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A B S T R A C T

Collagen fibrils are the most important structural component of tendons. Their crimped structure and parallel
arrangement within the tendon lead to a distinctive non-linear stress–strain curve when a tendon is stretched.
Microstructural models can be used to relate microscale collagen fibril mechanics to macroscale tendon
mechanics, allowing us to identify the mechanisms behind each feature present in the stress–strain curve.
Most models in the literature focus on the elastic behaviour of the tendon, and there are few which model
beyond the elastic limit without introducing phenomenological parameters. We develop a model, built upon a
collagen recruitment approach, that only contains microstructural parameters. We split the stress in the fibrils
into elastic and plastic parts, and assume that the fibril yield stretch and rupture stretch are each described
by a distribution function, rather than being single-valued. By changing the shapes of the distributions and
their regions of overlap, we can produce macroscale tendon stress–strain curves that generate the full range
of features observed experimentally, including those that could not be explained using existing models. These
features include second linear regions occurring after the tendon has yielded, and step-like failure behaviour
present after the stress has peaked. When we compare with an existing model, we find that our model reduces
the average root mean squared error from 4.53MPa to 2.29MPa, and the resulting parameter values are
closer to those found experimentally. Since our model contains only parameters that have a direct physical
interpretation, it can be used to predict how processes such as ageing, disease, and injury affect the mechanical
behaviour of tendons, provided we can quantify the effects of these processes on the microstructure.
1. Introduction

Tendons are composed of a complex hierarchy of collagen-based
components embedded within an extra-collagenous matrix. When mod-
elling the mechanical response of tendons as they are stretched to
failure, it is important to consider this complex microstructure and
how it gives rise to the observed stress–strain behaviour illustrated
in Fig. 1. The macroscale tendon stress–strain curve can be split into
four sections: (I) the non-linear toe region, (II) the linear region, (III)
the post-yield region, and (IV) the macroscopic failure region. Existing
microstructural models (Hurschler et al., 1997; Hamedzadeh et al.,
2018) are able to capture this behaviour when it resembles the idealised
case presented in Fig. 1, but we will show that a significant proportion
of observed stress–strain curves (Goh et al., 2018) contain features that
cannot be explained using these models. These features include second
linear regions (in region III) and step-like failure behaviour (in region
IV), as shown in Fig. 2. We therefore propose a new microstructural
model, based on the response of individual collagen fibrils, which is
capable of capturing this behaviour.
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Collagen fibrils often form the basis of microstructural models be-
cause they are the smallest component of tendons for which we have
reliable stress–strain data. Fibrils are crimped within the fascicle, and
only become load-bearing once the tendon has been stretched enough
to remove their crimp. Due to varying crimp between fibrils, the tendon
initially exhibits a non-linear stress–strain response, as fibrils gradually
become taut (region I). The tendon stiffness continues to increase until
all of the fibrils are taut and we see a macroscale linear region (region
II). Hijazi et al. (2019) used scanning electron microscopy to show
that stretching a tendon past the end of its linear region results in
permanent damage on the fibril scale, suggesting that as we pass into
the post-yield region (region III), fibrils themselves begin to yield. This
is further supported by Zitnay et al. (2017), who were able to detect
damage at the molecular level in rat tail tendon fibrils, once the tendon
had been stretched past its linear region. When the tendon reaches the
macroscopic failure region (region IV), many of the fibrils have yielded,
and some may have ruptured completely. Eventually all of the fibrils
will rupture and the tendon will fail.
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Fig. 1. Idealised stress–strain behaviour of a tendon stretched to failure. Region I is
the non-linear toe region, where collagen fibrils gradually become taut, increasing the
overall tendon stiffness. Region II is the linear region, where all the fibrils are exhibiting
a linearly elastic response. The end of region II is the macroscopic yield point, where
yielding in the fibrils causes a reduction in gradient. Region III is the post-yield region,
where fibrils begin to yield and fail. Region IV is the macroscopic failure region, where
fibrils continue to fail and the whole tendon eventually ruptures.

Fig. 2. An idealised stress–strain curve demonstrating observed features (highlighted
n red) which cannot be captured using existing models (Hurschler et al., 1997;
amedzadeh et al., 2018). Regions I and II are the same as in Fig. 1, but the
ost-yield region (region III) shows a plateau instead of a well-defined peak. The
acroscopic failure region (region IV) contains step-like failure behaviour, where the

econd derivative of the stress changes sign multiple times.

