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1 SEF derivation
For the reasons stated in the main paper, we assume that the SEF, W (I1, I4), is given by

W (I1, I4) = (1 − ϕ)WNCM(I1) + ϕWcoll(I4), (1)

where ϕ is the collagen volume fraction, WNCM(I1) and Wcoll(I4) denote the contributions to the SEF from the
non-collagenous matrix (NCM) and collagen fibrils, respectively, I1 is a strain invariant, and I4 is the square of the
stretch in the direction of the collagen fibrils. As an individual fibril is slack when crimped and obeys Hooke’s law
when it is taut, the non-dimensional stretch experienced by a fibril, λfib, in terms of the recruitment stretch, λr, at
a macroscale stretch λ is

λfib(λ, λr) =
{

1, λ < λr,
λ

λr
, λ ⩾ λr.

(2)

By (2) and the assumptions of the model, the stress in a fibril, σfib(λ, λr), is

σfib(λ, λr) = Eefib =
{

0, λ < λr,

E (λ−λr)
λr

, λ ⩾ λr,
(3)

where E is the Young’s modulus of the fibril and efib = λfib − 1 is the engineering strain experienced by the fibril.
In order to calculate the total stress acting on the collagen fibrils, we must assign a distribution function to model
the different recruitment stretches amongst the collagen fibrils. Consequently, σF (λ), the total stress acting on the
fibrils, is

σF (λ) =
∫ λ

0
σfib(λ, λr)f(λr)dλr, (4)

where f(λr) denotes the recruitment-stretch distribution function.

1.1 General triangular distribution
The probability density function (PDF) for the general triangular distribution is given by

f(λr) =


0, λr < a,

2(λr−a)
(b−a)(c−a) , a ⩽ λr ⩽ c,

2(b−λr)
(b−a)(b−c) , c < λr ⩽ b,

0, λr > b,

(5)

where a, b, and c are the minimal, maximal, and modal recruitment stretches, respectively. Substituting (3) and
(5) into (4), gives
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σF (λ) = E(A(λ) + B(λ)λ + C(λ)λ2 + D(λ)λ log λ), (6)

where A(λ), B(λ), C(λ), and D(λ) are piecewise constants that possess the same boundaries as f(λr) in (5). As
the stretch in the direction of the fibrils is λ, then I4 = λ2. Rewriting (6) in terms of I4, we obtain

σF (I4) = E

(
A(I4) + B(I4)

√
I4 + C(I4)I4 + D(I4)

2
√

I4 ln I4

)
, (7)

where

A(I4) =


0, I4 < a2,

− a2

(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,
c2

(c−a)(b−c) − a2

(b−a)(c−a) , c2 < I4 ⩽ b2,

−1, I4 > b2,

, (8)

B(I4) =


0, I4 < a2,

2a log a
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

2a log a
(b−a)(c−a) − 2c log c

(c−a)(b−c) , c2 < I4 ⩽ b2,
2a log a

(b−a)(c−a) + 2b log b
(b−a)(b−c) − 2c log c

(c−a)(b−c) , I4 > b2,

(9)

C(I4) =


0, I4 < a2,

1
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

− 1
(b−a)(b−c) , c2 < I4 ⩽ b2,

0, I4 > b2,

(10)

D(I4) =


0, I4 < a2,

− 2a
(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,

2b
(b−a)(b−c) , c2 < I4 ⩽ b2,

0, I4 > b2.

(11)

From the main paper, in terms of W (I1, I4), the Cauchy stress, σ, is

σ = −pI + 2∂W

∂I1
B + 2∂W

∂I4
m ⊗ m, (12)

where p is a Lagrange multiplier that accounts for the loss of a degree of freedom that is caused by the assumption of
incompressibility, B is the left Cauchy-Green deformation tensor, and m is the deformed orientation of the collagen
fibrils. By (1) and (12), the fibril contribution to the Cauchy stress, σcoll, is

σcoll = 2∂Wcoll(I4)
∂I4

m ⊗ m. (13)

We can rewrite the right side of (13) in terms of I4 using the method outlined in [1]. First, we calculate the traction,
tcoll, associated with the contribution to the stress from the collagen fibrils that acts on a face normal to the fibrils.
Then we calculate the component of tcoll that acts in the direction of the fibrils. We find(

