [30,31] exploited this result to create
a theoretical cloak for antiplane elastic waves. The benefit of this over classical metamaterial
cloaks is that inhomogeneous density is not required and the necessary inhomogeneity in the
incremental shear modulus is induced naturally by the imposed pre-stress. Norris & Parnell [32]
extended the work to the case of in-plane elastic waves, and Parnell & Shearer [15] considered
the effect of an imperfect cloaking material characterized by a Mooney–Rivlin strain energy
function. The governing equations could not be solved analytically in this latter case; they were
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solved numerically over the finite domain of the cloak. It is more challenging to solve the
governing equations over an infinite domain, the case that shall be considered in this work.
The developed methodology can be employed in general for any strain energy function. It also
seems to be a plausible scheme for the general solution of ordinary differential equations with
inhomogeneous coefficients.

Because scattering coefficients associated with single, canonical scattering problems are
employed in multiple scattering models [8,11], it is envisaged that this work will be useful for the
prediction of effective wave propagation through pre-stressed nonlinear elastic inhomogeneous
media (e.g. soft porous materials), certainly for the case of dilute dispersions.

In §2, we describe the finite deformation that ensues within a nonlinear elastic material when
a far-field hydrostatic pressure, along with a longitudinal stretch, is imposed. In §3, we then carry
out the small-on-large analysis, assuming that the incremental field is a horizontally polarized
(antiplane) shear wave and we derive the governing equation for the antiplane displacement
field in the pre-stressed medium. In §4, we describe a novel hybrid analytical/numerical method
used to solve the governing equations over an infinite domain and use it to determine, in §5,
the scattering cross sections of the waves in neo-Hookean, Mooney–Rivlin and Arruda–Boyce
materials subjected to various levels of pre-stress. Concluding remarks are offered in §6.

2. Initial finite static deformation (pre-stress)
Consider an isotropic, incompressible, nonlinear elastic material of infinite extent with a circular
cylindrical cavity, of initial radius A, whose axis is parallel to the Z axis of a Cartesian coordinate
system (X, Y, Z) with its centre in the (X, Y) plane located at the origin. The constitutive behaviour
of the hyperelastic material is described by the strain energy function W = W(I1, I2) [23], where Ij,
j = 1, 2, 3 are the principal strain invariants, and we note that W is independent of I3 due to the
constraint of incompressibility (i.e. I3 = 1 for all deformations).

The medium is deformed due to an imposed far-field hydrostatic pressure, an internal
hydrostatic pressure and a uniform axial stretch, as depicted in figure 1. The symmetry of
geometry and forcing therefore implies that the deformation is described by

R = R(r), Θ = θ and Z = z
ζ

, (2.1)

where (R, Θ , Z) and (r, θ , z) are cylindrical polar coordinates (X = R cos Θ , Y = R sin Θ , x = r cos θ ,
y = r sin θ ) in the undeformed and deformed configurations, respectively, and R(r) is a function
that is determined from the radial equation of equilibrium and incompressibility condition. Note
the convention introduced in (2.1), i.e. that upper case variables correspond to the undeformed
configuration, whereas lower case variables correspond to the deformed configuration. We are
interested in incremental perturbations from the initial statically deformed state and, therefore,
it will be convenient to derive equations in terms of coordinates in the deformed configuration.
Position vectors in the undeformed and deformed configurations are, respectively,

X = RER(Θ) + ZEZ = R(r)ER(Θ) + z
ζ

EZ, x = rer(θ ) + zez, (2.2)

where ER and EZ are the radial and longitudinal basis vectors in the undeformed configuration,
and er and ez are the corresponding basis vectors in the deformed configuration.

Using (2.1), it can be shown that the principal stretches for this deformation in the radial,
azimuthal and longitudinal directions, respectively, are

λr = dr
dR

= 1
R′(r)

, λθ = r
R(r)

and λz = ζ . (2.3)

The deformation gradient tensor F is given by

F = Grad x, (2.4)
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Figure 1. (a) Theundeformed cavity,with radiusA. (b) Thedeformed cavity,with radiusa. Thedeformation is due to an imposed
far-field hydrostatic pressure p∞ and an internal pressure pa, along with an axial stretch ζ .

where Grad represents the gradient operator in the undeformed configuration. In our case, we
have

F = FiJei ⊗ EJ , FiJ =

⎛
⎜⎝λr(r) 0 0

0 λθ (r) 0
0 0 λz

⎞
⎟⎠=

⎛
⎜⎜⎝

(R′(r))−1 0 0

0
r

R(r)
0

0 0 ζ

⎞
⎟⎟⎠ . (2.5)

For an incompressible material J = √
I3 = det F = 1 and so

λrλθλz = ζ r
R(r)R′(r)

= 1. (2.6)

This is easily solved to yield

R(r) =
√

ζ (r2 + M), (2.7)

where M is a constant defined by

M = A2

ζ
− a2. (2.8)

From Ogden [23,24], the Cauchy and nominal stress tensors for an incompressible material are,
respectively, given, in terms of the deformation gradient and strain energy function, by

T = F
∂W
∂F

+ QI and S = ∂W
∂F

+ QF−1, (2.9)

where I is the identity tensor, Q is a Lagrange multiplier associated with the incompressibility
constraint, often referred to as an arbitrary hydrostatic pressure, and we note that the differentiation
of W with respect to F is defined component-wise as follows:(

∂W
∂F

)
Ij

= ∂W
∂FjI

. (2.10)

The static equations of equilibrium are then given by

div T = 0, (2.11)

where div signifies the divergence operator with respect to x. These reduce to

∂Trr

∂r
+ 1

r
(Trr − Tθθ ) = 0,

∂Tθθ

∂θ
= 0 and

∂Tzz

∂z
= 0, (2.12)
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where T = Tijei ⊗ ej. The second and third of these imply Q = Q(r). Integrating the first of (2.12),
using (2.9) and applying Trr|r=a = −pa, we find that the radial stress is given by

Trr(r) + pa =
∫ r

a

1
s

(
λθ (s)

∂W
∂λθ

− λr(s)
∂W
∂λr

)
ds, (2.13)

then by applying Trr → −p∞ as r → ∞, we obtain an equation relating the pressure difference to
the resulting deformation,

pa − p∞ =
∫∞

a

1
s

(
λθ (s)

∂W
∂λθ

− λr(s)
∂W
∂λr

)
ds. (2.14)

To proceed, we must select a strain energy function W to substitute into equation (2.14). We shall
use three different strain energy functions, the neo-Hookean:

WNH = μ

2
(I1 − 3) = μ

2
(λ2

r + λ2
θ + λ2

z − 3), (2.15)

where μ is the ground-state shear modulus of the material under consideration, the Mooney–
Rivlin:

WMR = μ

2
(C1(I1 − 3) + C2(I2 − 3))

= μ

2
(C1(λ2

r + λ2
θ + λ2

z − 3) + C2(λ2
r λ

2
θ + λ2

r λ
2
z + λ2

θ λ
2
z − 3)), (2.16)

where C1 and C2 are material constants that sum to unity, and the Arruda–Boyce model. The
Arruda–Boyce strain energy function can be expressed as an infinite series in terms of powers of
I1 [33]. For simplicity, we shall use the first two terms only:

WAB = 5Nμ

3 + 5N

(
1
2

(I1 − 3) + 1
20N

(I2
1 − 9)

)

= 5Nμ

3 + 5N

(
1
2

(λ2
r + λ2

θ + λ2
z − 3) + 1

20N
(λ4

r + λ4
θ + λ4

z + 2(λ2
r λ

2
θ + λ2

r λ
2
z + λ2

θ λ
2
z) − 9)

)
, (2.17)

where N is the assumed number of links in the polymer chains that form the molecular basis of
rubber-like materials and we note that the coefficient in front of the shear modulus is necessary
for this two-term model to be consistent with linear elasticity.

The resulting pressure–deformation relationship in the neo-Hookean case is

p∞ − pa

μ
= 1

2ζ

(
log

(
A2

ζa2

)
+ A2

ζa2 − 1

)
, (2.18)

in the Mooney–Rivlin case is

p∞ − pa

μ
= C1 + ζ 2C2

2ζ

(
log

(
A2

ζa2

)
+ A2

ζa2 − 1

)
, (2.19)

and in the Arruda–Boyce case is

p∞ − pa

μ
= 1

4(3 + 5N)ζ 4

(
1 − ζa2

A2

)(
A4

a4 + 2ζ 2 + A2

a2 ζ (3 + 10Nζ + 2ζ 3)

)

+ 1 + 5Nζ + ζ 3

2(3 + 5N)
log

(
A2

ζa2

)
. (2.20)

In figure 2, we plot a/A as a function of (p∞ − pa)/μ for each of the strain energy functions listed
above, and for three separate values of ζ . The black curves represent the neo-Hookean strain
energy function, the blue curves represent the Mooney–Rivlin strain energy function and the red
curves represent the Arruda–Boyce strain energy function. The solid lines correspond to ζ = 1, the
dashed to ζ = 1

2 and the dotted to ζ = 2. The values chosen for the constants in the Mooney–Rivlin
strain energy function were C1 = 0.724, C2 = 0.276, which were the values used by Mooney [34] to
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Figure 2. a/A as a function of (p∞ − pa)/μ. The black curves represent the neo-Hookean strain energy function, the blue
curves represent the Mooney–Rivlin strain energy function and the red curves represent the Arruda–Boyce strain energy
function. The solid lines correspond toζ = 1, thedashed toζ = 1

2 and thedotted toζ = 2. Thevalues chosen for the constants
in theMooney–Rivlin strain energy functionwereC1 = 0.724, C2 = 0.276, and the value chosen forN in theArruda–Boyce strain
energy function was N = 26.5.

fit Gerke’s [35] experimental data on the elongation of vulcanized rubber. The value chosen for N
in the Arruda–Boyce strain energy function was N = 26.5. This value of N was used by Arruda &
Boyce [33] to match Treloar’s [36] data on the uniaxial extension, biaxial extension and shear of
vulcanized rubber. Note that, for ζ = 1, the neo-Hookean and Mooney–Rivlin curves coincide and
the Arruda–Boyce curve is so close to them that it also appears to lie on top of them in the figure.

3. Incremental deformations
We now examine incremental deformations from the deformed state b. To this end, consider
a finite deformation of the original body B to a new deformed state b̄ which is close to the
configuration b. The position vector in the new deformed state b̄ is given by x̄ and we define

u = x̄ − x, |u| � 1 (3.1)

as the difference between position vectors in b̄ and b. Since b̄ is close to b, u is called an incremental
displacement which we assume to be time dependent. For the purposes of this article we assume
that the incremental deformation is of antiplane type and time-harmonic, i.e.

u = �[w(r, θ ) exp(−iωt)]ez, (3.2)

where the notation � indicates that the real part of the expression inside the square brackets is to
be taken. We next use the theory of small-on-large (see appendix A), to determine the governing
equation of motion,

1
r

∂

∂r

(
rμr(r)

∂w
∂r

)
+ μθ (r)

r2
∂2w
∂θ2 + ρω2w = 0, (3.3)

where

μr(r) =
(

λr(∂W/∂λr) − λz(∂W/∂λz)

λ2
r − λ2

z

)
λ2

r

and μθ (r) =
(

λθ (∂W/∂λθ ) − λz(∂W/∂λz)

λ2
θ − λ2

z

)
λ2

θ .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)

Given an incident field that takes plane wave form in the far-field, i.e.

wi ∼ eikx =
∞∑

n=0

εninJn(kr) cos(nθ ) (3.5)
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as r → ∞, where Jn is the Bessel function of the first kind of order n and

εn =
{

1 n = 0,

2 n 
= 0,
(3.6)

we seek solutions to (3.3) in the form

w(r, θ ) =
∞∑

n=0

εninfn(r) cos(nθ ). (3.7)

As such for the nth mode, we have

1
r

∂

∂r
(rμr(r)f ′

n(r)) +
(

ρω2 − μθ (r)
r2 n2

)
fn(r) = 0, (3.8)

in which prime notation denotes differentiation with respect to r. Clearly different incident fields
could be considered as desired. By substituting (2.15)–(2.17) into (3.4), we can obtain explicit
expressions for the anisotropic shear moduli μr(r) and μθ (r), which can then be used to determine
the antiplane wave governing equation for each strain energy function. In the neo-Hookean case,
we have (

1 + M
r2

)
f ′′
n (r) + 1

r

(
1 − M

r2

)
f ′
n(r) +

(
k2

NH − n2

r2 + M

)
fn(r) = 0, (3.9)

where

k2
NH = ζK2 and K2 = ρω2

μ
, (3.10)

in the Mooney–Rivlin case we have(
1 + m

r2

)
f ′′
n (r) + 1

r

(
1 − m

r2

)
f ′
n(r) +

(
k2

MR − n2

r2

(
1 − m

r2 + M

))
fn(r) = 0, (3.11)

where

k2
MR = ζ 2K2

T
, m = MζC1

T
, T = 1 + (ζ − 1)C1, (3.12)

and in the Arruda–Boyce case we have(
1 + M

r2 + χ
M2

r4

)
f ′′
n (r) + 1

r

(
1 − M

r2 − 3χ
M2

r4

)
f ′
n(r)

+
(

k2
AB − n2

(
1

r2 + M
+ χM2

r2(r2 + M)2

))
fn(r) = 0, (3.13)

where

k2
AB = (3 + 5N)ζ 2χK2 and χ = 1

2 + 5Nζ + ζ 3 , (3.14)

and we note that, when ζ = 1, kNH = kMR = kAB = K.
By substituting (3.7) into (A 20), we see that the boundary condition on r = a reduces to

f ′
n(a) = 0, (3.15)

for all n. This boundary condition remains the same regardless of the strain energy function used
to characterize the material under consideration.