Fig. 3. Idealised stress–strain behaviour of an individual collagen fibril stretched to
ailure. The fibril exhibits a linear response initially, before experiencing a decrease in
radient. Stretching beyond the linear region causes the fibril to become damaged (Shen
t al., 2008), leading us to refer to the transition between linear and non-linear
ehaviour as the fibril yield stretch/strain, represented above by the red marker.
2

To build a microstructural model capable of describing the full
range of tendon stress–strain behaviour observed in regions I–IV, we
must look in more detail at the mechanical response of individual
collagen fibrils. Many research groups have performed failure tests on
isolated fibrils (Shen et al., 2008, 2010; Liu et al., 2016; Yamamoto,
2017; Yamamoto and Nakamura, 2017; Svensson et al., 2013), and
whilst the reported material parameters show a large amount of vari-
ability, several trends still emerge. The fibril stress–strain response is
most often described as linear initially, before becoming non-linear
with a decreasing slope (Shen et al., 2008, 2010; Liu et al., 2016;
Yamamoto, 2017; Yamamoto and Nakamura, 2017). Van Der Rijt et al.
(2006) reported non-linear toe-regions for small strains (<4%), but
claim that the stress–strain curve appears to be almost perfectly linear
when the fibril is stretched further. For this reason, we make the as-
sumption that the non-linear toe-region is negligible and that the initial
phase of the fibril stress is linear. Fig. 3 shows an idealised stress–strain
curve for an isolated collagen fibril stretched to failure. We refer to
the transition between the linear and non-linear behaviour as the fibril
yield stretch/strain because there is evidence that stretching beyond
this point leads to the accumulation of damage in the fibril (Shen et al.,
2008). The fibril yield strain can vary considerably between fibrils ex-
tracted from different sources. It has been reported to be approximately
6% strain in groups of rabbit patellar tendon fibrils (Miyazaki and
Hayashi, 1999), and 12% in single rat patellar tendon fibrils (Liu et al.,
2016). In fibrils extracted from sea cucumber dermis, the yield strain
shows a large amount of variation, falling anywhere between 6%–55%
strain (Shen et al., 2010). After yielding and experiencing a decrease
in modulus, the fibrils rupture at anywhere from 7% strain (Yamamoto
and Nakamura, 2017) to over 100% strain (Shen et al., 2010). We
can conclude that there is not a single value of fibril yield/rupture
strain, but rather there is a distribution of these strains present in any
given tendon. We also know that the structure of fibrils in tendons
is not uniform. For example, the fibril diameter follows a trimodal
distribution (Chang et al., 2020). It is possible that these mechanical
and structural properties are related.

Ideally, a microstructural model will only contain parameters that
can be measured experimentally. This allows the model to predict
how certain processes, such as ageing, disease, or injury, may affect
macroscale tendon behaviour, provided we know how the microstruc-
tural components are affected. For example, in the tendons of patients
with classic Ehlers–Danlos syndrome (cEDS), the distribution of col-
lagen fibril diameters is disrupted by a reduced quantity of collagen
V (Sun et al., 2015), resulting in a diameter distribution with increased
broadness and a larger mean diameter. A microstructural model that
incorporates fibril diameter dependence could therefore be used to pre-
dict how the macroscale tendon properties would differ in comparison
to a patient without cEDS. This approach would be particularly useful
in instances where the effects of a disease on the mechanical properties
of the tendon are not clear, as it would allow some properties, such as
fibril diameter distribution, to be held constant whilst others, such as
fibril density, are varied.

Continuum damage models are frequently used to predict the post-
yield behaviour of tendons as they are stretched to failure, although
they often contain parameters that are not based on the microstructure.
Natali et al. (2003, 2005) published a model where the strain energy
function of the tendon is split into two parts associated with the matrix
and fibrils, with each part being premultiplied by a damage function.
The fibril damage function was derived by considering the number of
fibrils which had yielded, assuming that the critical stretch required to
remove crimp from the fibrils is normally distributed. The strain energy
function used for the elastic regime, however, was phenomenological
and not related to the mechanical behaviour of individual collagen
fibrils. Similar models were published by Rodríguez et al. (2006)
and Alastrué et al. (2007), where the behaviour of collagen fibrils is
described by models based on polymer mechanics. Whilst these models

are capable of predicting the general behaviour of tendons stretched
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to failure, they are all phenomenological to some degree and, con-
sequently, they contain parameters that cannot be directly measured.
Other models have used a microstructural approach, but were limited to
modelling regions I and II of the stress–strain curve (Shearer, 2015b,a;
Shearer et al., 2020).

Extending the widely used collagen recruitment model of Lanir
(1983), Hurschler et al. (1997) developed an approach to model past
the end of the linear region by including a yield criterion for the fibrils.
By excluding both crimped and ruptured fibrils from stress calcula-
tions, Hurschler et al. (1997) were able to get reasonable fits to data
by assuming the fibril critical stretch follows a Weibull distribution.
Hamedzadeh et al. (2018) independently arrived at the same model,
but extended its applicability by allowing the tissue to be compressible.
They also showed how to model the effects of repeated overloading,
demonstrating that it is possible to predict hysteresis whilst ignoring
viscoelastic effects. The models of Hurschler et al. and Hamedzadeh
et al. which we shall refer to after their authors as the HLV and HGF
models, respectively, show that it is possible to model whole tendon
behaviour as it is stretched to failure by only focussing on the failure
behaviour of the fibrils.