σcoll ·
(

m
|m|

))
· m

|m|
= tcoll · m

|m|
=
(

2∂Wcoll(I4)
∂I4

|m|m
)

· m
|m|

= 2I4
∂Wcoll(I4)

∂I4
. (14)

By (7) and (14),

2I4
∂Wcoll(I4)

∂I4
= E

(
A(I4) + B(I4)

√
I4 + C(I4)I4 + D(I4)

2
√

I4 ln I4

)
. (15)

Consequently,

Wcoll(I4) = E

(
A(I4)

2 log I4 + (B(I4) − D(I4))
√

I4 + C(I4)
2 I4 + D(I4)

2
√

I4 log I4 + G(I4)
)

, (16)

where G(I4) ensures the continuity of Wcoll(I4) across each boundary of A(I4)—D(I4), and is equal to
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G(I4) =


0, I4 < a2,

a2 log a
(b−a)(c−a) − 5a2

2(b−a)(c−a) , a2 ⩽ I4 ⩽ c2,
a2 log a

(b−a)(c−a) − c2 log c
(c−a)(b−c) − 5a2

2(b−a)(c−a) + 5c2

2(b−c)(c−a) , c2 ⩽ I4 ⩽ b2,
a2 log a

(b−a)(c−a) − c2 log c
(c−a)(b−c) + b2 log b

(b−c)(b−a) − 5a2

2(b−a)(c−a) + 5c2

2(b−c)(c−a) − 5b2

2(b−a)(b−c) , I4 > b2.

(17)

We assume a neo-Hookean contribution to the SEF from the NCM. Therefore, the new SEF is given by

W (I1, I4) = (1 − ϕ)µ

2 (I1 − 3)

+ ϕE

(
A(I4)

2 log I4 + (B(I4) − D(I4))
√

I4 + C(I4)
2 I4 + D(I4)

2
√

I4 log I4 + G(I4)
)

. (18)

1.2 Symmetric triangular distribution
We can restrict the triangular distribution to be symmetric. That is, we set the mode, c, to be equal to a+b

2 .
Therefore, (5) becomes

f(λr) =


0, λr < a,
4(λr−a)
(b−a)2 , a ⩽ λr ⩽ a+b

2 ,
4(b−λr)
(b−a)2 , a+b

2 < λr ⩽ b,

0, λr > b.

(19)

We can insert (3) and (19) into (4) to calculate the total contribution to the stress from the fibrils. Similar to (6),
we find that

σ∗(I4) = E

(
A∗(I4) + B∗(I4)

√
I4 + C∗(I4)I4 + D∗(I4)

2
√

I4 log I4

)
, (20)

where I4 = λ2 and

A∗(I4) =


0, I4 < a2,

− 2a2

(b−a)2 , a2 ⩽ I4 ⩽
(

a+b
2
)2

,
(b2−a2+2ab)

(b−a)2 ,
(

a+b
2
)2

< I4 ⩽ b2,

−1, I4 > b2,

, (21)

B∗(I4) =


0, I4 < a2,
4a log a
(b−a)2 , a2 ⩽ I4 ⩽

(
a+b

2
)2

,
4a log a
(b−a)2 − 4(b+a)

(b−a)2 log
(

a+b
2
)

,
(

a+b
2
)2

< I4 ⩽ b2,
4a log a
(b−a)2 + 4b log b

(b−a)2 − 4(b+a)
(b−a)2 log

(
a+b

2
)

, I4 > b2,

(22)

C∗(I4) =


0, I4 < a2,

2
(b−a)2 , a2 ⩽ I4 ⩽

(
a+b

2
)2

,

− 2
(b−a)2 ,

(
a+b

2
)2

< I4 ⩽ b2,

0, I4 > b2,

(23)

D∗(I4) =


0, I4 < a2,

− 4a
(b−a)2 , a2 ⩽ I4 ⩽

(
a+b

2
)2

,
4b

(b−a)2 ,
(

a+b
2
)2

< I4 ⩽ b2,

0, I4 > b2.