We note that the effect of the radial pre-stress on the governing wave equations (3.9)–(3.13)
decreases as r → ∞, and in the limit as M/r2 → 0, (3.9), (3.11) and (3.13) become

f ′′
n (r) + 1

r
f ′
n(r) +

(
k2 − n2

r2

)
fn(r) = 0, (3.16)

where k2 = k2
NH in the neo-Hookean case, k2 = k2

MR in the Mooney–Rivlin case, and k2 = k2
AB in the

Arruda–Boyce case. Equation (3.16) is the standard governing equation for antiplane waves in a
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stress-free elastic medium (albeit with a modified wavenumber) and is readily solved:

fn(r) = f i
n(r) + f s

n(r), f i
n(r) = Jn(kr) and f s

n(r) = anH(1)
n (kr), (3.17)

where we identify f i
n(r) as the nth component of the incoming plane wave and thus equate it

to Jn via (3.5). Furthermore, f s
n(r) is the nth component of the scattered wave, represented by a

Hankel function of the first kind, H(1)
n (kr), and an is the scattering coefficient associated with this

nth outgoing wave term.
Owing to the complexity of the above incremental governing equations, they cannot be solved

via standard methods, except for a neo-Hookean material (see §3a). In this case, exact solutions
can be found [29]; however, in the Mooney–Rivlin (except when n = 0, see §3b) and Arruda–Boyce
cases, we must instead find an approximate solution. The method used to do this is described
in §4.

(a) The special case of neo-Hookean media
Parnell & Abrahams [29] showed that (3.9) can be solved analytically to give

fn(r) = Jn

(
K
√

ζ (r2 + M)
)

+ anH(1)
n

(
K
√

ζ (r2 + M)
)

(3.18)

for the case of an incoming plane wave, where the scattering coefficients an are given by

an = −
J′n
(

K
√

ζ (a2 + M)
)

H(1)′
n

(
K
√

ζ (a2 + M)
) = − J′n(KA)

H(1)′
n (KA)

. (3.19)

This is the form the scattering coefficients take in a stress-free medium containing a cavity
of radius A, i.e. the radius of the undeformed cavity in the problem being considered in this
paper. Therefore, in the neo-Hookean case, rather surprisingly, all the scattering coefficients are
completely unaffected by the pre-stress.

(b) Analytical solution in the Mooney–Rivlin case when n= 0
In the Mooney–Rivlin case, to the authors’ knowledge, a general solution for all mode numbers n
cannot be found; however, we note that, when n = 0, (3.11) reduces to(

1 + m
r2

)
f ′′
0 (r) + 1

r

(
1 − m

r2

)
f ′
0(r) + k2f0(r) = 0, (3.20)

which can be solved analytically (as for the neo-Hookean case) to give

f0(r) = c1J0

(
k
√

r2 + m
)

+ c2H(1)
0

(
k
√

r2 + m
)

, (3.21)

where c1 and c2 are arbitrary constants. Upon matching this solution to the far-field form (3.17),
we obtain c1 = 1 and c2 = a0, and applying the boundary condition (3.15), we obtain

a0 = −
J′0
(

k
√

a2 + m
)

H(1)′
0

(
k
√

a2 + m
) . (3.22)

This is a similar form to that which the neo-Hookean scattering coefficients take when n = 0;
however, since k

√
a2 + m 
= KA, the above expression is dependent on the pre-stress. To determine

the effect of the pre-stress on the other modes (n 
= 0), however, we must use the method described
in the following section.

4. Solution method
As mentioned above, the Mooney–Rivlin (3.11) and Arruda–Boyce (3.13) governing equations
are not readily solved via standard methods. Hence, to proceed, we recall that, in the limit as
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M/r2 → 0, an analytical solution (3.17) to the governing equations may be found. Therefore, for
large r, we should be able to derive an approximate solution. For a given pre-stress parameter M,
we shall choose a large radius b such that M/b2 = ε2 � 1 and derive an approximate solution to the
governing equation for r ≥ b. Then, in the region r ∈ [a, b], we shall solve the governing equations
numerically, with the boundary conditions on r = b being dictated by enforcing continuity of
displacement and traction with the approximate solution. In what follows we describe a ‘general’
recipe for numerically evaluating the solution in the far-field to O(ε2), which will work for any
strain energy function; for ease of exposition this is presented for a Mooney–Rivlin material, but
the Arruda–Boyce case follows in a very similar fashion. Note, however, in the Mooney–Rivlin
case we can in fact evaluate the integral expressions below analytically, as will be discussed at the
end of this section. We begin by introducing new independent and dependent variables s = r/b
and Fn(s) = fn(r), respectively, so that (3.11) can be rewritten as(

1 + m
M

ε2

s2

)
d2Fn

ds2 + 1
s

(
1 − m

M
ε2

s2

)
dFn

ds
+
(

κ2 − n2

s2

(
1 − (m/M)ε2

s2 + ε2

))
Fn = 0, (4.1)

where κ2 = (kb)2. Given (3.17), we then assume the following (regular) expansion for Fn(s):

Fn(s) = Jn(κs) + anH(1)
n (κs) + ε2Gn(s) + O(ε4), (4.2)

so that at O(1) we obtain

d2

ds2 (Jn(κs)) + 1
s

d
ds

(Jn(κs)) +
(

κ2 − n2

s2

)
Jn(κs)

+ an

(
d2

ds2

(
H(1)

n (κs)
)

+ 1
s

d
ds

(
H(1)

n (κs)
)

+
(

κ2 − n2

s2

)
H(1)

n (κs)