In this paper we use stress–strain data from Goh et al. (2018)
to demonstrate the need for a new microstructural model of tendon
failure. This stress–strain data was collected from failure tests carried
out on mouse tail tendon fascicles, extracted from mice of different
ages. The authors also provide structural data in the form of fibril
diameter distributions, making it possible to explore the relationship
between some of the structural and mechanical properties of tendons.
In Section 2, we attempt to fit a simplified version of the HLV and HGF
models to this stress–strain data, showing that a significant proportion
(47%) of the data contains features that cannot be accounted for using
these models.

In Section 3, we introduce a new model which is capable of cap-
turing the range of stress–strain behaviour observed by Goh et al.
(2018). By using distributions to represent the fibril yield and rupture
stretches, we demonstrate the range of stress–strain behaviour that
can be generated by varying the shape of the distributions, and their
position relative to one another. The resulting model includes only
parameters that can, in principle, be measured directly, and can fit a
wider range of stress–strain data than previous models once appropriate
distributions have been selected. In Section 4, we present some example
fits to datasets with the features illustrated in Fig. 2. We show that the
parameter values found through fitting are consistent with those found
experimentally.

2. Fitting existing models to data

2.1. The elastic-rupture model

We first define the elastic-rupture (ER) model, which is equivalent
o the HLV model (Hurschler et al., 1997). We assume that the tendon
s incompressible and composed of parallel, crimped fibres embedded
ithin an isotropic matrix. We consider a simple uniaxial stretch 𝜆
pplied to the tendon, in the direction of the fibres, leading to a
omogeneous stress field throughout the tissue. Each fibril has a critical
tretch 𝜆𝐶 , which is the tendon stretch required to remove the crimp
rom the fibril. Once a fibril is taut, it exhibits a linear elastic response
ntil it ruptures after being stretched by a factor of 𝜆𝑅. By using
probability distribution 𝛬𝐶 (𝜆𝐶 ) to represent the variation of crimp

ound throughout the tissue, we can compute the stress in the tendon.
The shear modulus of the matrix has been estimated to be on the

rder of 1 kPa (Shearer et al., 2017), which is ∼1,000,000 times smaller
han the fibril Young’s modulus (Yamamoto and Nakamura, 2017).
ssuming the matrix Young’s modulus is of a similar magnitude, it is
egligible compared to that of the fibrils, and we therefore choose to ig-
ore any contributions to the stress from the matrix. We further assume
hat the deformation occurs at a strain rate that minimises hysteresis,
3

allowing us to ignore viscoelastic effects. Under these assumptions, the
stress in the tendon is given by

𝜎𝐸𝑅
𝑇 (𝜆) = 𝜙∫

∞

1
𝜎𝐸𝑅
𝑓 (𝜆, 𝜆𝐶 , 𝜆𝑅)𝛬𝐶 (𝜆𝐶 )d𝜆𝐶 . (1)

where 𝜙 is the collagen volume fraction, and 𝜎𝐸𝑅
𝑓 is the fibril stress. In

the ER model, we define the fibril stress as

𝜎𝐸𝑅
𝑓 (𝜆, 𝜆𝐶 , 𝜆𝑅) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝜆 < 𝜆𝐶 ,

𝐸
(

𝜆
𝜆𝐶

− 1
)

, 𝜆𝐶 ≤ 𝜆 < 𝜆𝐶𝜆𝑅,

0, 𝜆 ≥ 𝜆𝐶𝜆𝑅,

(2)

where 𝐸 is the fibril Young’s modulus. For the models used in this
aper, we adopt a naming approach based on the physical behaviour
f the fibrils. In the ER model, the fibrils are linearly elastic until
hey have been stretched by a factor of 𝜆𝑅, after which they rupture.

Throughout this paper, we will assume that the fibril critical stretch
follows a triangular distribution, as in Hamedzadeh et al. (2018),
defined by

𝛬𝐶 (𝜆𝐶 ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, 𝜆𝐶 < 𝑎,
2(𝜆𝐶 − 𝑎)

(𝑏 − 𝑎)(𝑐 − 𝑎)
, 𝑎 ≤ 𝜆𝐶 < 𝑐,

2(𝑏 − 𝜆𝐶 )
(𝑏 − 𝑎)(𝑏 − 𝑐)

, 𝑐 ≤ 𝜆𝐶 < 𝑏,

0, 𝜆𝐶 ≥ 𝑏,

(3)

where 𝑎 is the lower limit, 𝑏 is the upper limit, and 𝑐 is the mode of the
distribution. We choose this form for the critical stretch distribution in
order to simplify calculations, and because it allows us to write down
an analytic expression for the tendon stress 𝜎𝐸𝑅

𝑇 . This expression can
e found in Appendix A. Through careful choice of the parameters 𝑎,
, and 𝑐, a triangular distribution can be used to approximate other
istributions which may be more realistic for collagen fibril properties,
uch as a Gaussian distribution.

