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Microstructural models of soft-tissue deformation are important in appli-
cations including artificial tissue design and surgical planning. The basis
of these models, and their advantage over their phenomenological counter-
parts, is that they incorporate parameters that are directly linked to the
tissue’s microscale structure and constitutive behaviour and can therefore
be used to predict the effects of structural changes to the tissue. Although
studies have attempted to determine such parameters using diverse, state-
of-the-art, experimental techniques, values ranging over several orders of
magnitude have been reported, leading to uncertainty in the true parameter
values and creating a need for models that can handle such uncertainty. We
derive a new microstructural, hyperelastic model for transversely isotropic
soft tissues and use it to model the mechanical behaviour of tendons. To
account for parameter uncertainty, we employ a Bayesian approach and
apply an adaptive Markov chain Monte Carlo algorithm to determine pos-
terior probability distributions for the model parameters. The obtained
posterior distributions are consistent with parameter measurements pre-
viously reported and enable us to quantify the uncertainty in their values
for each tendon sample that was modelled. This approach could serve as a
prototype for quantifying parameter uncertainty in other soft tissues.
1. Introduction
Fibrous soft tissues such as tendons, skin and arteries are vital to life. Tendons
and ligaments, for example, enable movement by transmitting forces around
the body [1]. It is critical, therefore, that we understand soft-tissue mechanical
behaviour to advance fields such as tissue engineering [2] and surgery [3]. Soft
tissues exhibit complex macroscopic phenomena, including anisotropy and
nonlinearity, that are induced predominantly by the microstructure of the
tissue. Anisotropy arises from the presence of collagen fibrils, which locally
reinforce the tissue in a preferred direction. Initially, the fibrils are crimped
and stress-free, but they straighten as the tissue deforms, contributing to its
resistance to further deformation once taut [4]. This gradual recruitment of col-
lagen fibrils leads to the nonlinear stress–strain profile typical of soft tissues [5],
as illustrated in figure 1a with a plot of the Cauchy stress, σ, against stretch, λ.

Additionally, soft tissues are viscoelastic, so assuming that their behaviour
can be described by an elastic model is a simplification. Practically speaking,
before tests to measure mechanical properties are performed, a tissue is sub-
jected to cyclic loading until the stress–strain behaviour of the tissue is
consistent between consecutive cycles (figure 1b). Then, the tissue can be treated
as pseudoelastic and modelled as a particular elastic material upon loading and
a different elastic material upon unloading [6]. In reality, energy is dissipated in
the tissue during the loading–unloading cycle, but we can apply elasticity
theory to the tissue as long as we only examine one loading path. Furthermore,
for sufficiently slow (quasi-static) or extremely rapid deformations, the loading
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Figure 1. (a) The stress–strain behaviour of soft tissues. Region I: only the compliant components are loaded; the collagen fibrils are crimped and slack. Region II:
gradually, the stiff collagen fibrils straighten and become taut. Region III: all the collagen fibrils are taut; the soft tissue is stiff and linearly elastic. (b) Successive
loading–unloading cycles of a viscoelastic soft tissue until the tissue can be treated as pseudoelastic.
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and unloading curves are relatively close to one another as
hysteresis is minimized in these regimes.

To model soft-tissue deformation, we will use the theory
of hyperelasticity, relating the stress to the strain via a strain-
energy function (SEF). There are two approaches to develop-
ing a hyperelastic model: the phenomenological and
structural approaches (although any one SEF can incorporate
features of both). Phenomenological models seek to achieve
the best quantitative fit to experimental data. They do not
attempt to determine how the microstructure influences the
macroscopic behaviour observed in mechanical testing
because the model’s parameters do not necessarily have a
clear physical interpretation. By contrast, structural models
incorporate physically relevant parameters to elucidate the
relationship between the arrangement and properties of the
tissue’s constituents and its mechanical behaviour. Incorpor-
ating microstructural information into a SEF often increases
its complexity and it is important that a structural SEF
remains tractable if it is to be viable for studying soft-tissue
deformation. This is important when employing a Bayesian
framework with Monte Carlo sampling, where we require a
large number of solutions of the forward model. Therefore,
simplifying assumptions about the microstructure are
often required.

Values for unknown structural parameters can be
obtained via imaging methods such as serial block face-
scanning electron microscopy [7,8] and X-ray computed
tomography [9–12], and for constitutive parameters using
micromechanical techniques like force spectroscopy [13]
and atomic force microscopy [14]. These techniques are chal-
lenging, however, and a wide range of values has been
reported for certain quantities. The collagen fibril Young’s
modulus, for example, has been reported to have a value ran-
ging from 32MPa [13] to 2.8 GPa [14]. This uncertainty makes
it difficult to predict soft-tissue mechanical behaviour using
optimization techniques alone. Therefore, in this paper, we
take a Bayesian approach to the modelling process to charac-
terize the likely ranges of values that microstructural and
micromechanical parameters can take.

Due to their importance and the fact that they have been
studied extensively, we focus on tendons in this paper. The
mechanical properties of different tendons are distinct from
one another, with energy-storing tendons being more extensi-
ble than positional tendons due to differences in their
microstructures [15,16]. One feature that is common to all ten-
dons is that their collagen is structured in a regulated,
hierarchical fashion and aligned closely with the tendon’s
axis [1]. Collagen molecules form cross-links and aggregate
into fibrils with diameters ranging from 12 to 500 nm [7].
Collections of fibrils collect into larger structures called
fibres, with diameters of 150–1000 μm, which themselves
form fascicles, with diameters of 1000–3000 μm, [17]. In
other soft tissues, collagen fibrils are less strongly aligned
and form a network, but, by aligning many fibrils in one
direction, the tendon is stronger in that direction [18].

Models such as the Holzapfel–Gasser–Ogden (HGO)
model [19], which was initially created to study arteries,
have been adapted to study tendons [20]. This model is struc-
tural in the sense that it incorporates a strain invariant that is
directly related to the stretch in the collagen fibres, but
phenomenological in the sense that an exponential function
is used to describe collagen recruitment, and the stretches
in individual fibrils are not tracked. Other models have expli-
citly incorporated the crimp morphology of the fibrils [21–25]
and produced a good fit to experimental data. Several prob-
ability density functions (PDFs) have been used to describe
the distribution of fibril length, including the Weibull [26]
and triangular distributions [27–29], as summarized in a
review article by Thompson et al. [30].