(24)

By (20) and (14),
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W ∗
coll(I4) = E

(
A∗(I4)

2 log I4 + (B∗(I4) − D∗(I4))
√

I4 + C∗(I4)
2 I4 + D∗(I4)

2
√

I4 log I4 + G∗(I4)
)

, (25)

where G∗ is an integration constant that ensures the continuity of W ∗
coll(I4) at each of the boundaries defined in

A∗(I4)—D∗(I4), and is given by

G∗(I4) =



0, I4 < a2,
2a2 log a
(b−a)2 − 5a2

(b−a)2 , a2 ⩽ I4 ⩽
(

a+b
2
)2

,

2a2 log a
(b−a)2 − (a+b)2 log( a+b

2 )
(b−a)2 − 5a2

(b−a)2 + 5(a+b)2

2(b−a)2 ,
(

a+b
2
)2

⩽ I4 ⩽ b2,

2a2 log a
(b−a)2 − (a+b)2 log( a+b

2 )
(b−a)2 + 2b2 log b

(b−a)2 − 5a2

(b−a)2 + 5(a+b)2

2(b−a)2 − 5b2

(b−a)2 , I4 > b2.

(26)

Again, we choose to model the contribution to the SEF from the non-collagenous matrix with a neo-Hookean model.
Therefore,

W ∗(I1, I4) = (1 − ϕ)µ

2 (I1 − 3)

+ ϕE

(
A∗(I4)

2 log I4 + (B∗(I4) − D∗(I4))
√

I4 + C∗(I4)
2 I4 + D∗(I4)

2
√

I4 log I4 + G∗(I4)
)

. (27)

2 Mathematica Plots
In the main paper, we analyse the quality of fit achieved by several models of soft tissue deformation to two sets of
stress-strain data taken from tendon samples by Goh et al., designated in the paper as t5c and t6b, and two sets
of mechanical equine tendon data collected by Screen et al, designated as superficial digital flexor tendon (SDFT)
and common digital extensor tendon (CDET). These fits were obtained using the NonlinearModelFit function in
Mathematica 12.3.1.0. As mentioned in the main paper, fitting a particular model to any one of the data sets was
performed five times in total, with the estimated parameter values at the end of one iteration of the fitting process
providing the initial parameter estimates for the following iteration. A couple of the fits achieved are shown in
the main paper. In this supplementary material, however, we provide the fits to each data set from all four of the
models that we fit to the data sets. In particular, we plot the fits obtained from the fifth iteration of fitting the
models to the data. The fits to the four data sets for the HGO model and the microstructural tendon model are
provided in Figure 1 and Figure 2, respectively. For the ST and GT models, the fits are in Figure 3 and Figure 4,
respectively.

3 Hierarchical Bayes and the posterior predictive
In the main paper, we model the noise inherent in the problem with a Gaussian distribution of mean zero and
covariance matrix σ2Id, where d is the length of the data. Therefore, we obtain the following expression for the
likelihood function, L(y|θ, σ2):

L(y|θ, σ2) =
d∏

i=1

1√
2πσ2

exp
(

− 1
2σ2 (yi − M(θ)i)2

)
,

=
(

1
2πσ2

) d
2

exp
(

− 1
2σ2

d∑
i=1

(yi − M(θ)i)2

)
, (28)

where y is the experimental data, θ is the parameter vector, and M(θ) is the predicted stress-strain vector. In
(28), L(y|θ, σ2) possesses the same form for y as a Gaussian distribution with mean M(θ) and variance σ2Id.

To find the posterior distribution, up to a normalisation constant, we multiply the likelihood function in (28)
by the prior distributions of the model’s parameters, θ and σ2. A priori, we assume that the parameters are
independent of one another, and so the joint prior is just a product of the parameters’ individual priors. That is,

π0(θ, σ2) = π0(θ1) · · · π0(θh)π0(σ2), (29)
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Figure 1: Closest fits (black, dashed lines) to the experimental tendon stress-strain data (yellow circles) using the
HGO model.

where π0(∗) represents the prior distribution of ∗ and h denotes the length of θ. With (29) and by Bayes’ rule, the
posterior distribution, π(θ, σ2|y), is

π(θ, σ2|y) ∝ L(y|θ, σ2)π0(θ1) · · · π0(θh)π0(σ2). (30)

To characterise the posterior distribution fully, we must compute the following multi-dimensional integral