.2. Fitting approaches

We now fit the ER model to stress–strain data from Goh et al.
2018). This data was gathered from mouse tail tendon fascicles, ex-
racted from mice of different ages, which were stretched to failure.
long with stress–strain data, Goh et al. provide the tendon yield strain

or each test specimen, and the mean collagen volume fraction for each
ge group. The authors defined the tendon yield strain to be the point
ith maximum gradient between the origin and the peak stress, after

itting a fifth order polynomial to the data. We explored two different
itting approaches, one which uses the yield stretch provided by Goh
t al. and one which does not. In both cases we use the collagen volume
raction found by Goh et al. These two approaches are outlined below:

Generic fitting approach: Fitting for all of the model parameters:
𝑎, 𝑏, 𝑐, 𝐸, and 𝜆𝑅, using the whole range of stress–strain data
(regions I–IV).
Physically motivated fitting approach: We assume 𝑎 = 1, meaning
that some of the fibrils immediately become taut upon stretching
the tendon. We set the fibril rupture stretch 𝜆𝑅 to be equal to the
macroscopic yield point, provided by Goh et al. We then fit for
the parameters 𝑏, 𝑐, and 𝐸 using the data in regions I and II.

In both fitting approaches, we use the analytic form of the tendon
tress (see Appendix A) along with a non-linear least squares method
o find the fitting parameters. When using the generic fitting approach,
t was often the case that the parameter values found were unphysical.
or example, in Fig. 4, 𝑏 > 𝜆𝑅, suggesting that some fibrils begin to
upture before all of the fibrils have become taut. Whilst this seems
easonable if there is a large range of fibril critical stretch values, it
ontradicts evidence from Hijazi et al. (2019), that damage only occurs
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Fig. 4. The ER model fitted to data from Goh et al. (2018), using two different fitting
pproaches. The green dashed line was found using the generic fitting approach, whilst
he solid blue line is the result of using the physically motivated fitting approach. The
arameters from the generic fitting approach are: 𝐸 = 6658 MPa, 𝑎 = 1.008, 𝑏 = 1.107,
= 1.095, and 𝜆𝑅 = 1.020. The parameters for the physically motivated fitting approach
re: 𝐸 = 386.7 MPa, 𝑎 = 1.0, 𝑏 = 1.044, 𝑐 = 1.035, and 𝜆𝑅 = 1.068. The collagen volume
raction for both fittings is 𝜙 = 0.56, which was taken from Goh et al. (2018). The root
ean squared error for the generic approach is 0.264 MPa, whilst for the physically
otivated approach it is 3.43 MPa. The generic fitting approach provides a superior

it, but at the cost of unphysical parameter values.

n the fibrils once the entire tendon has been stretched beyond the
nd of the macroscopic linear region (i.e. 𝜆𝑅 ≥ 𝑏). Furthermore, the
eneric fitting approach often leads to unrealistically high values of
ollagen fibril Young’s modulus 𝐸. In Fig. 4 we have 𝐸 = 6658 MPa,
hich is significantly larger than the highest value we could find

n any paper where isolated collagen fibrils have been stretched to
ailure (1900±500 MPa for bovine achilles tendon fibrils under ambient
onditions Grant et al., 2008).

Using the generic fitting approach requires the entire range of
tress–strain data (regions I–IV), in order to determine the parameters
, 𝑏, 𝑐, 𝐸, and 𝜆𝑅. If we were only interested in modelling the elastic
endon behaviour (regions I–II), the ER model could be modified by
hanging the fibril stress, defined in Eq. (2), so that the fibrils never
upture (𝜆𝑅 = ∞). Since this elastic version of the model is defined
y the same set of parameters, excluding 𝜆𝑅, we should be able to
etermine the elastic parameters (𝑎, 𝑏, 𝑐, and 𝐸) with the data from
egions I and II alone. In other words, we should not need to stretch a
endon to failure in order to determine the parameters that define the
re-yield portion of the stress–strain curve. The physically motivated
itting approach ensures that 𝜆𝑅 ≥ 𝑏, and that the elastic parameters
re determined using the elastic part of the stress–strain data alone.
ig. 4 shows an example of these two fitting approaches on the same
et of data.