In this paper, we derive a new structural SEF for modelling
soft tissues that assumes collagen fibrils are linearly elastic and
have a triangular length distribution.We test the efficacy of the
model using nonlinear optimization to find a parameter vector
that produces a local best fit to data. Secondly, we repeat the
fitting process using a Bayesian framework. This enables us
to incorporate prior beliefs about the unknown model par-
ameters, a statistical model for noisy observations of the
stress–strain curves and our nonlinear model to obtain pos-
terior distributions for the model parameters. Through these
distributions, we identify and quantify the uncertainty in the
parameters and the directions in parameter space in which
the model is more or less sensitive.
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The structure of the paper is as follows. In §2, we describe
the underpinning continuum mechanical theory that is
required to model the deformation of an anisotropic soft
tissue and, usingphysical considerations, derive a new constitu-
tive equation to model tendons. In §3, we use nonlinear
optimization to fit the model to experimental stress–strain
data and compare its quality of fit to that of the widely used
HGO model and a microstructural tendon model. In §4, we
account for noise in the experimental data using a likelihood
function that allows us to study the problem under a Bayesian
framework. In §5, we derive the posterior distribution for the
model’s microstructural and micromechanical parameters. In
§6, we summarize our findings and discuss potential ways to
expand upon our work.
 R.Soc.Interface
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2. Model derivation
2.1. Preliminaries
Prior to considering the constitutive response of soft tissues,
we need to consider kinematics, i.e. how to formulate the
mechanism of deformation. First, we distinguish between
two configurations, the reference (initial) configuration and
the deformed configuration. Points on the reference and
deformed bodies are described by the vectors X and x,
respectively. The two sets of coordinates are related via the
deformation mapping, χ, i.e. x = χ(X). We define the defor-
mation gradient, F, as

F ¼ rXx, ð2:1Þ
where rX represents the gradient operator with respect to the
reference coordinates. From the deformation gradient, we
define two symmetric measures of the deformation, known
as the left and right Cauchy–Green deformation tensors,
B = FFT and C = FTF, respectively [31].

The SEF W allows one to define the constitutive equation
of a hyperelastic material, relating stress to strain via deriva-
tives of W. In order to determine the exact form of this
constitutive response, we must first identify the symmetry
properties of the material. The mechanical behaviour of trans-
versely isotropic materials, such as tendons, is only invariant
for rotations around a preferred direction, M. Furthermore,
the SEF must be objective as the laws of physics are
the same in any inertial frame of reference. As the SEF is
invariant under a coordinate transformation, we can write
it as a function of invariants of the deformation. For an
isotropic material, there are only three invariants, I1 = tr(C),
I2 ¼ 1

2 ððtrðCÞÞ2 � trðC2ÞÞ and I3 ¼ detðCÞ. For a transversely
isotropic material, we must introduce an additional two
pseudoinvariants that depend on M: I4 =M ·CM and I5 =
M ·C2M [31].

2.2. The model
Collagen fibrils in tendons are crimped when the tendon is
relaxed, but straighten out as it is stretched [4]. We model
the distribution of fibril lengths using a triangular distri-
bution, which enables us to obtain an explicit, analytical
form for the SEF. It is unlikely that such an analytical form
could be derived for other PDFs; however, when it is sym-
metric, the triangular distribution coarsely approximates the
normal distribution (figure 2a), and it has been shown to pro-
vide a reasonable approximation to fibril length distributions
in tendons, as measured via second-harmonic generation
imaging [29]. An individual collagen fibril is assumed to be
stress-free until becoming taut at a recruitment stretch λr.
Once taut, it is assumed to be linearly elastic. The nonlinear-
ity of the SEF arises through the gradual recruitment of
collagen fibrils [32]. Fibrils in the tendon are assumed to be
locally coaligned. We follow the widely used assumption
that we can accurately describe soft tissue mechanics using
only the isotropic invariant I1 to model the tendon’s non-col-
lagenous matrix (NCM) and the anisotropic invariant I4
[19,22] to model the fibrils (and therefore, assume there is
no dependence on I2, I3 or I5). We decouple the contributions
of the collagen fibrils and NCM in the SEF and assume that
each component’s contribution is proportional to its volume
fraction. Finally, we assume that tendon is incompressible.
Thus, the SEF, W(I1, I4), is

WðI1, I4Þ ¼ ð1� fÞWNCMðI1Þ þ fWcollðI4Þ, ð2:2Þ
where ϕ is the collagen volume fraction.

To determine the form of Wcoll(I4), we start by defining
the stress exerted upon a single collagen fibril. We assume
the fibrils are slack while crimped and obey Hooke’s Law
once taut, so that the stress can be expressed as

sfibðl, lrÞ ¼
0, l � lr,

E l�lr
lr

� �
, l . lr,

(
ð2:3Þ

where E is Young’s modulus of the collagen fibrils. We can
determine the total (Cauchy) stress acting upon the collagen
fibrils that are aligned in a given direction within a represen-
tative volume element by calculating the following integral:

sFðlÞ ¼
ðl
0
f ðlrÞsfibðl, lrÞdlr, ð2:4Þ

where f (λr) represents the PDF of the recruitment stretch. We
derive SEFs for two different triangular distributions: a sym-
metric distribution and a general distribution. We refer to
them as the symmetric triangular (ST) and general triangular
(GT) models, respectively. For both distributions, the first
fibril becomes mechanically active at λ = a, and the last fibril
becomes mechanically active at λ = b. For the ST distribution,
the mode is half-way between a and b, whereas, for the GT
distribution, the mode is designated by a third parameter c,
with a < c < b. The PDF for the GT distribution, fgen(λr), is

fgenðlrÞ ¼

0, lr , a,
2ðlr�aÞ

ðb�aÞðc�aÞ , a � lr � c,
2ðb�lrÞ

ðb�aÞðb�cÞ , c � lr � b,

0, if lr . b:

8>>>><
>>>>:

ð2:5Þ

The PDF for the ST distribution, fsym(λr), is obtained by set-
ting c = (a + b)/2 in (2.5) (figure 2b).