Z =
∫
Rh

∫
R

L(y|θ, σ2)π0(θ1) · · · π0(θh)π0(σ2)dσ2dθ. (31)

To compute Z as defined in (31) would be impractical due to the non-linear nature of the likelihood; however,
because of the form of the likelihood in (28), we can use a technique employed in the literature [2] to simplify the
problem by integrating the posterior with respect to σ2. To enable this integration to be performed, we make an
appropriate choice of π0(σ2), known as a conjugate prior, which ensures that L(y|θ, σ2)π0(σ2) retains the same
functional form as the conjugate prior itself. We choose the conjugate prior, π0(σ2), to be an inverse-gamma
distribution, which possesses the following PDF:

π0(σ2|ασ, βσ) = βασ
σ

Γ(ασ) (σ2)−ασ−1 exp
(

−βσ

σ2

)
, (32)

where Γ(∗) represents the Gamma function of ∗, and ασ and βσ are distribution parameters of the inverse-gamma
distribution, which correspond to the shape and scale of the PDF, respectively. The parameters ασ and βσ are
hyperparameters. That is, they are not parameters that we estimate the value of in the Random Walk Metropolis
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Figure 2: Closest fits (black, dashed lines) to the experimental tendon stress-strain data (yellow circles) using the
modified microstructural tendon model.

(RWM) algorithm. Instead, we choose the values of the hyperparameters, which are constant in the integration
with respect to σ2. Consequently, by (28) and (32),

∫ ∞

0
L(y|θ, σ2)π0(σ2)dσ2 =

∫ ∞

0

βασ
σ · (σ2)− d

2

(2π) d
2 Γ(ασ)

exp
(

− ∆2

2σ2

)
(σ2)−ασ−1 exp

(
−βσ

σ2

)
dσ2,

∝
∫ ∞

0
(σ2)−( d

2 +ασ)−1 exp
(

−
( ∆2

2 + βσ)
σ2

)
dσ2, (33)

where ∆2 =
∑d

i=1(yi − M(θ)i)2. By choosing an inverse-gamma prior for σ2, L(y|θ, σ2)π0(σ2) shares the same
functional form as π0(σ2), (32) and (33), with ασ replaced by d

2 +ασ, and βσ replaced by ∆2

2 +βσ. Therefore, when
we integrate L(y|θ, σ2)π0(σ2) with respect to σ2, we obtain∫ ∞

0
(σ2)−( d

2 +ασ)−1 exp
(

−
( ∆2

2 + βσ)
σ2

)
dσ2 =

Γ( d
2 + ασ)

( ∆2

2 + βσ) d
2 +ασ

. (34)

By (28), (32) and (34),

L(σ2)(y|θ) =
βασ

σ Γ( d
2 + ασ)

(2π) d
2 Γ(ασ)( ∆2

2 + βσ) d
2 +ασ

. (35)

The quantity L(σ2)(y|θ) is known as the posterior-predictive.
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Figure 3: Closest fits (black, dashed lines) to the experimental tendon stress-strain data (yellow circles) using the
ST model.

For a t-random vector x of length d, the PDF for the Student’s t distribution with mean µ, symmetric matrix
parameter Σ, and ν degrees of freedom is

tν(x;µ, Σ) =
Γ
(

ν+d
2
)

Γ
(

ν
2
) 1

(νπ) d
2

1√
det(Σ)

(
1 + 1

ν
(x − µ)T Σ−1(x − µ)

)− d+ν
2

. (36)

If we set µ = M(θ), Σ = βσ

ασ
Id, x = y, and ν = 2ασ, then we eventually recover (35). To show this, we start with

(36) and make the aforementioned substitutions,

t
(

y; M(θ), βσ

ασ
Id, 2ασ

)
=

Γ
(
ασ + d

2
)

Γ (ασ)
1

(2ασπ) d
2

1√
βd

σ

αd
σ

(
1 + 1

2ασ
(y − M(θ))T

(
βσ

ασ
Id

)−1
(y − M(θ))

)−ω

,

=
Γ(ασ + d

2 )
Γ(ασ)

α
d
2
σ

(2ασπ) d
2

1

β
d
2
σ

(
1 + 1

2βσ

d∑
i=1

(yi − M(θ)i)2

)−ω

,

=
Γ(ασ + d

2 )
Γ(ασ)

βασ
σ

(2π) d
2

(
βσ + 1

2

d∑
i=1

(yi − M(θ)i)2

)−ω

, (37)

where ω = d
2 + ασ. Therefore, the posterior predictive, L(σ2)(y|θ), is t2ασ

(y; M(θ), βσ

ασ
Id), and, by Bayes’ rule,
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Figure 4: Closest fits (black, dashed lines) to the experimental tendon stress-strain data (yellow circles) using the
GT model.

