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When talking to secondary school students, first 
impressions are crucial. Accidentally say something 
that sounds boring and you will lose them in seconds. 

A physical demonstration can be an eye-catching way to begin 
an activity or spark off a conversation about mathematics. 
This is especially true in the context of an event like a science 
fair where there are hundreds of other exhibitors and stands, 
possibly involving loud music and/or dancing robots!
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This means that another check digit is needed which will
detect these errors. Hence d13 is also included which uses the
ISBN-13 formula. This will detect the errors missed by d12 and
ensure that all numbers produced will be compatible with EAN.

This solution will satisfy all four aims.

Further work

Some work has been started looking at error correction in ISBN
codes. This has included using a system similar to that devised
by Richard Hamming [11]. So far this has produced a code which
has 14 digits. The error correction facility assumes that any check
digit error is due to a single error and not transposition of errors.
This work is ongoing.

Conclusion

This article considers the statement ISBN-13 code is a better code
than ISBN-10 to be a work of fiction. The equivalent statement
for the new ISBN-13 code outlined above is shown to be fact.
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Figure 3: Comparison of flow out of the heart Q with flow through
the circulatory system Q2. The code used to produce this figure
is similar to that used in [6].

Similarly, Ohm’s law relates the voltage (or potential differ-
ence) V across a resistor to its current I and resistance R:

V = IR. (5)

As many secondary school pupils know, explanations of
Ohm’s law often use the analogy of water in pipes [3]. What
many of them are not aware of, however, is that, over the past
hundred years or so, researchers have used the flow of electric
charge in circuits as an analogy for studying the circulation of
blood around the body.

Modelling capillaries in the circulatory system as a network
of resistors in an electric circuit is a
simple and useful way of studying how
blood flows through the human body.
However, the assumption of zero flow
velocity at the capillary wall, used in
the derivation of Poiseuille’s law, is only
valid in blood vessels with walls that be-
have as if they are rigid.2

The large arteries connecting the left
ventricle of the heart to the rest of the cir-
culatory system are particularly compli-
ant, so Poiseuille’s law does not hold. They fill up with blood
as the heart beats (systole) and slowly release blood as the heart
refills (diastole), as described above. If we are to continue with
the electrical analogy, we require an additional component in the
circuit – a capacitor.

Figure 4: Circuit diagram of a capacitor in parallel with a resistor.

A capacitor in parallel with a resistor, with a fluctuating cur-
rent applied to the circuit, stores and releases voltage to the re-
sistor [5] in a manner that is similar to the way in which elastic
arteries store and release blood to the rest of the circulatory sys-
tem. The equation relating voltage to current in the circuit shown

in Figure 4 can be found by noting that the total current is given
by

I = I1 + I2, (6)

where
I1 = C

dV
dt

and I2 =
V

R
. (7)

The first of these is the equation for a capacitor (where C is its
capacitance and t is time); the second is Ohm’s law. Inserting (7)
into (6) gives

C
dV
dt

+
V

R
= I. (8)

The equivalent equation for blood flow is

C
dP
dt

+
P

R
= Q, (9)

where, in this case, C is the compliance of the aorta and R is the
total resistance of the rest of the circulatory system.3 Assuming
we can measure the flow rate Q out of the heart, we can find the
pressure drop P from equation (9) using the integrating factor
method to give

P (t) = exp

(
− t

RC

)∫
exp

(
t

RC

)
Q(t)

C
dt. (10)

We can then use this equation to plot the flow through
the circulatory system, which, using Poiseuille’s law (4), is

given by

Q2 =
P (t)

R
. (11)

For example, assume the flow out of
the heart is given by

Q = Q0 sin

(
πt

t0

)
(12)

during systole, which is of length t0,
where Q0 is the maximum amplitude of

the flow rate. Then during systole we have, using (10) and (12)

Ps(t) =
t0Q0R

(
t0 sin

(
πt
t0

)
−RCπ cos

(
πt
t0

))

π2C2R2 + t20

+K1 exp

(
− t

RC

)
(13)

where K1 is a constant of integration. Assuming there is no flow
during diastole, we have

Pd(t) = K2 exp

(
− t

RC

)
(14)

where K2 is another constant of integration. The constants K1

and K2 can be found by enforcing continuity between systolic
and diastolic pressures. Using physiological values for Q0, t0,
R and C taken from [6], we can plot the flow out of the heart
Q, given by (12), and the flow through the circulatory system Q2

(see Figure 3), found by inserting (13) and (14) into (11). The
figure clearly shows the continuous flow through the circulatory
system, despite the discontinuous flow out of the heart.