Using (2.3) and the PDF of the fibril recruitment stretch
distribution, we can evaluate the integral in (2.4) analytically.
Exploiting the fact that I4 = λ2, i.e. I4 is equal to the square of
the stretch of the fibrils, we obtain

sFðI4Þ ¼ E AðI4Þ þ BðI4Þ
ffiffiffiffi
I4

p
þ CðI4ÞI4 þDðI4Þ

2

ffiffiffiffi
I4

p
log I4

� �
,

ð2:6Þ
where A(I4),…, D(I4) are piecewise constants whose values
depend on I4 (see appendix A). The form of the stress, σF,
acting on the fibrils is the same for both the ST and GT
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the normal distribution. s.d. = standard deviation. (b) The PDFs, f (λr), for the symmetric and general triangular distributions.
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distributions; however, the piecewise constants are different
in each case. In order to convert (2.6) into an expression for
the fibrils’ contribution to the SEF, we use a technique pre-
sented by Shearer [22] to write the left side of (2.6) in terms
of Wcoll(I4). Eventually, we obtain

WcollðI4Þ ¼ E
�
AðI4Þ
2

log I4 þ ðBðI4Þ �DðI4ÞÞ
ffiffiffiffi
I4

p
þ CðI4Þ

2
I4

þDðI4Þ
2

ffiffiffiffi
I4

p
log I4 þ GðI4Þ

�
,

ð2:7Þ

where G(I4) is a piecewise constant that ensures the continuity
of Wcoll(I4). We further assume that the mechanical response
of the NCM can be modelled by a neo-Hookean SEF [23],
giving

WðI1, I4Þ ¼ ð1� fÞm
2
ðI1 � 3Þ þ Ef

�
AðI4Þ
2

log I4 þ ðBðI4Þ �DðI4ÞÞ
ffiffiffiffi
I4

p

þ CðI4Þ
2

I4 þDðI4Þ
2

ffiffiffiffi
I4

p
log I4 þ GðI4Þ

�
,

ð2:8Þ

where μ is the NCM shear modulus. A full derivation of this
SEF is provided in the electronic supplementary material.

For an incompressible, transversely isotropic SEF that is a
function of I1 and I4 only, the constitutive equation, in terms
of the Cauchy stress, is

s ¼ �pIþ 2
@W
@I1

Bþ 2
@W
@I4

m�m, ð2:9Þ

where p is a Lagrange multiplier associated with the incom-
pressibility constraint, and m = FM is the direction of the
collagen fibrils in the deformed configuration.

The analytical form of the SEF presented above allows the
stress to be calculated rapidly compared with constitutive
models that require numerical integration over the collagen
recruitment stretch (e.g. [28,29]). This rapidity allows the
stress to be calculated millions of times within a relatively
short time frame, which is exploited in our Markov chain
Monte Carlo (MCMC) approach, below.
3. Nonlinear optimization
The first two sets of stress–strain data that we fitted were
experiments on mouse tail tendons collected by Goh et al.
[33,34]. We used two datasets designated as mtt01 1 t5c
and mtt01 1 t6b trunc. We shall refer to them as t5c and
t6b for brevity. In these datasets, tendon specimens of
length 7mm were stretched at a displacement rate of
0.067 mm s−1 (a strain rate of approx. 1% s�1) [33]. The
second two sets of data were collected by Thorpe et al. [15]
and were previously modelled using a different SEF by
Shearer et al. [16]. In these, the strain rate was 5% s–1 [15].
We used the datasets designated as equine common digital
extensor tendon (CDET) from horse number 39 and equine
superficial digital flexor tendon (SDFT) from horse number
16. These datasets were selected as they have a particularly
large elastic region, with the onset of failure not occurring
until around 10% strain. For brevity, we refer to them as
CDET and SDFT, respectively. Each dataset continues up to
failure of the tendon, which is beyond the scope of our
model. In order to fit only to data that is consistent with
the assumptions of our model, we used the data at stretches
below the point at which the maximum gradient occurs for
the data collected by Goh et al., and we used all data points
up to 10% strain for the data collected by Thorpe et al. in
accordance with [16].

To derive the constitutive equation, we assumed that a
cylindrical tendon sample, described using cylindrical polar
coordinates, is stretched along the axis of the aligned fibrils,
which are oriented along the Z-axis (figure 3). For this defor-
mation, given the assumed incompressibility and symmetry
of the material, the reference and deformed coordinates,
(R, Θ, Z) and (r, θ, z), are related by

ðr, u, zÞ ¼ Rffiffiffi
l

p , Q, lZ
� �

: ð3:1Þ

The Cauchy stress, (2.9), gives the force acting on the
deformed material per unit deformed area; however, the quan-
tity recorded in the experiments being modelled is the
engineering stress, the force per unit reference area, which is
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Figure 3. The tendon sample in the reference configuration (upper left) and face with normal in the Z-direction (upper right), and the deformed body (lower left)
and face (lower right) after a force of Fez is applied to the tissue.
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denoted as N in figure 4. Therefore, after substituting our SEF
into (2.9), we divide the resulting expression through by λ to
obtain

N ¼ ð1� fÞm l� 1
l2

� �
þ fE

l
(Aðl2Þ þ Bðl2Þl

þ Cðl2Þl2 þDðl2Þl ln l), ð3:2Þ

where I4 = λ2 by (3.1) and the assumed alignment of the
fibrils.

To provide a benchmark for the fit of our model to data,
we also fitted the tendon data using the commonly used
HGO model [19]. The HGO model was originally developed
for modelling arteries and incorporates two families of col-
lagen fibres; however, it has been adapted to study an
extensive range of biological soft tissues, including tendons,
and has been implemented in several finite-element software
packages. To model collagen in tendons, which contain one
family of collagen fibres, we use the following transversely
isotropic version of the HGO SEF:

WðI1, I4Þ ¼ cHGO

2
ðI1 � 3Þ þ k1

2k2
ðexpðk2ðI4 � 1Þ2Þ � 1Þ, ð3:3Þ

where cHGO and k1 are parameters with dimensions of stress
and k2 is a dimensionless model parameter. The engineering
stress produced by this SEF (3.3) is

NHGO ¼ cHGO l� 1
l2

� �
þ 2k1lðl2 � 1Þ expðk2ðl2 � 1ÞÞ:

ð3:4Þ

To test our model against an existing microstructural tendon
model, we used the following SEF [22]:

WðI1, I4Þ ¼ ð1� fÞm
2
(I1 � 3)

þ

0, I4 , 1,
fE

6 sin2 uo
4

ffiffiffiffi
I4

p � 3 ln I4 � 1
I4
� 3

� �
, 1 � I4 � 1

cos2 uo
,

fE 2ð1�cos3 uoÞ
3 sin2 uo

ffiffiffiffi
I4

p�
� 1

2 ln I4 � 1
2 � cos2 uo

sin2 uo
log 1

cos uo

� ��
, I4 . 1

cos2 uo
,

8>>>>>><
>>>>>>:

ð3:5Þ

where θo is the initial crimp angle of the outermost, most-
crimped fibrils in the tendon’s fascicles. We adapted the
SEF by including a shifting parameter, γ, that corresponds
to the engineering strain at which the first collagen fibril
becomes mechanically active. In (3.5), this corresponds to
replacing λ with λ− γ, that is, replacing I4 = λ2 with I4 = (λ−
γ)2. The engineering stress for this modified tendon model is

Ntendon ¼ð1�fÞm l� 1
l2

� �

þ
0, l, ð1þgÞ,

fE
3sin2 uo

2� 3
l�g� 1

ðl�gÞ3
� �

, ð1þgÞ�l�ð 1
cosuo

þgÞ,
fE 2ð1�cos3 uoÞ

3sin2 uo
� 1

l�g

� �
, l. ð 1

cosuo
þgÞ:

8>>><
>>>:

ð3:6Þ

As ϕ, μ and E only appear in the SEF (2.8) in the distinct
terms (1− ϕ)μ and ϕE, we treated (1− ϕ)μ and ϕE as two inde-
pendent fitting parameters. Thus, the ST SEF contains four
fitting parameters, (1− ϕ)μ, ϕE, a and b. The GT SEF has an
additional fitting parameter, c. In order to obtain physically
realistic values for the parameters, we constrained them as
follows: for the ST model, 0 < (1− ϕ)μ, 0 < ϕE, 1 < a < b, a <
λmax, where λmax represents the maximum stretch in the
data; for the GT model, we replaced 1 < a < b with 1 < a <
c < b; for the HGO model, (3.3), 0 < cHGO, 0 < k1 and 0 < k2;
and for the modified tendon model, 0≤ γ < (λmax− 1),
0 < θo < (π/2), (1− ϕ)μ > 0, ϕE > 0.

The mean absolute error, Δ, between the experimental
data, y, and simulated data, ŷ, is

D ¼ 1
d

Xd
i¼1

jyi � ŷij, ð3:7Þ

where d is the length of the dataset. Similarly, the mean rela-
tive error, δ, is

d ¼ 1
d

Xd
i¼1

jyi � ŷij
jyij : ð3:8Þ

The values of Δ and δ when fitting each model to the four
datasets are given in table 1. To achieve the closest possible
fit to the data, we ran the fitting function once and then
restarted it a further four times with the estimated parameters
at the end of a run used as the initial estimates for the next
run. We found these restarts to have little to no effect on
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Table 1. Mean relative and absolute errors for the four models fitted to experimental tendon data. All values are given to three significant figures.

model t5c t6b CDET SDFT

HGO δ 0.242 0.169 5.50 1.48

Δ (MPa) 0.396 0.223 4.59 2.54

tendon δ 0.200 0.276 0.0967 0.173

Δ (MPa) 0.156 0.280 0.290 0.184

ST δ 0.110 0.178 0.0755 0.149

Δ (MPa) 0.101 0.173 0.290 0.182

GT δ 0.110 0.181 0.0725 0.0696

Δ (MPa) 0.101 0.171 0.290 0.113
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the quality of fit. Both versions of our SEF achieve a closer fit
to the data than the microstructural tendon model for each
dataset. Additionally, they only perform worse than the
HGO model for the relative fit to the t6b dataset. Between
the ST and GT models, the mean absolute and relative
errors for the four datasets are similar, with the former sur-
prisingly matching and outperforming the latter, in terms of
the average relative error obtained, for the t5c and t6b data-
sets, respectively. This is particularly interesting because the
GT model contains an additional degree of freedom. This is
likely because nonlinear optimization only provides a local
best fit to data and only 1000 iterations of the Nelder–Mead
algorithm were performed each time the algorithm was
run. Two examples of the fit of our model to the experimental
data are presented in figure 4. The electronic supplementary
material shows all 16 fits. The parameter values found at the
end of the fifth run of the nonlinear fitting function are listed
in table 2.
4. Markov chain Monte Carlo
Through nonlinear optimization, we have found the best fit to
experimental data local to the algorithm’s initial guesses for
the parameter values; however, this approach does not quan-
tify the uncertainty in the parameter values. Uncertainties
arise for a number of reasons, including observational noise
in the experimental stress–strain data. To address this, we
apply a Bayesian framework to the same problem studied
with the optimization approach and estimate the likely
ranges of the true values of the model’s parameters. Using
the posterior distributions we obtain from the algorithm,
we can estimate likely parameter values and quantify the
uncertainty in those estimates.

The goal of Bayesian statistics is, given new data, to
update any prior knowledge about the values of a model’s
parameters via the likelihood of a particular parameter
vector θ (the vector of constitutive and structural parameters
in our SEF) producing the observed (experimental) data y.
Through this, we obtain what is known as the posterior prob-
ability distribution of θ, π(θ|y), which is related to π0(θ), the
prior probability of θ and the likelihood via Bayes’ rule

pðujyÞ/ LðyjuÞp0ðuÞ, ð4:1Þ
where L(y|θ) denotes a function that is proportional to the
likelihood density. The posterior is only known up to a con-
stant of proportionality, which often cannot be explicitly
computed. Under those circumstances, a common method
to characterize the posterior distribution is to sample from
it using numerical methods such as MCMC.