)
= 0, (4.3)

which is satisfied trivially, and at O(ε2) we obtain

d2Gn

ds2 + 1
s

dGn

ds
+
(

κ2 − n2

s2

)
Gn

= m
M

(
2
s3

d
ds

(
Jn(κs) + anH(1)

n (κs)
)

+
(

κ2

s2 − 2n2

s4

)(
Jn(κs) + anH(1)

n (κs)
))

. (4.4)

Now, if we let

Gn(s) = m
M

H(1)
n (κs)gn(s), (4.5)

then (4.4) simplifies to

d
ds

(
s(H(1)

n (κs))2 dgn

ds

)
= 2

s2 H(1)
n (κs)

d
ds

(Jn(κs)) +
(

κ2

s
− 2n2

s3

)
H(1)

n (κs)Jn(κs)

+ an

(
2
s2 H(1)

n (κs)
d
ds

(H(1)
n (κs)) +

(
κ2

s
− 2n2

s3

)
(H(1)

n (κs))2

)
. (4.6)

In the limit as s → ∞, the governing equation (4.1) reduces to Bessel’s equation (since the terms
multiplying m/M disappear), whose solution is Fn(s) = Jn(κs) + anH(1)

n (κs); hence Gn and gn must
tend to 0 as s → ∞. The next step of the method, therefore, is to integrate (4.6) from s to ∞, and
divide by s(H(1)

n (κs))2, to obtain

dgn

ds
= − 1

s(H(1)
n (κs))2

∫∞

s

(
2
x2 H(1)

n (κx)
d

dx
(Jn(κx)) +

(
κ2

x
− 2n2

x3

)
H(1)

n (κx)Jn(κx)

)
dx

+ an

s3 − an

s(H(1)
n (κs))2

∫∞

s

(
κ2

x
+ 2(1 − n2)

x3

)
(H(1)

n (κx))2 dx, (4.7)
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and, upon integrating again, we find

gn(s) =
∫∞

s

1

y(H(1)
n (κy))2

∫∞

y

(
2
x2 H(1)

n (κx)
d

dx
(Jn(κx)) +

(
κ2

x
− 2

n2

x3

)
H(1)

n (κx)Jn(κx)

)
dx dy − an

2s2

+ an

∫∞

s

1

y(H(1)
n (κy))2

∫∞

y

(
κ2

x
+ 2(1 − n2)

x3

)
(H(1)

n (κx))2 dx dy. (4.8)

So,

Fn(s) = Jn(κs) + anH(1)
n (κs) + m

M
ε2H(1)

n (κs)gn(s) + O(ε4), (4.9)

and, therefore,

fn(r) = Jn(kr) + anH(1)
n (kr) + m

M
ε2H(1)

n (kr)gn

( r
b

)
+ O(ε4), (4.10)

and, hence,

fn(b) = Jn(kb) + anH(1)
n (kb) + m

b2 H(1)
n (kb)gn(1) + O(ε4) (4.11)

and

dfn
dr

∣∣∣∣
r=b

= d
dr

(Jn(kr))
∣∣∣∣
r=b

+ an
d
dr

(H(1)
n (kr))

∣∣∣∣
r=b

+ m
b3 H(1)

n (kb)
dgn

ds

∣∣∣∣
s=1

+ m
b2

d
dr

(H(1)
n (kr))

∣∣∣∣
r=b

gn(1) + O(ε4). (4.12)

Now, in order to determine the appropriate boundary condition on r = b, we require a suitable
choice for an. We note that we can write

fn(b) = αan + β, (4.13)

where

α = H(1)
n (kb)

(
1 − m

2b2 + m
b2

∫∞

1

1

y(H(1)
n (κy))2

∫∞

y

(
κ2

x
+ 2(1 − n2)

x3

)
(H(1)

n (κx))2 dx dy

)
,

(4.14)

β = Jn(kb) + m
b2 H(1)

n (kb)
∫∞

1

1

y(H(1)
n (κy))2

×
∫∞

y

(
2
x2 H(1)

n (κx)
d
dx

(Jn(κx)) +
(

κ2

x
− 2n2

x3

)
H(1)

n (κx)Jn(κx)

)
dx dy (4.15)

and f ′
n(b) = dfn

dr

∣∣∣∣
r=b

= γ an + δ, (4.16)

where

γ = d
dr

(H(1)
n (kr))

∣∣∣∣
r=b

α

H(1)
n (kb)

+ m
b3 H(1)

n (kb)

×
(

1 − 1

(H(1)
n (kb))2

∫∞

1

(
κ2

x
+ 2(1 − n2)

x3

)
(H(1)

n (κx))2 dx

)
(4.17)

and

δ = d
dr

(Jn(kr))
∣∣∣∣
r=b

− d
dr

(H(1)
n (kr))

∣∣∣∣
r=b

Jn(kb)

H(1)
n (kb)

+ d
dr

(H(1)
n (kr))

∣∣∣∣
r=b

β

H(1)
n (kb)

− m

b3H(1)
n (kb)

∫∞

1

(
2
x2 H(1)

n (κx)
d

dx
(Jn(κx)) +

(
κ2

x
− 2n2

x3

)
H(1)

n (κx)Jn(κx)

)
dx. (4.18)
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Figure 3. The fundamental scattering coefficient a0 in a pre-stressed neo-Hookean material with M= 1, ζ = 1, K = 1 and
a= 1, as a function of b, derived using the method described in §4 (black), the analytic expression (red, dashed) and a simpler
version of the method in which only the O(1) terms in the far-field expansion are included (blue).

Solving (4.13) and (4.16) for an, we obtain

an = 1
�

(δfn(b) − βf ′
n(b)), (4.19)

where

� = αδ − βγ , (4.20)

and eliminating an from (4.13) and (4.16), we obtain our final boundary condition,

γ fn(b) − αf ′
n(b) = −�. (4.21)

The method is now clear. We choose b such that M/b2 � 1, and numerically solve equation (3.11)
subject to (3.15) and (4.21). Once solved, we use the values of fn(b) and f ′

n(b) determined by our
numerical solver in equation (4.19) to deduce the value of an. The predicted value of an will
depend on the chosen value of b, therefore we must increase b until the solution has converged to
a desired level of accuracy.