In this article we describe three devices that were built to illus-
trate specific physical phenomena that occur in the human body.
Each device corresponds to a simple mathematical model which
contains both elements that are accessible to pupils in the early
years of secondary education and more challenging mathemati-
cal concepts that might appeal to A-level students. Two of the
devices relate to the Windkessel effect, a physical phenomenon
that regulates blood flow, and the third demonstrates the elastic
properties of ligaments and tendons.

Hearts and arteries

When the heart beats, it generates sharp spikes in blood pressure.
If the arteries connected to the heart were rigid, these pressure
spikes would be transmitted to the circulatory system, potentially
causing serious physiological problems [1]. In addition, because
the flow of blood out of the heart stops periodically (during dias-
tole), the heart would have to work hard to accelerate the entire
mass of blood within the circulatory system each time it beats.
These effects are prevented thanks to the compliance of the aorta
– the blood vessel that connects the heart to the rest of the circula-
tory system. In the presence of a fluctuating flow rate, it stores and
slowly releases blood, thus damping the oscillations in pressure
and allowing a continuous blood flow downstream. This phe-
nomenon is often called the Windkessel effect [1]. In this section
we describe two devices that analogously illustrate this process,
and two corresponding mathematical models.

Balloons and circuits

The Windkessel effect can be simply demonstrated using a gar-
den sprayer and a small balloon, as shown in Figure 1. Squeezing
the handle of the unmodified sprayer at regular intervals produces
sharp bursts of fluid flow (Figures 1a and 1b), whereas when a
balloon is attached to its nozzle, the same input produces a con-
tinuous flow (Figures 1c and 1d). For an excellent video demon-
stration of a similar device, see [2].

Figure 1: A demonstration of the Windkessel effect using a
garden sprayer and a balloon (red food colouring optional).

A similar phenomenon occurs in a completely different area
of physics (see Figure 2). The figure shows a circuit with a capac-
itor in parallel with a resistor; the capacitor damps oscillations in
potential difference through the resistor in a process that is anal-
ogous to the way that a compliant tube damps fluid flow pressure

fluctuations. The mathematical equations governing electric cir-
cuits like the one shown in Figure 2 have been used to study the
heart and circulation, as discussed below.

Figure 2: A demonstration of a capacitor smoothing potential
difference across two resistors (one is a variable resistor for
flexibility).1 The bridge rectifier ensures that only positive volt-
ages (i.e. the peaks of the sinusoidal input) are transmitted to
the circuit [5]; therefore the transmitted voltage is similar to the
input current plotted in Figure 3.

Mathematical models

The devices described above can be modelled as follows. Con-
sider an incompressible, viscous fluid flowing steadily through a
rigid pipe of radius H . Assuming the flow is axisymmetric, fully
developed and flowing only in the direction parallel to the pipe,
the Navier–Stokes equations, which govern viscous fluid flow, re-
duce to

1

r

∂

∂r

(
r
∂uz

∂r

)
=

1

µ

dp(z)
dz

. (1)

Here µ is the dynamic viscosity of the fluid, uz is its velocity
along the pipe, r and z are radial and longitudinal variables, re-
spectively, and p is the fluid pressure. Integrating (1) twice with
respect to r, applying a no-slip condition (uz = 0) on the bound-
ary r = H and imposing the condition that uz remains finite at
r = 0, gives

uz = − 1

4µ

dp(z)
dz

(
H2 − r2

)
, (2)

which is known as Hagen–Poiseuille flow. Integrating (2) across
the pipe cross section gives the volumetric flow rate

Q = −πH4

8µ

dp(z)
dz

. (3)

Finally, integrating (3) along the length L of the pipe leads to
Poiseuille’s law

P = Q

(
8µL

πH4

)
= QR, (4)

where P is the pressure drop along the pipe.
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Figure 3: Comparison of flow out of the heart Q with flow through
the circulatory system Q2. The code used to produce this figure
is similar to that used in [6].