Monte Carlo methods can be used to estimate expec-
tations with respect to a particular measure, for example
π(θ|y); however, for Bayesian inverse problems, we cannot
usually directly sample from the posterior distribution.
Instead, we can indirectly sample from the posterior using
MCMC methods, which construct an ergodic Markov chain
whose unique stationary density is equal to the posterior.
Monte Carlo estimates taken with respect to this Markov
chain can be shown to converge to expectations taken with
respect to the posterior distribution. Initially, Markov chains
do not sample from the stationary distribution and values
proposed in the MCMC algorithm are dependent on the
chain’s starting position. This initial period is called the
burn-in phase, the size of which depends on the quality of



Table 2. Parameter values (to three significant figures) for each model’s best fit to the four data sets. To avoid confusion with c in the HGO model, the modal
fibril length in the GT model is written as cmode.

model t5c t6b CDET SDFT

HGO c (MPa) 0 0 0 0

k1 (MPa) 6.41 9.67 157 43.9

k2 (MPa) 29.6 45.6 8.37 21.7

tendon (1− ϕ)μ (MPa) 10.4 17.6 7.69 17.1

ϕE (MPa) 600 1200 1330 778

θ 0.330 0.382 0.192 0.254

γ 0.058 0.0461 0.0115 0.0248

ST (1− ϕ)μ (MPa) 8.36 14.9 5.31 16.2

ϕE (MPa) 950 1760 1360 820

a 1.04 1.03 1.01 1.02

b 1.16 1.15 1.03 1.07

GT (1− ϕ)μ (MPa) 8.36 15.1 4.78 12.3

ϕE (MPa) 931 782 1360 828

a 1.04 1.03 1.01 1.01

cmode 1.10 1.09 1.02 1.06

b 1.16 1.09 1.03 1.06
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the initial guess and the rate of mixing of the Markov chain.
We do not include samples from the burn-in phase when cal-
culating MCMC estimates, or when visualizing the posterior
distribution.
4.1. Hierarchical Bayesian approach and conjugate
priors

In §2.2, we derived a deterministic SEF. Now, in order to
derive the likelihood function for this modelling problem,
we assume that the observed data are given by the model
output perturbed by some noise. We choose the standard
modelling assumption that the noise is additive, mean-zero,
Gaussian and independently and identically distributed
(IID), giving us a diagonal covariance matrix for which the
entries are equal to the observational noise variance σ2.
This gives us the following statistical model for our
observations:

y ¼ MðuÞ þ h, h � N ð0, s2IdÞ, ð4:2Þ
where d is the length of y, Id is a d × d identity matrix,
N ð0, s2IdÞ represents a normal distribution with mean 0
and covariance matrix σ2Id, y [ Rd, and M(θ) denotes the
output of the model given input values θ. From (4.2), we
derive the likelihood, which is induced by the statistical
model on the left of this equation, once the noise is assumed
to be a zero-mean, homoscedastic, multivariate, Gaussian
random variable

Lðyju, s2Þ ¼ 1

ðs ffiffiffiffiffiffi
2p

p Þd
exp � 1

2s2 ky�MðuÞk22
� �

: ð4:3Þ

This is sufficient if we have a clear idea of the value of the
observational noise variance σ2, but in practice this is rarely
the case. The value of σ2 can be very important, potentially
causing under- or over-fitting. Therefore, we take a
hierarchical Bayesian approach and assign a prior distri-
bution to σ2. A priori, we assume that the parameters are
independent of one another, so the joint prior distribution
is the product of the parameters’ individual prior distri-
butions. That is,

p0ðu, s2Þ ¼ p0ðuÞp0ðs2Þ ¼ p0ðu1Þ � � �p0ðuhÞp0ðs2Þ, ð4:4Þ

where h denotes the length of θ. By (4.1) and (4.4),

pðu, s2jyÞ/ Lðyju, s2Þp0ðu1Þ � � �p0ðuhÞp0ðs2Þ: ð4:5Þ

Using a conjugate prior for σ2, we avoid having to infer σ2

explicitly by integrating out the dependence of the posterior
distribution with respect to σ2 since this integral can be com-
puted analytically. In this instance, our likelihood function is
a Gaussian PDF, so an appropriate conjugate prior for the
observational noise variance is an inverse-gamma distri-
bution. After multiplying the likelihood function by the
product of the prior densities (4.4), we arrive at the posterior
distribution. The marginal distribution on the model par-
ameters can then be derived by integrating out σ2, giving a
Student’s t-distribution multiplied by the prior density on
the remaining unknowns:

pðujyÞ/ t2as
y; MðuÞ, bs

as
Id

� �
p0ðuÞ, ð4:6Þ

where we define t2as
ð�; g, cÞ as the posterior predictive den-

sity of * according to a Student’s t-distribution of 2as degrees
of freedom with mean γ and covariance matrix ψ, and where
as, bs . 0 are parameters of the hyperprior on σ2. For the
implementations of the RWM algorithm detailed below, we
set the values of the hyperparameters to be ασ = 3 and βσ =
0.3. A full derivation of the posterior predictive is provided
in the electronic supplementary material.
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4.2. Random walk Metropolis algorithm
We cannot integrate (4.6) analytically and determine the nor-
malization constant; therefore, we choose to characterize the
posterior predictive by sampling from the target distribution
using the random walk Metropolis (RWM) algorithm. This
method enables us to construct an ergodic Markov chain
with invariant density equal to π(θ|y). We can then use the
computed Markov chain for Monte Carlo estimates and to
visualize the target distribution. Producing a Markov chain
of length n and using Uð0, 1Þ to denote a uniform distribution
between zero and one, the RWM algorithm is given in
algorithm 1.
0031
The covariancematrix of the proposal distribution, Σ, affects
the efficiency of RWM algorithms. It controls the scale of the
proposal variance and the correlations between coordinates in
the sampled vector. Adaptive random walk algorithms allow
us to adapt Σ to optimize efficiency. To address the scale and
correlation of the sample vector, we adapt the covariance
matrix to Σ = β2ζ, where β2 is a scaling parameter, with β > 0,
and z [ Rh�h is the covariance matrix of the parameters con-
structed from a chosen set of parameter vectors.

Regarding scale, it has been shown that the optimal accep-
tance rate for multivariate RWM is 0.234 [35]. For a given value
of ζ, β can be tuned to achieve an acceptance rate close to this
value. Small values of β lead to a proposal density closely con-
centrated around the current state, which leads to a high
acceptance rate but slow exploration. Conversely, large values
of β lead to a diffuse proposal density where sampled vectors
are likely to be in the tails of the posterior distribution, leading
to low acceptance rates and therefore slow exploration.

Efficient proposal distributions reflect the correlation
structures in the target density. For instance, if the probability
density is concentrated close to a lower dimensional mani-
fold, then proposal distributions which favour bigger
moves in the directions parallel to the manifold will lead to
faster exploration than isotropic proposal distributions. We
do not know the correlation structure of the target a priori,
but this can be learned through initial exploration with an
isotropic proposal distribution.