We note that, owing to their highly oscillatory nature, the integrals in equations (4.14)–
(4.18) are difficult to evaluate numerically; however, in appendix B, we show how they can be
rearranged into forms that are more readily evaluated. A similar procedure can be followed to
obtain such integrals for other strain energy functions. In fact, for Mooney-Rivlin materials it
transpires that the integrals can be evaluated exactly, leading to an explicit expression for the
O(ε2) term:

Gn(s) = m
M

1
2s

d
ds

(Jn(κs) + anH(1)
n (κs)). (4.22)

This has allowed us to verify that the numerical procedure is effective.
To demonstrate how the method described above converges with increasing b, in figure 3 we

plot the fundamental scattering coefficient a0 in a pre-stressed neo-Hookean material with M =
1, ζ = 1, K = 1 and a = 1. The black line gives the values derived using the method above (in
which we determined the far-field solution up to O(ε2)), the red dashed line shows the analytical
solution (which is available since we are considering a neo-Hookean material), and the blue line
represents the solution that is obtained when one neglects the O(ε2) correction to fn(r) (see (4.2)) in
the far-field. We observe that the inclusion of the O(ε2) terms greatly improves the convergence.
We discuss the convergence of the method further in appendix C.
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Figure 4. The scattering cross section of a neo-Hookean (black), a Mooney–Rivlin with C1 = 0.724, C2 = 0.276 (blue) and an
Arruda–BoycematerialwithN = 26.5 (red) for three values of the non-dimensionalized pressure difference: (p∞ − pa)/μ =
0 (solid), (p∞ − pa)/μ = 1 (dashed) and (p∞ − pa)/μ = −1 (dotted) as a function of KA. The value of the longitudinal
stretch was chosen to be ζ = 1 and the initial cavity radius was taken to be A= 1.

5. Scattering cross sections
In order to determine the effect of the pre-stress on the scattered waves, we plot the non-
dimensionalized scattering cross section (see appendix D),

q = 2
kA

∞∑
n=0

εn|an|2. (5.1)

This quantity gives the ratio of the time-averaged power emitted from a scatterer to the intensity
of the incoming wave, scaled on the diameter of the scatterer. In the absence of a scatterer, this
must obviously be equal to zero.

(a) The effect of the applied pressure difference
In figure 4, we plot the scattering cross section of a neo-Hookean material (black), a Mooney–
Rivlin material with C1 = 0.724, C2 = 0.276 (blue) and an Arruda–Boyce material with N = 26.5
(red), for three values of the non-dimensionalized pressure difference: (p∞ − pa)/μ = 0 (solid),
(p∞ − pa)/μ = 1 (dashed) and (p∞ − pa)/μ = −1 (dotted), as a function of KA. The values of the
deformed radii a that result from these pre-stress values are shown in table 1. The value of the
longitudinal stretch was chosen to be ζ = 1 and the initial cavity radius was taken to be A = 1. The
numerical solver used to evaluate equations (3.11) and (3.13) was NDSOLVE in MATHEMATICA 9.0
(Wolfram Research, Inc.) and the value selected for the outer radius of the numerical domain was
b = 80 in all cases.

We note that, as discussed earlier, all the neo-Hookean scattering cross sections and the stress-
free scattering cross sections of the other materials coincide. In the Mooney–Rivlin material, a
greater pressure at infinity than on r = a leads to a decrease in scattered energy, whereas a negative
pressure difference increases the scattering. This is intuitive since a positive pressure difference
decreases the size of the scatterer and a negative pressure difference increases it. Interestingly,
however, in the Arruda–Boyce material any non-zero pressure difference (positive or negative) causes
a small decrease in scattering (counterintuitively, the effect is more pronounced for a negative
pressure difference). This can be seen in figure 5, which shows an enlarged version of the region
1.5 ≤ KA ≤ 2, 1.2 ≤ q ≤ 1.36 in figure 4. As the Arruda–Boyce strain energy function is essentially a
higher order correction to a neo-Hookean strain energy function, involving the invariant I1 only,
it is perhaps not surprising that the deviation of the behaviour of this material from neo-Hookean
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Figure 5. An enlarged version of the region 1.5≤ KA≤ 2, 1.2≤ q≤ 1.36 displayed in figure 4.

Table 1. The effect of the applied pressure differences on the deformed radius a for the three strain energy functions, given a
longitudinal stretch ζ = 1 and undeformed radius A= 1.

strain energy function applied pressure difference deformed radius a

neo-Hookean (p∞ − pa)/μ = 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

neo-Hookean (p∞ − pa)/μ = 1 0.672987
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

neo-Hookean (p∞ − pa)/μ = −1 1.89503
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mooney–Rivlin (p∞ − pa)/μ = 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mooney–Rivlin (p∞ − pa)/μ = 1 0.672987
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mooney–Rivlin (p∞ − pa)/μ = −1 1.89503
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arruda–Boyce (p∞ − pa)/μ = 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arruda–Boyce (p∞ − pa)/μ = 1 0.67336
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arruda–Boyce (p∞ − pa)/μ = −1 1.88936
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is small; however, the reversal of the effect of a negative pressure difference as compared with a
Mooney–Rivlin material is somewhat surprising.

(b) The effect of the applied longitudinal stretch
In figure 6, we plot the scattering cross section of a neo-Hookean material (black), a Mooney–
Rivlin material with C1 = 0.724, C2 = 0.276 (blue) and an Arruda–Boyce material with N = 26.5
(red), for three values of the longitudinal stretch: ζ = 1 (solid), ζ = 1

2 (dashed) and ζ = 2 (dotted),
as a function of KA. The values of the deformed radii a that result from these pre-stress values are
tabulated in table 2. The value of the non-dimensionalized pressure difference was chosen to be
(p∞ − pa)/μ = 1 and the initial cavity radius was chosen to be A = 1. Once again, the numerical
solver used to solve equations (3.11) and (3.13) was NDSOLVE in MATHEMATICA 9.0 (Wolfram
Research, Inc.) and the value selected for the outer radius of the numerical domain was b = 80.

In all cases, a longitudinal stretch leads to a decrease in the scattered power, whereas a
longitudinal compression increases it. This effect could have been predicted by observing that the
scattering cross section is scaled on the deformed wavenumber k, which increases with increasing
stretch and decreases with increasing compression (see equations (3.10), (3.12) and (3.14)). Once
again, we observe that the Arruda–Boyce scattering cross sections take values very close to those
found for the neo-Hookean strain energy function.
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Figure 6. The scattering cross section of a neo-Hookean (black), a Mooney–Rivlin with C1 = 0.724, C2 = 0.276 (blue) and
an Arruda–Boyce material with N = 26.5 (red) for three values of the longitudinal stretch: ζ = 1 (solid), ζ = 1

2 (dashed)
and ζ = 2 (dotted), as a function of KA. The value of the non-dimensionalized pressure difference was chosen to be
(p∞ − pa)/μ = 1 and the initial cavity radius was chosen to be A= 1.