π(θ|y) ∝ L(σ2)(y|θ)π0(θ),

∝ t2ασ

(
y; M(θ), βσ

ασ
Id

)
π0(θ). (38)

In order to obtain the exact form of the posterior distribution, we must compute the following integral:

Z =
∫
Rh

L(σ2)(y|θ)π0(θ1) · · · π0(θh)dθ. (39)

However, with the form of the posterior predictive and the prior distributions we assign to the model parameters,
which are detailed in the main paper, we cannot perform the multi-dimensional integration needed to characterise
the posterior distribution exactly. Therefore, we use Markov chain Monte Carlo methods to sample from the
distribution instead.

4 Map-induced density
In the main paper, we discuss transforming the unknown parameters in order to sample a set of parameters whose
support stretches over the real numbers, thereby matching the support of the proposal distribution. This improves
the efficiency of the algorithm and, thus, the quality of our results. Because the transformation between the target
(untransformed) parameters and the reference (transformed) parameter vectors is non-linear, we must account for
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the effect that sampling in the reference parameter space has on both the posterior probability for a particular
reference vector (and their corresponding values in the target parameter space) and, ultimately, on which proposed
vectors are accepted. We must do this when the transformation is non-linear because, in the RWM algorithm, we
use a multivariate Gaussian proposal distribution that ensures the probability of moving from a proposed reference
parameter vector, θ∗, to the current position of the Markov chains, θcurr, is the same as moving from θcurr to θ∗.
However, the probability of moving from the corresponding proposed vector in the target space, ψ∗, to ψcurr may
not be the same as the probability of moving from ψcurr to ψ∗. As mentioned in the main paper, we account for this
effect by multiplying the posterior probability associated with ψ by the term |detDT −1(θ)|, where T −1(θ) represents
the transformation of θ to ψ, DT −1(θ) represents the Jacobian of T −1(θ), and det denotes the determinant of the
matrix. Writing the target density with respect to the transformed parameters as π̃(∗) and in the original parameter
space as π(∗),

π̃(θ) = π(T −1(θ)).| det DT −1(θ)|. (40)

The quantity π̃(θ) is also known as the map-induced density. As defined in the main paper,

ψ =


(1 − ϕ)µ

ϕE
a
b

 , T (ψ) = θ =


ν
η
τ
ρ

 =


log ((1 − ϕ)µ)

log (ϕE)
log (a − 1)
log (b − a)

 . (41)

Therefore, the transformation T −1 is given by

T −1(θ) = ψ =


exp(ν)
exp(η)

exp(τ) + 1
exp(ρ) + exp(τ) + 1

 . (42)

Therefore, DT −1(θ) is given by

DT −1(θ) =


exp(ν) 0 0 0

0 exp(η) 0 0
0 0 exp(τ) 0
0 0 exp(τ) exp(ρ)

 . (43)

The determinant of the 4 × 4 matrix DT −1(θ) is thus

det DT −1(θ) = exp(ν + η + τ + ρ). (44)

In the RWM algorithm, the acceptance probability involves the evaluation of the target density at the current and
proposed states, which, in this instance, is given by the map-induced density

π̃(θ) = π(T −1(θ)). exp(ν + η + τ + ρ). (45)

5 Transformation of the engineering stress using the new parameters
In this section, we rewrite the constitutive equation for the ST model in terms of the transformed parameters, ν,
η, τ , and ρ. Respectively, these parameters are the natural logarithms of (1 − ϕ)µ, ϕE, a − 1, b − a. For a uniaxial
stretch along the z-axis, which coincides with the orientation of the collagen fibrils, and assuming traction-free
boundary conditions on faces that are not normal to the z-axis, the only non-zero component of the Cauchy stress
as defined in (12), σzz, is