Similarly, Ohm’s law relates the voltage (or potential differ-
ence) V across a resistor to its current I and resistance R:

V = IR. (5)

As many secondary school pupils know, explanations of
Ohm’s law often use the analogy of water in pipes [3]. What
many of them are not aware of, however, is that, over the past
hundred years or so, researchers have used the flow of electric
charge in circuits as an analogy for studying the circulation of
blood around the body.

Modelling capillaries in the circulatory system as a network
of resistors in an electric circuit is a
simple and useful way of studying how
blood flows through the human body.
However, the assumption of zero flow
velocity at the capillary wall, used in
the derivation of Poiseuille’s law, is only
valid in blood vessels with walls that be-
have as if they are rigid.2

The large arteries connecting the left
ventricle of the heart to the rest of the cir-
culatory system are particularly compli-
ant, so Poiseuille’s law does not hold. They fill up with blood
as the heart beats (systole) and slowly release blood as the heart
refills (diastole), as described above. If we are to continue with
the electrical analogy, we require an additional component in the
circuit – a capacitor.

Figure 4: Circuit diagram of a capacitor in parallel with a resistor.

A capacitor in parallel with a resistor, with a fluctuating cur-
rent applied to the circuit, stores and releases voltage to the re-
sistor [5] in a manner that is similar to the way in which elastic
arteries store and release blood to the rest of the circulatory sys-
tem. The equation relating voltage to current in the circuit shown

in Figure 4 can be found by noting that the total current is given
by

I = I1 + I2, (6)

where
I1 = C

dV
dt

and I2 =
V

R
. (7)

The first of these is the equation for a capacitor (where C is its
capacitance and t is time); the second is Ohm’s law. Inserting (7)
into (6) gives

C
dV
dt

+
V

R
= I. (8)

The equivalent equation for blood flow is

C
dP
dt

+
P

R
= Q, (9)

where, in this case, C is the compliance of the aorta and R is the
total resistance of the rest of the circulatory system.3 Assuming
we can measure the flow rate Q out of the heart, we can find the
pressure drop P from equation (9) using the integrating factor
method to give

P (t) = exp

(
− t

RC

)∫
exp

(
t

RC

)
Q(t)

C
dt. (10)

We can then use this equation to plot the flow through
the circulatory system, which, using Poiseuille’s law (4), is

given by

Q2 =
P (t)

R
. (11)

For example, assume the flow out of
the heart is given by

Q = Q0 sin

(
πt

t0

)
(12)

during systole, which is of length t0,
where Q0 is the maximum amplitude of

the flow rate. Then during systole we have, using (10) and (12)

Ps(t) =
t0Q0R

(
t0 sin

(
πt
t0

)
−RCπ cos

(
πt
t0

))

π2C2R2 + t20

+K1 exp

(
− t

RC

)
(13)

where K1 is a constant of integration. Assuming there is no flow
during diastole, we have

Pd(t) = K2 exp

(
− t

RC

)
(14)

where K2 is another constant of integration. The constants K1

and K2 can be found by enforcing continuity between systolic
and diastolic pressures. Using physiological values for Q0, t0,
R and C taken from [6], we can plot the flow out of the heart
Q, given by (12), and the flow through the circulatory system Q2

(see Figure 3), found by inserting (13) and (14) into (11). The
figure clearly shows the continuous flow through the circulatory
system, despite the discontinuous flow out of the heart.
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In this article we describe three devices that were built to illus-
trate specific physical phenomena that occur in the human body.
Each device corresponds to a simple mathematical model which
contains both elements that are accessible to pupils in the early
years of secondary education and more challenging mathemati-
cal concepts that might appeal to A-level students. Two of the
devices relate to the Windkessel effect, a physical phenomenon
that regulates blood flow, and the third demonstrates the elastic
properties of ligaments and tendons.