The restrictions placed on the model’s parameters when using the
hysically motivated fitting approach mean that in the vast majority of
ases, it is not possible to get a good fit to the data in regions III and IV.
he magnitude of the post-yield stress is consistently underestimated,
s can be seen in Fig. 4, suggesting that there is something missing
rom the model. Although the ER model can provide a reasonable fit
n certain cases when the generic fitting approach is used, we instead
hoose to modify the model so that we can still use the physically
otivated fitting approach. This ensures that all fitting parameters are

ealistic, and that the elastic parameters are consistent with the values
e would find if the tendon was not stretched to failure.

.3. Features that cannot be accounted for

The ER model is only capable of describing the mechanical response
f tendons in the cases where the stress–strain curve looks similar to
4

he idealised response illustrated in Fig. 1. In the stress–strain data
rom Goh et al. (2018), a significant proportion of the data contains
eatures that cannot be captured using the ER model, even when the
onstitutive behaviour of the fibrils is adjusted to more closely resemble
xperimental data. In this section we describe these features, discuss
heir prevalence, and demonstrate why a new model is required to
apture them. A summary of the information presented in this section,
plit according to the age of the mouse from which the fascicle was
xtracted, can be seen in Table B.1 of Appendix B.

.3.1. Additional linear regions
The idealised stress–strain curve in Fig. 1 contains one linear region,

n the elastic part of the response. Some sets of stress–strain data from
oh et al. (2018) also contain a second linear region, present after the

endon has yielded. The gradient of this second linear section can vary,
ut is always less than the gradient of the first linear section. In some
ases we see a small decrease in gradient as the tendon yields and enters
second linear region, followed by a well-defined peak in the stress.

n other cases, the gradient of the second linear region is close to zero,
nd the stress reaches a plateau rather than a well-defined peak.

To determine whether a stress–strain curve contains a second linear
egion, we first isolate the data points before the peak. We then inter-
olate the data using splines over 50 equally spaced points, and look
or groups of at least 10 interpolated data points where the gradient
oes not vary by over 10% of the maximum global gradient. Using this
pproach we find that 86 of 260 sets of data (∼33%) contain a second

linear region.
Our analysis showed that the peak can vary dramatically in broad-

ness. Data with well-defined peaks can often be fitted using the ER
model, but when the peak is wider, the ER model fails to capture the
post-yield behaviour. This may be due to the fact that the ER model
does not incorporate fibril plasticity, leading to an underestimation
in the magnitude of the post-yield stresses at the tendon scale. The
failings of the ER model are most apparent in the 33% of cases where
there is a clear second linear region. Without adding fibril plasticity to
the ER model, we cannot possibly achieve a plateau in the macroscale
stress–strain curve.

2.3.2. Step-like failure behaviour
The second feature that cannot be accounted for using the ER model

is step-like failure behaviour in the macroscopic failure region. In the
idealised stress–strain curve presented in Fig. 1, the gradient of the
stress in region IV begins at zero, decreasing smoothly until it reaches
a minimum value, before increasing back to zero. This behaviour can
be described using the ER model. In the experimental data from Goh
et al. (2018), some of the stress–strain curves seem to show steps in this
region, where the second derivative of the stress changes sign multiple
times.

We classify a set of data as exhibiting step-like failure behaviour if
there is at least one data point in region IV with a larger gradient than
both of its neighbouring points. Using this criterion, we find that 54 of
260 sets of data (∼21%) contain step-like failure behaviour. This is a
significant proportion of the data, further supporting the need for an
improved model.

3. The elastic–plastic-distribution model

3.1. General framework

By making biologically-motivated adjustments to the ER model,
we can begin to account for the stress–strain features described in
Section 2.3. The first of these is to modify the constitutive behaviour
of the fibrils so that once they have been stretched by a factor of 𝜆𝑌 ,
they yield and begin to undergo plastic deformation. The second is
to introduce distributions for the fibril yield stretch 𝜆 , and rupture
𝑌
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stretch 𝜆𝑅. We call the resulting model the elastic–plastic-distribution
(EPD) model. In the EPD model, we define the fibril stress to be

𝜎𝐸𝑃𝐷
𝑓 (𝜆, 𝜆𝐶 , 𝜆𝑌 , 𝜆𝑅) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, 𝜆 < 𝜆𝐶 ,

𝐸
(

𝜆
𝜆𝐶

− 1
)

, 𝜆𝐶 ≤ 𝜆 < 𝜆𝐶𝜆𝑌 ,

𝑝(𝜆, 𝜆𝐶 , 𝜆𝑌 , 𝜆𝑅), 𝜆𝐶𝜆𝑌 ≤ 𝜆 < 𝜆𝑐𝜆𝑅,

0, 𝜆 ≥ 𝜆𝐶𝜆𝑅,

(4)

where 𝑝(𝜆, 𝜆𝐶 , 𝜆𝑌 , 𝜆𝑅) is the plastic stress in a yielded fibril. Experimen-
tal evidence suggests that, when selecting a functional form for 𝑝, we
should choose a ‘‘flat’’ function which has a lower gradient than the
initial linear portion of the fibril stress. We believe that in instances
where the macroscale tendon stress is displaying a broad/flattened
peak, the majority of fibrils are also exhibiting flattened stress–strain
behaviour.