σzz = (1 − ϕ)µ
(

λ2 − 1
λ

)
+ ϕE(A∗(λ) + B∗(λ)λ + C∗(λ)λ2 + D∗(λ)λ log λ). (46)

We can use (21)—(24) and (46) to write σzz explicitly in terms of λ and the transformed parameters for each region
specified in the piecewise constants. As discussed in the main paper, the following equations for σzz are divided by
λ and can then be used in the adaptive RWM algorithm to fit to stress-strain data.
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5.1 Region 1
In this region, every collagen fibril is crimped and slack. Only the non-collagenous matrix contributes to the tendon’s
resistance to the deformation. In terms of the transformed parameters, this region is defined as λ < 1 + eτ and the
Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
. (47)

5.2 Region 2
In this region, collagen fibrils begin to tauten, with the number of fibrils tautening increasing with the stretch. This
region is defined by (1 + eτ ) ⩽ λ ⩽ (2+2eτ +eρ)

2 , and the Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
+ 4e(η−2ρ)

(
λ2

2 − (1 + eτ )λ log
(

λ

1 + eτ

)
− (1 + eτ )2

2

)
. (48)

5.3 Region 3
In this region, collagen fibrils continue to tauten but the number of fibrils tautening decreases with the stretch.
This region is defined as (2+2eτ +eρ)

2 < λ ⩽ (1 + eτ + eρ), and the Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
+ 4e(η−2ρ)

(
(1 + eτ )λ log(1 + eτ ) − (1 + eτ )2

2 − λ2

2 + (1 + eτ + eρ)λ log(λ)

− (2 + 2eτ + eρ)λ log
(

2 + 2eτ + eρ

2

)
+ (2 + 2eτ + eρ)2

4

)
. (49)

5.4 Region 4
In this region, every collagen fibril is taut. The region is defined as (1 + eτ + eρ) < λ, and the Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
+ 4e(η−2ρ)

(
− (2 + 2eτ + eρ)λ log

(
2 + 2eτ + eρ

2

)
+ (1 + eτ )λ log(1 + eτ )

+ (1 + eτ + eρ)λ log(1 + eτ + eρ) − e2ρ

4

)
. (50)

6 Determining the parameters of the prior distribution
In order to determine the parameters, µ and σ2, used in the log-normal priors of (1 − ϕ)µ, ϕE, a − 1, and b − a, and
the normal priors of their logarithms, we estimated the values at which the cumulative probability density (CPD)
of the prior reached 0.01 and 0.99 for each parameter and then used the quantile function to determine µ and σ2.
For the log-normal distribution, the quantile function is

q = exp(µ +
√

2σ2erf−1(2p − 1)), (51)

where q is the value of the parameter, erf−1 represents the inverse error function, and p is the CPD. The list of
values chosen for 0.01 and 0.99 cumulative density and the reasons for choosing them are listed in Table 1.

7 Additional RWM plots
As mentioned in the main paper, we also estimated parameter posteriors by fitting to the t5c and t6b data sets
using the RWM algorithm. For the t5c data set, the estimated posteriors and the two-dimensional contour plots of
the various joint distributions are given in Figure 5 for the untransformed parameters. The mean and 5σ confidence
band of a set of 50,000 positions from the Markov chains, that is, parameter vectors, are also plotted in Figure 6.
For the t6b data set, we also plotted the estimated parameter posteriors and two-dimensional contour plots of the
joint distributions in Figure 7, and the means and 5σ confidence band of a subset of 50,000 parameter vectors from
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Parameter 0.01 CPD 0.99 CPD Reason
(1 − ϕ)µ (MPa) 0.001 10 Lower: motivated by the values of µ for ten-

don fascicles obtained by Purslow [3]
Higher: inclusive upper bound.

ϕE (MPa) 3.072 13,600 Lower: inclusive lower bound using low esti-
mates of ϕ = 0.096 [4] and E = 32 MPa by
[5].
Higher: inclusive upper bound using an esti-
mate of ϕ = 0.85 and E = 16 GPa given by
[6] and [7], respectively.

a − 1 0.005 0.1 Lower: attempt to provide an inclusive lower
bound.
Higher: assumption that at least one fibril
has tautened by the end of the stress-strain
data we fit to.

b − a 0.005 0.15 Lower: attempt to provide an inclusive lower
bound.
Higher: attempt to provide an inclusive up-
per bound.