We employed an adaptive RWM method, recalculating Σ
after every block of 500 samples. To construct ζ, we used the
position of the Markov chains over the last 10 000 samples in
the chain. To ensure Σ was positive definite during the algor-
ithm, we regularized by adding the identity matrix
multiplied by a small number, 1 × 10−5, to ζ whenever it
was recalculated. We let the value of β2 depend on the accep-
tance rate within a block, αblock. The conditions for updating
β2 at the end of each block were
— αblock < αLowerTol: multiply β2 by 0.952;
— αLowerTol≤ αblock≤ αUpperTol: keep β2 at the same value;
— αUpperTol < αblock: multiply β2 by 1.052,
where αLowerTol and αUpperTol denote the lower and upper
bounds of the allowed acceptance rates for the algorithm,
which we set equal to 0.184 and 0.284, respectively (0.234 ±
0.05). The tolerances account for the range of acceptance
rates for which an RWM algorithm is assumed to run effi-
ciently enough. We must stop iterating β2 and ζ at some
point in the algorithm, since adaptive MCMC algorithms
must satisfy the property of diminishing adaptation in
order to maintain ergodicity [36]. We stopped adaptation of
Σ at the end of the burn-in phase, which consisted of the
first 500 000 samples of the Markov chain. Convergence was
checked through the repeatability and smoothness of the
computed histograms, but more formal methods to quantify
convergence are available [37].
5. Application of Bayesian methods to tendon
deformation

Before running the RWM algorithm, we transformed the par-
ameters so their support extended over the whole of R

because sampling parameters whose support matches that
of the proposal distributions improves efficiency. Here, we
discuss the approach for the ST model. The GT model is dis-
cussed in the electronic supplementary material. Each
element of the parameter vector, ψ = [(1 − ϕ)μ, ϕE, a, b], is
non-negative, and the uncertain parameters a, b must satisfy
a > 1 and a < b. These two conditions give rise to the natural
choice of parameters for inference a− 1 > 0 and b− a > 0.
Along with the other non-negative, uncertain parameters,
we assigned lognormal priors to ensure well-posedness.
Taking the logarithm of these parameters, we obtained the
parameter vector u [ R4, where

u ¼
n
h
t
r

0
BB@

1
CCA ¼

logðð1� fÞmÞ
logðfEÞ
logða� 1Þ
logðb� aÞ

0
BB@

1
CCA ¼ TðcÞ, ð5:1Þ

where T(ψ) represents an invertible, nonlinear transformation
of the target parameters ψ. This transformation, in turn, leads
to a transformation of the likelihood and posterior distri-
butions. When performing RWM on the transformed
parameters, θ, the target density is given by the pullback ~p

of the posterior π(ψ|y ) through the map T, which has density

~pðuÞ ¼ pðT�1ðuÞjyÞ � jdetDT�1ðuÞj, ð5:2Þ
where DT�1ðuÞ is the Jacobian of T−1. The value of this
additional factor is detailed in the electronic supplementary
material. As we assigned a lognormal prior to their expo-
nents, each parameter in θ has a normal prior distribution.
The electronic supplementary material details how the two
parameters of the lognormal prior, and, thus, the mean and
variance of the corresponding normal prior, were chosen
for (1− ϕ)μ, ϕE, a− 1 and b− a.

To validate our approach and its implementation, we first
used it on a synthetic dataset created with a chosen par-
ameter vector for the ST model, before moving on to the
CDET and SDFT data, for which we used both the ST and
GT models. We also ran the ST algorithm on the data col-
lected by Goh et al., as discussed in the electronic
supplementary material. All runs of the algorithm described
below included a burn-in phase of 500 000 samples that were
not included in the results.
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5.1. Synthetic data
Fitting to synthetic data acts as a proof-of-concept that enables
us to study the posterior distributions whenwe know the ‘true’
parameter values associated with the data. To create the syn-
thetic stress values, we inputted the same set of strains as the
SDFT dataset and the parameters [(1− ϕ)μ, ϕE, a, b] = [7 MPa,
800 MPa, 1.03, 1.13] into the SEF. To simulate experimentally
collected data, we added IID mean zero Gaussian noise to
the stresses, and to test the algorithm rigorously, we made
the synthetic data noisier than the real data by choosing a var-
iance of 0.01 for the noise. We produced a Markov chain of 1.5
million samples for the synthetic data.

The marginal posterior distributions and the two-
dimensional joint distributions of the parameters that
were obtained when fitting the synthetic data are shown in
figure 5. Although they do not align exactly with the
modes of their respective posteriors, the parameter values
used to create the synthetic data are not located in the tails
of the posterior, but lie in regions of relatively high posterior
probability. The smoothness of the empirical distribution also
implies that the algorithm sampled efficiently.

Figure 6 shows the fit to the data and a 5σ confidence
band around the mean predicted stresses for a sample of
50 000 parameter vectors. A close fit is achieved for the
whole stress–strain curve. This synthetic experiment demon-
strates that accurate estimates of the constitutive parameters,
and the uncertainty in those estimates, can be derived
through a Bayesian framework, and characterized using our
tuned adaptive RWM algorithm.

5.2. SDFT and CDET data: ST model
Wenowanalyse the algorithm’s predictionswhenwe fit the ST
model to the high-resolution tendon data collected by Thorpe
et al. We used the ST model based on the assumption that the
fibril length distribution is symmetric; however, we relax this
assumption in §5.3.Weproduced aMarkov chain of 1.5million
samples for the SDFT data and 10.5 million for the CDET data.
The additional nine million samples for the CDET data were
performed to help produce smoother posteriors as their irregu-
lar shapes caused slower mixing of the Markov chains. For the
SDFT data, figure 7 contains the estimated posteriors and con-
tour plots obtained from the RWM algorithm and figure 8
shows a confidence band of 5σ around the mean stress–strain
curve of 50 000 parameter vectors plotted against the data.
As in the synthetic example, the empirical posterior distri-
bution is smooth, implying good convergence. For the
structural parameter ϕE, we have a physically realistic pos-
terior: the 95% credible interval for ϕE is 814–827MPa, which
is feasible compared to literature values for ϕ and E in tendon
[14]. The stretches at which the first and last collagen fibrils
tauten are also realistic. There are parameters with strong posi-
tive correlations: (1− ϕ)μ and a, and ϕE and b. These indicate
that to replicate the experimental data closely, the NCM must
be stiffer if collagen fibrils are slack for longer, and the fibrils
must be stiffer if fewer are mechanically active. Likewise,
strong negative correlations between a and b and (1− ϕ)μ and
ϕE indicate that the final fibril must be taut sooner if the first
is slack for longer, and the fibrils must be stiffer if the NCM
is more compliant. These are all physically reasonable
correlations, demonstrating the benefit of full posterior
characterization as opposed to traditional optimization.