Hearts and arteries

When the heart beats, it generates sharp spikes in blood pressure.
If the arteries connected to the heart were rigid, these pressure
spikes would be transmitted to the circulatory system, potentially
causing serious physiological problems [1]. In addition, because
the flow of blood out of the heart stops periodically (during dias-
tole), the heart would have to work hard to accelerate the entire
mass of blood within the circulatory system each time it beats.
These effects are prevented thanks to the compliance of the aorta
– the blood vessel that connects the heart to the rest of the circula-
tory system. In the presence of a fluctuating flow rate, it stores and
slowly releases blood, thus damping the oscillations in pressure
and allowing a continuous blood flow downstream. This phe-
nomenon is often called the Windkessel effect [1]. In this section
we describe two devices that analogously illustrate this process,
and two corresponding mathematical models.

Balloons and circuits

The Windkessel effect can be simply demonstrated using a gar-
den sprayer and a small balloon, as shown in Figure 1. Squeezing
the handle of the unmodified sprayer at regular intervals produces
sharp bursts of fluid flow (Figures 1a and 1b), whereas when a
balloon is attached to its nozzle, the same input produces a con-
tinuous flow (Figures 1c and 1d). For an excellent video demon-
stration of a similar device, see [2].

Figure 1: A demonstration of the Windkessel effect using a
garden sprayer and a balloon (red food colouring optional).

A similar phenomenon occurs in a completely different area
of physics (see Figure 2). The figure shows a circuit with a capac-
itor in parallel with a resistor; the capacitor damps oscillations in
potential difference through the resistor in a process that is anal-
ogous to the way that a compliant tube damps fluid flow pressure

fluctuations. The mathematical equations governing electric cir-
cuits like the one shown in Figure 2 have been used to study the
heart and circulation, as discussed below.

Figure 2: A demonstration of a capacitor smoothing potential
difference across two resistors (one is a variable resistor for
flexibility).1 The bridge rectifier ensures that only positive volt-
ages (i.e. the peaks of the sinusoidal input) are transmitted to
the circuit [5]; therefore the transmitted voltage is similar to the
input current plotted in Figure 3.

Mathematical models

The devices described above can be modelled as follows. Con-
sider an incompressible, viscous fluid flowing steadily through a
rigid pipe of radius H . Assuming the flow is axisymmetric, fully
developed and flowing only in the direction parallel to the pipe,
the Navier–Stokes equations, which govern viscous fluid flow, re-
duce to

1

r

∂

∂r

(
r
∂uz

∂r

)
=

1

µ

dp(z)
dz

. (1)

Here µ is the dynamic viscosity of the fluid, uz is its velocity
along the pipe, r and z are radial and longitudinal variables, re-
spectively, and p is the fluid pressure. Integrating (1) twice with
respect to r, applying a no-slip condition (uz = 0) on the bound-
ary r = H and imposing the condition that uz remains finite at
r = 0, gives

uz = − 1

4µ

dp(z)
dz

(
H2 − r2

)
, (2)

which is known as Hagen–Poiseuille flow. Integrating (2) across
the pipe cross section gives the volumetric flow rate

Q = −πH4

8µ

dp(z)
dz

. (3)

Finally, integrating (3) along the length L of the pipe leads to
Poiseuille’s law

P = Q

(
8µL

πH4

)
= QR, (4)

where P is the pressure drop along the pipe.
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Hence, assuming the ratio of the initial fibril length to the ini-
tial tendon length is known, the fibril strain (and hence stress) can
be calculated as a function of the tendon strain. Since l is differ-
ent for each fibril, the stress in each fibril will also be different.
The total tendon stress can then be calculated as the average of
the stresses in all of its fibrils.