Table 1: A table of values used to calculate the mean and variance of the prior distributions of the ST model’s
parameters. In order to allow the posterior parameter space to be fully sampled in the RWM algorithm, the priors
were designed to be inclusive of a wide range of parameter values.

the Markov chains in Figure 8. To create Figures 5 and 7, the samples from the Markov chains were thinned by a
factor of ten, as they were for the higher-resolution data sets discussed in the main paper.

Comparing Figures 5—8 with their counterparts for the higher-resolution data shown in the main paper, the
estimated parameter posteriors are generally broader and, in some cases, possess a long tail in one direction of the
distribution, causing more probability mass to be located in the tail. Furthermore, the confidence bands of the
estimated stress values from parameter vectors in the Markov chains are significantly wider, with the ‘curves’ being
more angular than equivalent curves for the synthetic, SDFT, and CDET data sets due to the lack of data points
we fit to. In order to ensure we sampled from the target distributions, we extended the burn-in phase to be 1
million simulations. Before we attempt to identify why these differences occur, we note that the data collected by
Goh et al. were not intended to be used in the fitting of hyperelastic SEFs, but instead to study tendon behaviour
for elastic and plastic deformation and, then, failure.

The lack of points to fit to likely causes the aforementioned differences in the posteriors for two main reasons.
Firstly, it is harder to distinguish the regions of the SEF from one another when there are fewer points to fit to.
The value of (1 − ϕ)µ is less important, in terms of the overall fit, when there are few data points in the toe region
and collagen fibrils are active for nearly all data points. A wider range of values for (1 − ϕ)µ can be proposed and
accepted, therefore. This has also been shown in the main paper with the high-resolution CDET data. Secondly,
the posterior-predictive is dependent on the difference between the experimental and predicted stresses, and the
acceptance probability κ is dependent on the ratio of the value of the posterior-predictive of the proposed parameter
vector to that of the current position of the Markov chains. Fitting to fewer points means that differences in the
value of the posterior-predictive will be less pronounced between close and relatively poor fits to data. Therefore,
the prior ratio and the posterior-modification ratio have a greater effect on the calculation of κ. The latter ratio is
dependent on the proposed value of ϕE, for instance. Consequently, large values of ϕE are proposed and accepted,
as we see in Figures 5 and 7.

As mentioned previously, the posteriors of parameters such as ϕE and b are broad for these data sets with wide
tails in certain directions. Consequently, the confidence bands, calculated from the predicted stresses of 50,000
positions of the Markov chains, are broader than for the high-resolution data. In contrast to the high-resolution h16
SDFT data and the synthetic data, some of the two-dimensional contour plots possess contour lines that are not
elliptical, but instead are more complex in shape. This makes it harder for the RWM algorithm to propose enough
parameter vectors that are accepted, which impacts the ability of the algorithm to run efficiently. However, the
posteriors are generally smooth, which suggests that some level of convergence in the posteriors has been reached,
and justifies the use of a longer burn-in phase. Additionally, all of the data points lie within the 5σ confidence band
and close to the mean line, demonstrating the ability of the model to replicate experimental data.
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Figure 5: Estimated posteriors and contours of the joint distributions of the untransformed parameters for the fit
to the t5c data.
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Figure 6: The mean (black) and 5σ confidence band (blue) of the fits to the t5c data (yellow dots).
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Figure 7: Estimated posteriors and contours of the joint distributions of the untransformed parameters for the fit
to the t6b data.
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Figure 8: The mean (black) and 5σ confidence band (blue) of the fits to the t6b data (yellow dots).
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8 RWM using the GT model
As mentioned in the main paper, we fit the GT model to the high-resolution SDFT data using the RWM algorithm.
In this section, therefore, we detail how we adapted the RWM algorithm to the GT case. The GT model possesses
five parameters: (1 − ϕ)µ (MPa), ϕE (MPa), a, c, and b. The additional parameter c is the modal recruitment
stretch. For the GT model, we restrict the distribution parameters as follows: 1 < a < c < b. As we did for the
ST model, we transform the parameters so that the support of each parameter extends over the entire real axis,
thereby increasing the efficiency of sampling in the RWM algorithm. Firstly, we replace a, c, and b with a−1, c−a,
and b − c. Each of these parameters must be strictly greater than zero; therefore, we can take the logarithm of each
quantity to extend its support over the entire real axis. We have