Figure 8 demonstrates that the algorithm identifies par-
ameter vectors that fit the SDFT data closely. For all stretches,
the data lie close to the mean stress, and either within or close
to the 5σ confidence band that is narrower than for the noisier
synthetic data. Again, the confidence band is consistently
sized, demonstrating the model’s ability to quantify how
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different microstructural components and phenomena (the
NCM and the gradual tautening of collagen fibrils) influence
the macroscopic mechanical response of the tendon. As the
strain nears 10%, however, the model’s predicted stresses are
slightly higher than the experimental data, indicating a degree
of discrepancy between the model and data. This could be
due to damage to some fibrils as the stretch nears 10% strain,
contradicting an assumption of the model. To achieve the best
fit to the data overall, while retaining the linearity of the
model in region III of the stress–strain curve, some underesti-
mates of the experimental stress occur at smaller stretches to
compensate for the overestimates as the strain approaches 10%.

For the CDET data, the parameter (1− ϕ)μ possesses a
high predicted posterior probability mass close to zero
(figure 9), with a long tail for larger values. Due to the
strong negative correlation between (1− ϕ)μ and ϕE, the
shape of the marginal distribution for ϕE is also affected.
The shape of the posterior for (1− ϕ)μ likely occurs because
few data points lie in the toe region, with the proposed
values of a being close to one, meaning that the collagen
fibrils dominate the response to the deformation even at
small stretches. As the density lies close to zero for one of
the parameters, taking the logarithm results in a curved pos-
terior, whose global covariance structure is less informative
for making effective proposals. Therefore, in order to obtain
smoother posteriors, 10 million samples were taken. Alterna-
tive approaches would be to use more sophisticated methods
such as the Metropolis-adjusted Langevin algorithm or
Hamiltonian Monte Carlo [38]. The posteriors for a and b
are smooth, implying a good level of convergence to the pos-
terior distributions. Furthermore, close fits to the data from
the sampled parameters are still achieved (figure 10). With
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a 95% credible interval of 1340–1380MPa, we again obtain
physically reasonable estimates of ϕE [14].
5.3. SDFT and CDET data: GT model
To investigate possible asymmetry of f(λr), we applied the GT
version of the model within the inference to the SDFT and
CDET data. As with the ST version of the model, we produced
a chain of 1.5million samples for the SDFTdata and 10.5million
for the CDET data. The posteriors and contour plots obtained
are plotted in figures 11 and 12. To evaluate the skewness of
the GT distributions, we plotted histograms of the quantity
(2c− b− a)/(b− a) in figure 13. This quantity can take values
between −1 and 1 and is equal to 0 for an ST distribution.

Contour plots and marginals of the posterior are shown in
figure 11. The estimated values of the constitutive parameters
are again realistic, with the 95% confidence interval of ϕE
being 823–833MPa. We note, by comparing with the ST
case, that the inclusion of the additional parameter c has
slightly increased the predicted values of ϕE and decreased
those of (1− ϕ)μ.

In figure 12, we can see that the contour plots and histo-
grams are not as smooth as for the SDFT data, indicating that
even more samples might be required to achieve a high
degree of convergence. The contour lines also possess a
more complex shape than we see for the SDFT data. These
features are also present when using the ST model (figures
7 and 9). In the GT model fit, a 95% confidence interval for
ϕE is 1340–1380MPa, which is the same as the ST case to
three significant figures. Compared to figure 9, the posteriors
for a and b are also similar.

Finally, figure 13 demonstrates that the value of c, the
modal fibril length, is predicted to be significantly closer to
b than a for the SDFT data, suggesting that this tendon may
have a skewed fibril length distribution. By contrast, for the
CDET data, c covers a range of values but is most commonly
found near the middle of a and b, indicating that the
distribution is close to symmetric in this case.

6. Discussion
In this paper, we developed a newmodel of soft-issue mechan-
ical behaviour that only contains microstructurally relevant
parameters and used a Bayesian MCMC framework to deter-
mine the likely range of their values. Our approach was
similar to that ofAkintunde et al. [20],whoused a similar frame-
work to compare the ability of three existing SEFs to fit age-
dependent, murine tendon stress–strain data. These SEFs,
which were derived by Gasser, Ogden and Holzapfel (GOH)
[39], Freed & Rajagopal (FR) [21] and Shearer (SHR) [22] take
different approaches to modelling soft-tissue fibres. The GOH
model accounts for fibril recruitment phenomenologically
using an exponential function, whereas the FR model uses an
implicit elasticity approach with a phenomenologically
chosen implicit energy function. Neither of these models can
be used to predict fibril length distributions. The SHR model,
on the other hand, makes the specific assumption that
fibril length varies radially within a fascicle, with fibrils at the
centre of the fascicle being the shortest, and those on its periph-
ery being the longest. While there is evidence that this
assumption holds for some tendons [40], it is likely not valid
for all, or for other biological soft tissues. This was one of the
motivations for developing the new constitutive model pre-
sented above, which is more general. When fitted to
experimental murine and equine tendon data using nonlinear
optimization, the new SEF provides a closer fit than the SHR
model to all four datasets studied and a closer fit than the
HGO model to three out of the four datasets, only narrowly
providing a worse relative fit to the t6b dataset.

We also implemented an adaptive RWM algorithm to
characterize posterior probability distributions to quantify
the uncertainty in the values of the fitting parameters. This
algorithm samples effectively when fitting to both synthetic
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and high-resolution experimental data. Furthermore, it
samples parameter vectors that provide a close fit to the data,
with 95% credible intervals for the important physical par-
ameter ϕE containing realistic values when compared with
existing estimates of the parameters ϕ and E. It is intriguing
that the GT model predicted that the SDFT has a skewed
fibril length distribution, but that the CDET’s is likely sym-
metric. As the SDFT and CDET are archetypal examples of
energy-storing and positional tendons, respectively, this may
point to a potential difference in the collagen fibril arrange-
ments of these two tendon types. Future work could examine
the fit of the GT model in the RWM algorithm to a large
number of datasets to determine whether there are indeed
differences in the skewness of the fibril length distributions
of energy-storing and positional tendons, or whether this
result is just an example of inter-sample variation. We empha-
size that the distributions that we arrive at here only describe
the samples used to create the data, and that they do not reflect
the natural variation across all tendons.