Table 2. The effect of the applied longitudinal stretches on the deformed radius a for each strain energy function used, given a
non-dimensionalized pressure difference (p∞ − pa)/μ = 1 and undeformed radius A= 1.

strain energy function applied longitudinal stretch deformed radius a

neo-Hookean ζ = 1 0.672987
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

neo-Hookean ζ = 1
2 1.13331

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

neo-Hookean ζ = 2 0.367933
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mooney–Rivlin ζ = 1 0.672987
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mooney–Rivlin ζ = 1
2 1.07858

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mooney–Rivlin ζ = 2 0.462386
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arruda–Boyce ζ = 1 0.67336
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arruda–Boyce ζ = 1
2 1.04534

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arruda–Boyce ζ = 2 0.492763
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. Discussion
In this paper, we have investigated the effect of pre-stress on the scattering of antiplane elastic
waves from a cylindrical cavity. The governing equations have inhomogeneous coefficients, and,
as a result, could not be solved analytically except for special cases. In order to analyse their
behaviour, therefore, a new hybrid analytical–numerical method was developed which relies
upon the fact that the inhomogeneities in the coefficients approach zero as r → ∞, thus allowing
an asymptotic solution to be derived for large r. The asymptotic solution was used to determine
a boundary condition for a numerical solver in the region around the cavity. This hybrid method
could be applied to any linear ordinary differential equation whose inhomogeneous coefficients
tend to a constant as its independent variable tends to infinity.

In order to analyse the effect of the pre-stress, the scattering cross section was plotted for
several values of the longitudinal stretch and pressure difference. It was shown that a positive
longitudinal stretch led to a decrease in scattered power, whereas a compression caused an
increase. The effect of the pressure difference, however, was more interesting. It was shown that,
for a Mooney–Rivlin material, a positive pressure difference led to a decrease in scattered power,
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whereas a negative pressure difference led to an increase. This is intuitive as one would expect
that inflating a cavity would increase its ability to scatter waves, whereas a deflation should
decrease that ability. In the neo-Hookean case, however, the scattered power was completely
unaffected by the pre-stress, whereas, in the Arruda–Boyce case, any non-zero pressure difference
(positive or negative) led to a decrease in scattering. This result was not expected; however, it
can be explained by considering the form of the strain energy function that was used. The two-
term Arruda–Boyce model introduces an O(M2) modification to the neo-Hookean incremental
equation (this can be seen by comparing equation (3.13) with equation (3.9)). Since M2 is positive
for any real M, these new terms are insensitive to whether M is positive (corresponding to a
cavity compression) or negative (corresponding to a cavity inflation) and therefore always reduce
the scattering. It is possible that, by expanding the Arruda–Boyce model to third order in I1, the
introduction of O(M3) terms in the governing incremental equation would reverse this behaviour;
however, it is likely that these terms would be so small (due to the O(1/N2) coefficients that
multiply the O(M3) terms—see equation (2.17) for reference) that the O(M2) terms would still
dominate. In either case, the difference between the Arruda–Boyce and the neo-Hookean material
response is expected to be small.

We note that the neo-Hookean and Arruda–Boyce strain energy functions are independent of
the second strain invariant I2, and can therefore be classified as ‘I1 models’. It is well known that
I1 models display unphysical behaviour in many circumstances. For example, they do not exhibit
the Poynting effect [37]. It appears that the problem raised here for the Arruda–Boyce model is
another example of the deficiencies of such strain energy functions.
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Appendix A. Summary of small-on-large theory
For the small-on-large details, we follow the approach described in Ogden [23] and Destrade &
Saccomandi [38], with slight modifications to notation. We consider incremental deformations
from the deformed body b. To this end, consider a finite deformation of the original body B to a
new deformed state b̄ which is close to the configuration b. We shall call this new configuration
the perturbed configuration. Position vectors in the deformed states b and b̄ are defined by x and x̄,
respectively, and we define

u = x̄ − x, |u| � 1 (A 1)

as the difference between position vectors in b̄ and b. Since b̄ is close to b, u is called an incremental
displacement which, in our case, is time dependent. We assume that the time-harmonic incremental
deformation is an antiplane wave, i.e.

u = w(x, y) e−iωtez, (A 2)

where ez is a unit vector in the z-direction in the body b.
Given the deformation gradient (2.4), we can define the additional deformation gradients

f = gradx̄ and F̄ = Gradx̄ = fF, where grad represents the gradient operator with respect to the
statically deformed configuration. Therefore,

Γ = Grad u = Grad(x̄ − x) = (f − I)F (A 3)

and similarly γ = grad u = f − I, so that f = I + γ and Γ = γ F.
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Furthermore, given the stresses (2.9) in the configuration b, we can define the corresponding
stresses T̄ = T + τ and S̄ = S + s in b̄, where τ and s are the incremental Cauchy and nominal
stresses, respectively. By taking an expansion about the deformation F, it is straightforward to
show that for an incompressible material

s = L : γ F + qF−1 − QF−1γ , (A 4)

where q is the increment of Q and L = ∂2W/∂F2 defined componentwise via LIjKl = ∂2W/∂FjI∂FlK.
The colon notation indicates the double contraction A : b = Aijklblk. Defining the push-forward of the
incremental nominal stress as ζ = Fs, from (A 4) this therefore has the form

ζ = M : γ + qI − Qγ , (A 5)

where the components of the instantaneous modulus tensor M are defined by

Mijkl = ∂2W
∂FjM∂FlN

FiMFkN . (A 6)

Convenient forms for this tensor have been given by Ogden [23] as

Miijj = λiλjWij = Mjjii, no sum on i, j, (A 7)

Mijij =
(

λiWi − λjWj

λ2
i − λ2

j

)
λ2

i , i 
= j, λi 
= λj, (A 8)

Mijij = 1
2

(Miiii − Miijj + λiWi), i 
= j, λi = λj (A 9)

and Mijji = Mjiij = Mijij − λiWi, i 
= j, (A 10)

where Wi = ∂W/∂λi and Wij = ∂2W/∂λi∂λj. Analysis of the Cauchy stress gives rise to the
relationship

τ = ζ + γ T, (A 11)

for an incompressible material.
The equations of motion in body b̄ in terms of the Cauchy stress are

div T̄ = ρ̄
∂2Ū
∂t2 = ρ

∂2u
∂t2 , (A 12)

where div represents the divergence operator in the perturbed configuration. The second of the
above equalities holds as the body is incompressible (i.e. ρ̄ = ρ) and because Ū = U + u where U
is not time dependent. Using the fact that div T = 0, it is relatively straightforward to show that

div T̄ = div (τ − γ T) = div ζ , (A 13)

where we have used the relationship between ζ and τ above. The incremental equations are
therefore

div ζ = ρ
∂2u
∂t2 . (A 14)