As an example, let us consider an idealised tendon that con-
sists of only two fibrils, and assume that the first fibril has ini-
tial length l1 = 101L/100 and the second has initial length
l2 = 102L/100. Using equations (17) and (22), the stresses in
the first and second fibrils, respectively, are:

σ
(1)
f =

{
0, e < 1

100 ,

E
(
100
101 (1 + e)− 1

)
, e ≥ 1

100 ,
(23)

σ
(2)
f =

{
0, e < 2

100 ,

E
(
100
102 (1 + e)− 1

)
, e ≥ 2

100 .
(24)

The total stress experienced by the tendon, therefore, is

σ =
σ
(1)
f + σ

(2)
f

2
=




0, e < 1
100 ,

E
(

50
101 (1 + e)− 1

2

)
, 1

100 < e ≤ 2
100 ,

E
(
5075
5151 (1 + e)− 1

)
, e ≥ 2

100 .
(25)

We obtain a stress–strain curve whose gradient increases each
time a new fibril becomes taut. This situation is plotted for one,
two and five fibrils in Figure 9, using a value for E of 5 GPa, as
calculated in [10] for a rat tail tendon. It can be seen how the
curve becomes smoother as more fibrils are added. In reality,
ligaments and tendons consist of tens of thousands of fibrils of
different lengths, thus giving a smooth curve such as that shown
in Figure 5.

0 1 2 3

40

80

Figure 9: Fascicle stress as a function of strain for a fascicle with
one (blue), two (black) and five (red) fibrils.

Discussion

The physical devices described in this paper are simple to build
and operate. Each device illustrates a simple mathematical model
of a physical phenomenon in the human body and can be used
to kick-start discussions about mathematics and its applications.
We have found that secondary school students find the devices en-
gaging and tend to be surprised that mathematics has such ‘real
world’ applications that are often not discussed in school. The
mathematical models contain a range of concepts with differing
degrees of complexity, from simple equations such as Ohm’s law

and Hooke’s law to the differential equations governing fluid flow,
which allows them to appeal to a wide age range of students. We
hope that this article will inspire readers to create devices of their
own in order to aid their outreach efforts and help them to survive
science fairs!
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Notes

1. The circuit shown in Figure 2 is slightly more complicated
than the one modelled in the following section. In Figure 2 the
input voltage is imposed with a signal generator and a bridge
rectifier, due to the difficulty of imposing the current; how-
ever, the mechanism, whereby a capacitor smooths potential
difference across a resistor, is similar. An interactive simula-
tion of the circuit shown in Figure 2 can be found in [4].

2. In practice, due to the assumption of fully developed flow,
Poiseuille’s law only applies in thin blood vessels, where the
Reynolds number of the flow is small.

3. Here we have made the simplifying assumptions that the aorta
is the only compliant artery and that the rest of the circulation
obeys Poiseuille’s law.
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Ligaments and tendons

Ligaments and tendons are important connective tissues in the hu-
man body. Ligaments connect bone to bone to provide stability,
whereas tendons connect bone to muscle in order to facilitate the
transfer of forces from the muscles to the skeleton. They exhibit
complex mechanical behaviour, which is the subject of a large
body of current research [7].

Figure 5: Schematic representation of typical ligament or tendon
stress–strain behaviour.

When subjected to uniaxial extension, ligaments and tendons
exhibit a distinctive stress–strain response (see Figure 5), which
is initially non-linear with increasing stiffness (this region of the
curve is termed the toe region), and subsequently linear after
some critical strain. This can be explained by considering their
internal structure. Ligaments and tendons have a complex hier-
archy of subunits (see Figure 6). They consist of long, thin fibres
called fascicles, which in turn are made of thinner fibres called
fibrils, which are initially crimped and have differing lengths. As
a tendon is stretched, the fibril crimp begins to straighten out and
individual fibrils start to tauten. As more and more fibrils become
taut, the tendon gets stiffer and stiffer until all the fibrils are taut,
from which point its stiffness remains constant.

Figure 6: Idealised tendon hierarchy (adapted from [8]).

Springs and strings

The behaviour described above can be illustrated via a system of
springs and strings (see Figure 7). The springs (which all have
the same undeformed length) represent the elasticity of the fib-
rils, whereas the strings (which have differing lengths) represent
their crimp. The strings ensure that the springs they are attached
to do not contribute to the system’s stiffness as a whole until they
are fully straightened out, thus simulating what occurs in a liga-
ment or tendon.