θGT =


ν
η
τ
ξ
χ

 =


log((1 − ϕ)µ)

log(ϕE)
log(a − 1)
log(c − a)
log(b − c)

 = T(ψGT), (52)

With the set of parameters θGT, the map-induced density becomes

det DT −1(θGT) = exp(ν + η + τ + ξ + χ), (53)
π̃(θGT) = π(T −1(θGT)). exp(ν + η + τ + ξ + χ). (54)

Finally, as we have introduced two new parameters, c − a and b − c, we must define values that correspond to 0.01
and 0.99 of their CPD to calculate the mean and variance of their log-normal prior distributions. We chose the
values of the 0.01 and 0.99 CPD thersholds for c − a and b − c to match those of the parameter b − a shown in Table
1 (i.e. we set the 0.01 CPD threshold to be 0.005 and the 0.99 CPD threshold to be 0.15).

8.1 Transformation of the engineering stress
To use the GT model in the RWM algorithm, we must write the constitutive equation for the GT model in terms of
the transformed parameters, ν, η, τ , ξ and χ. As in Section 5, we assume that the tendon sample studied undergoes
a uniaxial stretch along the z-axis, which coincides with the orientation of the collagen fibrils. Furthermore, we
assume traction-free boundary conditions on the lateral faces. The only non-zero component of the Cauchy stress
is similar to (46), but with (21)–(24) replaced by (8)–(11). That is,

σzz = (1 − ϕ)µ
(

λ2 − 1
λ

)
+ ϕE(A(λ) + B(λ)λ + C(λ)λ2 + D(λ)λ log λ). (55)

We can use (8)–(11) and (55) to write σzz explicitly in terms of λ and the transformed parameters for each region
specified by the piecewise constants. As in Section 5, the following equations for σzz are divided by λ to find the
corresponding expressions for the engineering stress.

8.2 Region 1
In this region, every collagen fibril is crimped and slack, as the stretch is less than the minimum recruitment
stretch. Only the non-collagenous matrix contributes to the tendon’s resistance to the deformation. In terms of the
transformed parameters, this region is defined as λ < 1 + eτ and the Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
. (56)

8.3 Region 2
In this region, collagen fibrils begin to tauten, with the number of fibrils tautening increasing with the stretch. This
is because the stretch is less than the modal recruitment stretch. This region is defined by (1+eτ ) ⩽ λ ⩽ (1+eτ +eξ),
and the Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
+ eη

(eξ + eχ)eξ

(
λ2 − 2(1 + eτ )λ log

(
λ

1 + eτ

)
− (1 + eτ )2

)
. (57)
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8.4 Region 3
In this region, collagen fibrils continue to tauten but the number of fibrils tautening decreases with the stretch.
This is because the stretch is greater than the modal recruitment stretch. This region is defined as (1 + eτ + eξ) <
λ ⩽ (1 + eτ + eξ + eχ), and the Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
+ eη

(eξ + eχ)eξ
[−(1 + eτ )2 + 2λ(1 + eτ ) log(1 + eτ )]

+ eη

eξeχ
[(1 + eτ + eξ)2 − 2λ(1 + eτ + eξ) log(1 + eτ + eξ)]

+ eη

(eξ + eχ)eχ
[−λ2 + 2λ(1 + eτ + eξ + eχ) log(λ)]. (58)

8.5 Region 4
In this region, every collagen fibril is taut, as the stretch is greater than the maximum recruitment stretch. The
region is defined as (1 + eτ + eξ + eχ) < λ, and the Cauchy stress is

σzz = eν

(
λ2 − 1

λ

)
− eη + eη[2λ(1 + eτ ) log(1 + eτ )]

(eξ + eχ)eξ
− eη[2λ(1 + eτ + eξ) log(1 + eτ + eξ)]

eξeχ

+ eη[2λ(1 + eτ + eξ + eχ) log(1 + eτ + eξ + eχ)]
(eξ + eχ)eχ

. (59)
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