We assume that the fibril critical stretch 𝜆𝐶 , yield stretch 𝜆𝑌 , and
rupture stretch 𝜆𝑅, follow a multivariate distribution 𝛬(𝜆𝐶 , 𝜆𝑌 , 𝜆𝑅). We
then find the stress in the tendon by integrating the fibril stress over
this distribution,

𝜎𝐸𝑃𝐷
𝑇 (𝜆) = 𝜙∫

∞

1 ∫

∞

1 ∫

∞

1
𝜎𝐸𝑃𝐷
𝑓 (𝜆, 𝜆𝐶 , 𝜆𝑌 , 𝜆𝑅)𝛬(𝜆𝐶 , 𝜆𝑌 , 𝜆𝑅)d𝜆𝐶d𝜆𝑌 d𝜆𝑅.

(5)

3.2. Simplifying assumptions

In order to demonstrate how the EPD model can be used to produce
the range of macroscale stress–strain curves observed experimentally,
we make two simplifying assumptions. Firstly, we assume that the
fibrils are bilinear elasto-plastic, choosing the following form for 𝑝,

𝑝(𝜆, 𝜆𝐶 , 𝜆𝑌 , 𝜆𝑅) = 𝐸(1 − 𝑘)(𝜆𝑌 − 1) + 𝐸𝑘
(

𝜆
𝜆𝐶

− 1
)

, (6)

where 𝑘 ∈ [0, 1] is a factor describing the decrease in gradient after
the fibril has yielded. Secondly, we assume that the critical, yield, and
rupture stretches are independent of each other, so that the distribution
𝛬(𝜆𝐶 , 𝜆𝑌 , 𝜆𝑅) can be written as

𝛬(𝜆𝐶 , 𝜆𝑌 , 𝜆𝑅) = 𝛬𝐶 (𝜆𝐶 )𝛬𝑌 (𝜆𝑌 )𝛬𝑅(𝜆𝑅). (7)

We further assume that 𝛬𝐶 (𝜆𝐶 ), 𝛬𝑌 (𝜆𝑌 ), and 𝛬𝑅(𝜆𝑅) are all triangular
distributions. By changing the values of the parameters defining the
yield and rupture stretch distributions, we can control the width of
the macroscale stress–strain curve in regions III and IV. This amount
of control is not possible using the ER model, and is required in order
to fit the range of data observed experimentally.

3.3. Marginal distributions

In the HGF model (Hamedzadeh et al., 2018), the authors define
a damage distribution by stretching the critical stretch distribution
by a factor of 𝜆𝑅, their single value of rupture stretch. This damage
distribution describes the proportion of fibrils in the tendon that have
failed for a given value of tendon stretch. We can also compute equiv-
alent distributions for the yield and rupture stretch when we have
distributions, rather than single values.

A fibril with critical stretch 𝜆𝐶 , and yield stretch 𝜆𝑌 , will yield
when the tendon stretch is equal to 𝜆 = 𝜆𝐶𝜆𝑌 . We consider the joint
distribution of critical stretch and yield stretch, and use this relation to
define the following function

𝑔(𝜆𝐶 , 𝜆) = 𝛬𝐶 (𝜆𝐶 )𝛬𝑌

(

𝜆
𝜆𝐶

)

. (8)

We then define 𝛬𝑌 (𝜆) as the marginal distribution found by integrating
(𝜆𝐶 , 𝜆) with respect to 𝜆𝐶 ,

𝛬𝑌 (𝜆) =
∞
𝑔(𝜆𝐶 , 𝜆)d𝜆𝐶 =

∞
𝜆𝐶 (𝜆𝐶 )𝛬𝑌

(

𝜆
)

d𝜆𝐶 . (9)
5

∫1 ∫1 𝜆𝐶
e can follow a similar process in order to determine the marginal rup-
ure distribution 𝛬𝑅(𝜆). The resulting distributions, once normalised,
an be used to describe the proportion of fibrils that have yielded or
uptured for a given tendon stretch 𝜆. Hamedzadeh et al. (2018) show
he tendon stress–strain curve obtained using their model when the
amage distribution (marginal rupture distribution in our model) and
ritical stretch distribution overlap. If these distributions overlap, then
he first fibril may fail before the last fibril becomes taut, a scenario
e argued against when justifying the physically motivated fitting
pproach. It is possible, however, that the marginal yield distribution

and the marginal rupture distribution can overlap in our model. As
discussed in Section 1, there is a large range of yield and rupture strain
values reported in the literature, even for fibrils extracted from the
same source. It is therefore possible that as a tendon is stretched to
failure, some fibrils rupture before others have yielded.