If we substitute (A 2) into the above, two of the equations imply that q is independent of r and θ ,
and the single remaining governing equation of motion is

1
r

∂

∂r
(rζrz) + 1

r
∂ζθz

∂θ
+ ρω2w + ∂q

∂z
= 0, (A 15)

where
ζrz = Mrzrzγzr and ζθz = Mθzθzγzθ . (A 16)

In this case τrz = ζrz and τθz = ζθz and so the instantaneous moduli Mrzrz and Mθzθz can be
interpreted as pressure-dependent anisotropic shear moduli, given by

Mrzrz(r) = μr(r) =
(

λrWr − λzWz

λ2
r − λ2

z

)
λ2

r and Mθzθz(r) = μθ (r) =
(

λθ Wθ − λzWz

λ2
θ − λ2

z

)
λ2

θ . (A 17)
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Using (A 16) with (A 17) in (A 15) gives the governing equation of motion in terms of the
displacement w, which is

1
r

∂

∂r

(
rμr(r)

∂w
∂r

)
+ μθ (r)

r2
∂2w
∂θ2 + ρω2w + ∂q

∂z
= 0. (A 18)

We now apply the condition that the pressure on the surface of the cavity (i.e. where r = a) remains
unaltered by the perturbation, so that

T̄n̄ = −pn̄, (A 19)

where n̄ is the outer unit normal in the perturbed configuration. This condition reduces to

∂w
∂r

∣∣∣∣
r=a

= 0, q = 0, (A 20)

and the second of these equations allows us to reduce (A 18) to

1
r

∂

∂r

(
rμr(r)

∂w
∂r

)
+ μθ (r)

r2
∂2w
∂θ2 + ρω2w = 0. (A 21)

Appendix B. Integrals
Here we describe how to numerically evaluate α, β, γ and δ defined in equations (4.14)–(4.18). We
begin by noting that γ has two integrals of the form

Ip =
∫∞

1

(H(1)
n (κx))2

xp dx, p = 1, 3. (B 1)

The integrand here is highly oscillatory and so is not easy to evaluate numerically. We note,
however, that the singularities of H(1)

n (κx) lie entirely in the lower half of the complex x-plane.
Let us write u = κx, so that

Ip = κp−1
∫∞

κ

(H(1)
n (u))2

up du. (B 2)

Then, we note that, in the limit as |u| → ∞,

(H(1)
n (u))2 ∼ − 2i

πu
(−1)n e2iu, (B 3)

therefore we can rotate the contour in Ip into the upper half-plane:

Ip = κp−1
∫ i∞

κ

(H(1)
n (u))2

up du. (B 4)

This form can now be easily evaluated numerically. Similarly, we note that α has integrals of the
form

Lp =
∫∞

1

1

y(H(1)
n (κy))2

∫∞

y

(H(1)
n (κx))2

xp dx dy, p = 1, 3. (B 5)

Upon making the substitutions u = κx, v = κy and again rotating into the upper half-plane, we
obtain

Lp = κp−1
∫∞

κ

1

v(H(1)
n (v))2

∫∞

v

(H(1)
n (u))2

up du dv

= κp−1
∫∞

κ

1

v(H(1)
n (v))2

∫ i∞

v

(H(1)
n (u))2

up du dv, (B 6)
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which, again, is readily computable. Furthermore, δ contains integrals that can be written as

Jp =
∫∞

1

Hn(κx)Jn(κx)
xp dx = κp−1

∫∞

κ

H(1)
n (u)Jn(u)

up du

= κp−1

2

∫∞

κ

(H(1)
n (u))2 + H(1)

n (u)H(2)
n (u)

up du

= Ip

2
+ κp−1

2

∫∞

κ

H(1)
n (u)H(2)

n (u)
up du, p = 1, 3, (B 7)

where H(2)
n (u) is the Hankel function of the second kind. The last of these integrals is not

oscillatory, and so can be numerically evaluated as is. The other integral in δ can be written as

J =
∫∞

1

1
x2 H(1)

n (κx)
d
dx

(Jn(κx)) dx = κ

2

∫∞

1

1
x2 H(1)

n (κx)(Jn−1(κx) − Jn+1(κx)) dx

= κ2

4

∫ i∞

κ

1
u2 H(1)

n (u)(H(1)
n−1(u) − H(1)

n+1(u)) du + κ2

4

∫∞

κ

1
u2 H(1)

n (u)(H(2)
n−1(u) − H(2)

n+1(u)) du. (B 8)

Finally, the double integrals in β can be written as

Mp =
∫∞

1

1

y(H(1)
n (κy))2

∫∞

y

H(1)
n (κx)Jn(κx)

xp dx dy

= κp−1
∫∞

κ

1

v(H(1)
n (v))2

∫∞

v

H(1)
n (u)Jn(u)

up du dv

= κp−1

2

∫∞

κ

1

v(H(1)
n (v))2

∫ i∞

v

(H(1)
n (u))2

up du dv

+ κp−1

2

∫∞

κ

1
v(Hn(1)(v))2

∫∞

v

H(1)
n (u)H(2)

n (u)
up du dv

= Lp

2
+ κp−1

2

∫∞

κ

1
v(Hn(1)(v))2

∫∞

v

H(1)
n (u)H(2)

n (u)
up du dv, p = 1, 3, (B 9)

and

P =
∫∞

1

1

y(H(1)
n (κy))2

∫∞

y

1
x2 H(1)

n (κx)
d

dx
(Jn(κx)) dx dy

= κ2
∫∞

κ

1

v(H(1)
n (v))2

∫∞

v

1
u2 H(1)

n (u)
d

du
(Jn(u)) du dv

= κ2

4

∫∞

κ

1

v(H(1)
n (v))2

⎛
⎝∫ i∞

v

H(1)
n (u)(H(1)

n−1(u) − H(1)
n+1(u))

u2 du

+
∫∞

v

H(1)
n (u)(H(2)

n−1(u) − H(2)
n+1(u))

u2 du

⎞
⎠dv, (B 10)

which completes the rewriting of all the integrals in α–δ to make them easy to evaluate.