Figure 7: A demonstration of the behaviour of ligaments and
tendons using springs and strings.

Mathematical model

Whilst the mathematics of the fully non-linear, time-dependent
mechanical behaviour of a tendon would be overwhelming to a
secondary school student, a simple model can be used to explain
the concept in a way that is easily accessible.

Consider a tendon subject to a uniaxial strain (e), defined as:

e =
∆L

L
, (15)

where∆L is the change in length, andL is its initial length. Stress
(σ) is defined as the force (F ) per unit area (A) required to impose
the strain:

σ =
F

A
. (16)

The behaviour described above can be explained mathemat-
ically via the sequential straightening and loading model [9]. In
this model, each fibril is assumed to obey Hooke’s law:

σf = Eef , (17)

where σf is the fibril stress, ef is the fibril strain and E is the fib-
ril Young’s modulus, and by considering a fibril of given initial
length l, the strain in that fibril can be calculated as a function of
the applied tendon strain.

Figure 8: A fibril of initial length l within a tendon of initial length
L is stretched beyond the point at which it becomes taut, so that
l +∆l = L+∆L.

It is assumed that a fibril does not experience any strain until
its crimp has fully straightened out, from which point the current
fibril and tendon lengths will be the same (see Figure 8):

l +∆l = L+∆L (18)

⇒ l +∆l

L
= 1 + e (19)

⇒ l

L
(1 + ef ) = 1 + e (20)

⇒ ef =
L

l
(1 + e)− 1. (21)

Therefore,

ef =

{
0, e < l

L − 1,
L
l (1 + e)− 1, e ≥ l

L − 1.
(22)
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Hence, assuming the ratio of the initial fibril length to the ini-
tial tendon length is known, the fibril strain (and hence stress) can
be calculated as a function of the tendon strain. Since l is differ-
ent for each fibril, the stress in each fibril will also be different.
The total tendon stress can then be calculated as the average of
the stresses in all of its fibrils.

As an example, let us consider an idealised tendon that con-
sists of only two fibrils, and assume that the first fibril has ini-
tial length l1 = 101L/100 and the second has initial length
l2 = 102L/100. Using equations (17) and (22), the stresses in
the first and second fibrils, respectively, are:

σ
(1)
f =

{
0, e < 1

100 ,

E
(
100
101 (1 + e)− 1

)
, e ≥ 1

100 ,
(23)

σ
(2)
f =

{
0, e < 2

100 ,

E
(
100
102 (1 + e)− 1

)
, e ≥ 2

100 .
(24)

The total stress experienced by the tendon, therefore, is

σ =
σ
(1)
f + σ

(2)
f

2
=




0, e < 1
100 ,

E
(

50
101 (1 + e)− 1

2

)
, 1

100 < e ≤ 2
100 ,

E
(
5075
5151 (1 + e)− 1

)
, e ≥ 2

100 .
(25)

We obtain a stress–strain curve whose gradient increases each
time a new fibril becomes taut. This situation is plotted for one,
two and five fibrils in Figure 9, using a value for E of 5 GPa, as
calculated in [10] for a rat tail tendon. It can be seen how the
curve becomes smoother as more fibrils are added. In reality,
ligaments and tendons consist of tens of thousands of fibrils of
different lengths, thus giving a smooth curve such as that shown
in Figure 5.

0 1 2 3

40

80

Figure 9: Fascicle stress as a function of strain for a fascicle with
one (blue), two (black) and five (red) fibrils.