3.4. Varying the stretch distributions

By varying the shape, position, and spread of the yield stretch and
rupture stretch distributions, it is possible to produce macroscale stress–
strain curves with the full range of features observed experimentally.
Fig. 5 shows the effects of varying the separation between the distribu-
tions, with all other parameters fixed. To produce this figure we used
generic parameter values, varying only the mean rupture stretch, to
demonstrate the effects this has on the macroscale tendon stress. Based
on the limited data in the literature, any of these arrangements could be
possible, and we provide a more detailed discussion about the possible
values of the distribution parameters in Section 5.

When the distributions overlap, there is a well-defined peak with
no second linear region. Increasing the separation between the yield
and rupture distributions causes a plateau to appear in the macroscale
stress–strain curve, for values of tendon stretch between the marginal
distributions. In this region, when there is no overlap, all of the fibrils
are deforming plastically. By choosing the constitutive behaviour of
the fibrils to be bilinear elasto-plastic, this leads to a second linear
region. The spread of the yield and rupture distributions also affects
the macroscale stress–strain curve, as can be seen in Figs. 6 and 7.

In Fig. 6 we see that changing the spread of the rupture distribution,
whilst holding the yield distribution constant, changes the shape of the
peak and increases the width of region IV. As the spread increases,
there is more overlap, and the peak becomes sharper. This is due to
the fibrils rupturing sooner, and therefore no longer contributing to
the macroscale stress. Fig. 5 shows how translating the rupture stretch
distribution to the right can result in a significant increase to the
magnitude of the post-yield stress. Varying the spread of the rupture
distribution, however, changes the shape of the peak without causing
a significant increase in the magnitude of the stress in region III.

The results displayed in Fig. 7 demonstrate how the macroscale
stress–strain curve is affected when the rupture distribution is fixed and
the spread of the yield distribution is varied. In doing this we choose
to fix the lower bound of the yield distribution so that the macroscale
yield point remains the same. By increasing the spread in the yield
distribution, we are delaying the yielding of fibrils, causing an increase
in the magnitude of the post-yield stress. We also increase the amount
of overlap between the marginal distributions, leading to a sharper
peak. The stress in the macroscopic failure region (region IV) is not
affected by these changes.

The distributions used to generate the stress–strain curves in Figs. 5,
6, and 7 have all been unimodal triangular distributions. Allowing the
rupture distribution to be multimodal causes the stress in the macro-
scopic failure region to exhibit step-like behaviour, as shown in Fig. 8.
Whilst there is no direct evidence that collagen fibril failure strain
follows a multimodal distribution, we consider this case because it is a
simple way to introduce step-like failure behaviour on the macroscale.
See Section 5 for a full discussion on alternative ways to account for

step-like failure behaviour.
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Fig. 5. The effects of varying the separation between the yield stretch and rupture stretch distributions, on the macroscale stress–strain curve. The yield distribution was fixed and
the position of the rupture distribution was varied. Symmetric triangular distributions were used for all of the stretch distributions. The black curves show the stress in the tendon,
whilst the red curves show the marginal yield and rupture distributions used to generate them. The mean value of the (original, not marginal) yield and rupture distributions are
𝜇𝑌 and 𝜇𝑅, respectively. 𝜇𝑌 remains fixed at 𝜇𝑌 = 1.1125. We choose a value of 𝑘 = 0 to illustrate how varying the separation between the two distributions can lead to a plateau
in the tendon stress.

Fig. 6. When the mean values of the yield and rupture distributions are held constant and the variance of the rupture distribution is increased, the macroscale stress strain-curve
changes as shown in (a). The corresponding marginal distributions are shown in (b). The arrows point in the direction of increasing variance, 𝜎2

𝑅.