Appendix C. Convergence of the method described in §4
The asymptotic expansion (4.2) includes terms up to O(ε2), and so one might expect the error
in determining each scattering coefficient to be of the order of the discarded terms, i.e. O(ε4).
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However, the asymptotic expansion is not the only source of error in the method. With reference
to equation (4.19), we note that an can be represented schematically as

an = (A(0)
n + ε2A(2)

n )fn(b) + (B(0)
n + ε2B(2)

n )f ′
n(b) + O(ε4), (C 1)

where A(0)
n , A(2)

n , B(0)
n and B(2)

n can be derived by series expanding δ/� and −β/�.
Because fn(b) is derived computationally, its value will include some level of numerical error

e(1)
n (b), say, so that we can write

fn(b) = f̂ n(b) + e(1)
n (b), (C 2)

where f̂ n(b) is the exact value of fn(b). The function fn(b) is derived using a shooting method, so
the error e(1)

n (b) will remain small until, at some very large value of b, it will start to grow. Upon
substituting (C 2) into (C 1), we obtain

an = (A(0)
n + ε2A(2)

n )(f̂ n(b) + e(1)
n (b)) + (B(0)

n + ε2B(2)
n )(f̂ ′

n(b) + e(2)
n (b)) + O(ε4), (C 3)

where e(2)
n (b) is the numerical error in determining the value of f ′

n(b), which we assume to be of
the same size as e(1)

n (b).
Now let us series expand the true value of the nth-order scattering coefficient ân:

ân = (Â(0)
n + ε2Â(2)

n )f̂ n(b) + (B̂(0)
n + ε2B̂(2)

n )f̂ ′
n(b) + O(ε4), (C 4)

where Â(0)
n , Â(2)

n , B̂(0)
n and B̂(2)

n are the true values of A(0)
n , A(2)

n , B(0)
n and B(2)

n , respectively. The terms
A(0)

n and B(0)
n in (C 3) should be exact as their evaluation does not require the numerical solution

of any integrals. The terms A(2)
n and B(2)

n will, however, involve some level of numerical error
(d(1)

n and d(2)
n , say, which we assume are of the same order of magnitude as each other), and since

the evaluation of the relevant integrals does not depend on a shooting method, we do not expect
these to change with increasing b. Hence, for our purposes we have

A(0)
n = Â(0)

n , A(2)
n = Â(2)

n + d(1)
n , B(0)

n = B̂(0)
n and B(2)

n = B̂(2)
n + d(2)

n . (C 5)

Therefore, if we subtract (C 3) from equation (C 4), we obtain the total error that arises from the
method described in §4:

En = |aexact
n − an| = |A(0)

n e(1)
n (b) + ε2e(1)

n (b)A(2)
n + ε2d(1)

n f̂ n(b) + ε2e(1)
n (b)d(1)

n

+ B(0)
n ê(2)

n (b) + ε2ê(2)
n (b)B(2)

n + ε2d(2)
n f̂ ′

n(b) + ε2e(2)
n (b)d(2)

n + O(ε4)|. (C 6)

For small values of b, the O(e(j)
n (b)) and O(ε2d(j)

n ), j = 1, 2, terms in equation (C 6) will be negligible
and so the O(ε4) error terms will dominate. Thus, the method will converge like 1/b4; however,

as b increases the O(ε4) terms will rapidly decrease in size until they are smaller than the O(ε2d(j)
n )

terms. Therefore, the solution will then converge at a rate proportional to 1/b2. For larger values

of b, these terms will also decay to the point where they are smaller than O(e(j)
n (b)) quantities. The

latter will offer a very small constant error to the solution until, at a very large value of b, the
shooting method will fail and the error will start to grow.

The key to selecting b is to choose a value that is large enough so that the O(ε4) and

O(ε2d(j)
n ) errors are insignificant, but small enough that the O(e(j)

n (b)) error is also insignificant.

The magnitude of the O(e(j)
n (b)) terms can be decreased (and therefore the error of the overall

scheme decreased) by increasing the accuracy of the numerical solver; however, this will, of
course, increase computation times.
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Appendix D. Scattering cross section
The scattered power flow through a surface S surrounding the cavity may be written [39] as

Pout =
∫

S
Pout · dA, (D 1)

where dA = n dA is an incremental area element, n is an outer unit normal to the surface S and

Pout = −∂uout

∂t
· τout (D 2)

is a vector that is analogous to the Poynting vector for electromagnetic waves, where uout

represents the scattered part of u, and τout is the part of the incremental Cauchy stress (defined in
(A 11)) associated with the scattered waves. We shall choose S to be a cylinder of unit axial length
that is concentric with the cavity and with radius r∗ � a, so that

n = er and dA = r∗dθ dz. (D 3)

Substituting (D 2) and (D 3) into (D 1), we obtain

Pout =
∫ 1

0

∫ 2π

0

(
−∂wout

∂t
τout

zr r∗
)

dθdz =
∫ 2π

0

(
−∂wout

∂t
τout

zr r∗
)

dθ , (D 4)

where wout is defined via uout = woutez, and τout
zr is the (z, r)th component of τout. Because, in

general, we do not have explicit expressions for u and τ , we shall use their far-field forms, so that

wout ∼ Re

( ∞∑
n=0

εninanH(1)
n (kr∗) cos(nθ ) e−iωt

)
and τout = μ∗

r
∂wout

∂r
, (D 5)

where

μ∗
r = lim

r→∞ μr(r). (D 6)

The time-averaged scattered power is defined as follows:

P̄out = ω

2π

∫ 2π/ω

0
Pout dt (D 7)

= ω

2π

∫ 2π/ω

0

∫ 2π

0

(
−∂wout

∂t
τout

zr r∗
)

dθ dt (D 8)

= −ωμ∗
r r∗

2π

∫ 2π/ω

0

∫ 2π

0

(
∂wout

∂t
∂wout

∂r

)
dθ dt. (D 9)

Upon substituting (D 5) into (D 9), and letting r∗ → ∞, it can be shown that, after substantial
algebraic simplification,

P̄out = 2μ∗
r ω

∞∑
n=0

εn|an|2. (D 10)

The intensity of the incoming wave is defined as the time-averaged power passing through a unit
square, which using the same methods as above can be obtained as follows:

I = P̄in = μ∗
r kω
2

. (D 11)

The scattering cross section, then, is defined as follows:

Q= P̄out

I
= 4

k

∞∑
n=0

εn|an|2. (D 12)
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As in Lewis et al. [40], however, we prefer the non-dimensionalized form of the scattering cross
section:

q = Q
2A

= 2
kA

∞∑
n=0

εn|an|2. (D 13)

Note that we have non-dimensionalized on the undeformed cavity radius A.
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