Discussion

The physical devices described in this paper are simple to build
and operate. Each device illustrates a simple mathematical model
of a physical phenomenon in the human body and can be used
to kick-start discussions about mathematics and its applications.
We have found that secondary school students find the devices en-
gaging and tend to be surprised that mathematics has such ‘real
world’ applications that are often not discussed in school. The
mathematical models contain a range of concepts with differing
degrees of complexity, from simple equations such as Ohm’s law

and Hooke’s law to the differential equations governing fluid flow,
which allows them to appeal to a wide age range of students. We
hope that this article will inspire readers to create devices of their
own in order to aid their outreach efforts and help them to survive
science fairs!
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Notes

1. The circuit shown in Figure 2 is slightly more complicated
than the one modelled in the following section. In Figure 2 the
input voltage is imposed with a signal generator and a bridge
rectifier, due to the difficulty of imposing the current; how-
ever, the mechanism, whereby a capacitor smooths potential
difference across a resistor, is similar. An interactive simula-
tion of the circuit shown in Figure 2 can be found in [4].

2. In practice, due to the assumption of fully developed flow,
Poiseuille’s law only applies in thin blood vessels, where the
Reynolds number of the flow is small.

3. Here we have made the simplifying assumptions that the aorta
is the only compliant artery and that the rest of the circulation
obeys Poiseuille’s law.
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Ligaments and tendons

Ligaments and tendons are important connective tissues in the hu-
man body. Ligaments connect bone to bone to provide stability,
whereas tendons connect bone to muscle in order to facilitate the
transfer of forces from the muscles to the skeleton. They exhibit
complex mechanical behaviour, which is the subject of a large
body of current research [7].

Figure 5: Schematic representation of typical ligament or tendon
stress–strain behaviour.

When subjected to uniaxial extension, ligaments and tendons
exhibit a distinctive stress–strain response (see Figure 5), which
is initially non-linear with increasing stiffness (this region of the
curve is termed the toe region), and subsequently linear after
some critical strain. This can be explained by considering their
internal structure. Ligaments and tendons have a complex hier-
archy of subunits (see Figure 6). They consist of long, thin fibres
called fascicles, which in turn are made of thinner fibres called
fibrils, which are initially crimped and have differing lengths. As
a tendon is stretched, the fibril crimp begins to straighten out and
individual fibrils start to tauten. As more and more fibrils become
taut, the tendon gets stiffer and stiffer until all the fibrils are taut,
from which point its stiffness remains constant.

Figure 6: Idealised tendon hierarchy (adapted from [8]).

Springs and strings

The behaviour described above can be illustrated via a system of
springs and strings (see Figure 7). The springs (which all have
the same undeformed length) represent the elasticity of the fib-
rils, whereas the strings (which have differing lengths) represent
their crimp. The strings ensure that the springs they are attached
to do not contribute to the system’s stiffness as a whole until they
are fully straightened out, thus simulating what occurs in a liga-
ment or tendon.

Figure 7: A demonstration of the behaviour of ligaments and
tendons using springs and strings.

Mathematical model

Whilst the mathematics of the fully non-linear, time-dependent
mechanical behaviour of a tendon would be overwhelming to a
secondary school student, a simple model can be used to explain
the concept in a way that is easily accessible.

Consider a tendon subject to a uniaxial strain (e), defined as:

e =
∆L

L
, (15)

where∆L is the change in length, andL is its initial length. Stress
(σ) is defined as the force (F ) per unit area (A) required to impose
the strain:

σ =
F

A
. (16)

The behaviour described above can be explained mathemat-
ically via the sequential straightening and loading model [9]. In
this model, each fibril is assumed to obey Hooke’s law:

σf = Eef , (17)

where σf is the fibril stress, ef is the fibril strain and E is the fib-
ril Young’s modulus, and by considering a fibril of given initial
length l, the strain in that fibril can be calculated as a function of
the applied tendon strain.

Figure 8: A fibril of initial length l within a tendon of initial length
L is stretched beyond the point at which it becomes taut, so that
l +∆l = L+∆L.

It is assumed that a fibril does not experience any strain until
its crimp has fully straightened out, from which point the current
fibril and tendon lengths will be the same (see Figure 8):

l +∆l = L+∆L (18)

⇒ l +∆l

L
= 1 + e (19)

⇒ l

L
(1 + ef ) = 1 + e (20)

⇒ ef =
L

l
(1 + e)− 1. (21)

Therefore,

ef =

{
0, e < l

L − 1,
L
l (1 + e)− 1, e ≥ l

L − 1.
(22)
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