As the model is pseudoelastic, Young’s and shear moduli
predicted by our model are specific to the strain rates used in
the experiments we fitted. The effective moduli would increase
with increasing strain rate. Our findings suggest that ϕE differs
from sample to sample. Consequently, either the collagen
volume fraction varies between the samples we fitted, or
there may not be a universal collagen fibril Young’s modulus.
In particular, it may be wrong to assign a Young’s modulus to
collagen on the fibrillar level as molecular differences may
cause some fibrils to be stiffer than others. If so, our model
would need to be modified to allow for variation in the consti-
tutive, as well as the structural, parameters. The Bayesian
approach assumes that our model is ‘correct’ in the sense that
it incorporates all of the physics necessary to predict the micro-
structural and constitutive parameters accurately. If a
significant feature is absent from the model, there would be
inaccuracies in the predicted parameter values; however, the
quality of fit our model achieved, along with the agreement
of the predicted parameter values with experimental values
reported in the literature, together, support the assumption
that the most important physical features of tendon defor-
mation under the experimental conditions of our test data are
included. A more comprehensive model can always be devel-
oped, however. There are phenomena not explicitly
considered here, such as chemo-mechanical coupling and
swelling due to variation in water content [41] that could
affect the parameter values in our model; therefore, our results
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apply only to the specific conditions that were imposed in the
experiments we modelled. Explicit incorporation of such
effects could be one way to improve upon our model.

We used the triangular distribution to model the distri-
bution of collagen fibril lengths in tendon. Other tractable
SEFs could be derived bymodelling fibril lengths with alterna-
tive distributions, such as the step distribution, for example,
which would also lead to a convenient analytic representation.
Additionally, more efficient samplingmethods, such as Hamil-
tonianMonte Carlo, which uses derivatives of the log-posterior
with respect tomodel parameters to propose parameter vectors
in areas of high posterior probability, could be used instead.We
have studied tendons, which possess more strongly aligned
collagen than tissues such as skin, where fibrils are generally
splayed. By applying our model, and the Bayesian approach
used here, to other soft tissues, we could quantify uncertainty
in a broader range of scenarios. A plausible test of the model
and its assumptions would be to fit multiple datasets simul-
taneously, enforcing the constitutive parameters to be the
same between the datasets and varying the structural par-
ameters only. The posterior probability distributions could
then quantify the inter-sample variation in the constitutive
parameters of a particular tissue in any given species.

Data accessibility. The paper makes use of two datasets, one collected
by Goh et al. [33,34] and one collected by Thorpe et al. [15].
Goh et al. [33,34]: the dataset is available at https://figshare.com/col-
lections/Ageing_tendon_collection/3938821. The data can be
processed in MATLAB using the code available at https://figshare.
com/articles/dataset/The_code_for_generating_and_processing_the_
dataset_for_load-displacement_and_stress-strain/5640649. Thorpe
et al. [15]: the dataset is available at https://qmro.qmul.ac.uk/
xmlui/handle/123456789/13395.

Authors’ contributions. J.H.: data curation, formal analysis, investigation,
methodology, software, validation, visualization, writing—original
draft, writing—review and editing; S.L.C.: conceptualization,
formal analysis, investigation, methodology, supervision, validation,
writing—review and editing; W.J.P.: conceptualization, formal analy-
sis, investigation, methodology, supervision, validation, writing—
review and editing; T.S.: conceptualization, formal analysis, investi-
gation, methodology, supervision, validation, writing—review and
editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.
Conflict of interest declaration. We declare that we have no competing
interests.
Funding. J.H. is grateful to the Department of Mathematics, University
of Manchester for PhD funding. S.L.C. is grateful to the Alan Turing
Institute for a Turing Fellowship. W.J.P. is grateful to the Engineering
and Physical Sciences Research Council (EPSRC) for funding via
grant no. EP/S019804/1.
Acknowledgements. We thank the reviewers for their helpful and con-
structive comments.
Appendix A. The piecewise constants A(I4), B(I4),
C(I4), D(I4) and G(I4)
The values of the piecewise constants for the GT distribution
are

AðI4Þ ¼

0, I4 , a2,
� a2

ðb�aÞðc�aÞ , a2 � I4 � c2,
c2

ðc�aÞðb�cÞ � a2
ðb�aÞðc�aÞ , c2 , I4 � b2,

�1, I4 . b2,

8>>>><
>>>>:

, ðA 1Þ

BðI4Þ ¼

0, I4 , a2,
2a log a

ðb�aÞðc�aÞ , a2 � I4 � c2,
2a log a

ðb�aÞðc�aÞ � 2c log c
ðc�aÞðb�cÞ , c2 , I4 � b2,

2a log a
ðb�aÞðc�aÞ þ 2b log b

ðb�aÞðb�cÞ � 2c log c
ðc�aÞðb�cÞ , I4 . b2,

8>>>>><
>>>>>:

ðA 2Þ

CðI4Þ ¼

0, I4 , a2,
1

ðb�aÞðc�aÞ , a2 � I4 � c2,

� 1
ðb�aÞðb�cÞ , c2 , I4 � b2,

0, I4 . b2,

8>>>><
>>>>:

ðA 3Þ

DðI4Þ ¼

0, I4 , a2,
� 2a

ðb�aÞðc�aÞ , a2 � I4 � c2,
2b

ðb�aÞðb�cÞ , c2 , I4 � b2,

0, I4 . b2

8>>>><
>>>>:

ðA 4Þ
and GðI4Þ ¼

0, I4 , a2,
a2 log a

ðb�aÞðc�aÞ � 5a2
2ðb�aÞðc�aÞ , a2 � I4 � c2,

2a2 log a
ðb�aÞðc�aÞ � c2 log c

ðc�aÞðb�cÞ � 5a2
2ðb�aÞðc�aÞ þ 5c2

2ðb�cÞðc�aÞ , c2 � I4 � b2,
a2 log a

ðb�aÞðc�aÞ � c2 log c
ðc�aÞðb�cÞ þ b2 log b

ðb�cÞðb�aÞ
� 5a2

2ðb�aÞðc�aÞ þ 5c2
2ðb�cÞðc�aÞ � 5b2

2ðb�aÞðc�aÞ , I4 . b2:

8>>>>>>>><
>>>>>>>>:

ðA 5Þ
The corresponding quantities for the ST distribution are
obtained by setting c = (a + b)/2.
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