Fig. 7. Shown in (a) is the macroscale stress–strain curve obtained when the rupture stretch distribution is held constant and the variance of the yield stretch distribution is
changed. The marginal distributions that generate these curves can be seen in (b). The variance is changed by increasing the upper limit of the distribution, whilst holding the
lower limit constant. This is done so that the macroscale yield point remains constant in all of the stress–strain curves in (a). The arrows point in the direction of increasing
variance, 𝜎2

𝑌 .
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Fig. 8. Changing the fibril rupture distribution from unimodal to bimodal causes the stress in the macroscopic failure region to exhibit step-like behaviour. Shown in (a) is
he macroscopic stress–strain curve generated from the rupture distributions whose marginal counterparts are shown in (b). Dashed and solid lines correspond to the unimodal
istribution and bimodal distribution, respectively. In the bimodal case, fewer fibrils are rupturing when the tissue stretch 𝜆 falls between the modes, leading to a region in the

macroscale stress–strain curve where the gradient becomes less steep.
When the rupture distribution used to generate the macroscale
stress–strain curve is multimodal and has a sufficiently wide gap be-
tween the peaks, we see a corresponding region of the stress–strain
curve where the gradient of the stress becomes less steep. As the tendon
stretch approaches the next peak, the gradient of the stress becomes
more negative again as fibrils continue to fail and no longer contribute
to the total stress. This leads to step-like behaviour, as shown in Fig. 8a.

4. Fitting the improved model to data

In this section we use the physically motivated fitting approach to
show that the EPD model can be used to generate realistic stress–strain
curves, with microstructural parameters that fall within the range of
values observed experimentally.

We continue to use the stress–strain data from Goh et al. (2018),
using the following process to find appropriate parameter values:

1. We assume the fibril critical stretch 𝜆𝐶 follows a triangular
distribution, defined by the parameters 𝑎, 𝑏, and 𝑐, as described
in Eq. (3).

2. We use the method outlined in Section 2 to determine the elastic
parameters and use the macroscopic yield point provided by Goh
et al. (2018) to separate the data into elastic and inelastic parts.
To reduce the number of fitting parameters we assume that the
critical stretch distribution is symmetric so that 𝑐 = (𝑎 + 𝑏)∕2.

3. We assume that both the fibril yield stretch 𝜆𝑌 , and fibril rupture
stretch 𝜆𝑅, follow symmetric triangular distributions, given by
𝛬𝑌 and 𝛬𝑅, respectively. There is not enough data available
to make an informed decision about the forms of either of
these distributions. Triangular distributions are used to simplify
calculations and to ensure that 𝛬𝑌 and 𝛬𝑅 have finite support.
Additionally, a symmetric triangular distribution can be defined
using just the range of observed values, making the resulting fit-
ting parameters easy to compare with the limited data available
in the literature.

4. We label the yield stretch distribution parameters as 𝑎𝑌 and 𝑏𝑌 ,
and the rupture stretch distribution parameters as 𝑎𝑅 and 𝑏𝑅.

5. We then use a nonlinear least squares method
(scipy.optimize.curve_fit in Python 3) to determine
the five remaining parameters: 𝑎𝑌 , 𝑏𝑌 , 𝑎𝑅, 𝑏𝑅, and 𝑘.

6. If the algorithm described in Section 2.3.2 detects step-like
failure behaviour, we replace the rupture stretch distribution
with a bimodal triangular distribution, defined by

𝛬bimodal
𝑅 (𝜆𝑅) =

1
1 +𝑊

(𝛬(1)
𝑅 (𝜆𝑅) +𝑊𝛬(2)

𝑅 (𝜆𝑅)), (10)

where 𝛬(1)
𝑅 and 𝛬(2)

𝑅 are unimodal triangular distributions, as
defined in Eq. (3), with distribution parameters (𝑎(1)𝑅 , 𝑏(1)𝑅 , 𝑐(1)𝑅 )
and (𝑎(2), 𝑏(2), 𝑐(2)), respectively. The relative weighting between
7

𝑅 𝑅 𝑅
the two modes is given by 𝑊 . In these instances we assume 𝛬(1)
𝑅

and 𝛬(2)
𝑅 are both symmetric and fit for 𝑎(1)𝑅 , 𝑏(1)𝑅 , 𝑎(2)𝑅 , 𝑏(2)𝑅 , and

𝑊 .

We also fitted the ER model to the same data, assuming that the
fibril critical stretch followed a symmetric triangular distribution to
ensure a fair comparison. We adopted the generic fitting approach
for the ER model to get the best fit possible, but in many cases
this still provided a poor fit because the ER model cannot generate
plateaus or step-like failure behaviour. Of the 262 sets of stress–strain
data from Goh et al., we excluded 39 (15%) because they contained
fewer data points than fitting parameters. The remaining fits had an
average root mean squared error (RMSE) of 2.29 MPa compared to
4.53 MPa for the ER model. Using the EPD model reduced the RMSE
in 183 of the non-excluded cases (82%). In instances where step-like
failure behaviour was detected, changing from a unimodal to a bimodal
rupture stretch distribution reduced the average RMSE of those tests
from 2.19 MPa to 1.50 MPa. Histograms of the fitting parameters can
be seen in Appendix C. When defining the physically motivated fitting
approach in Section 2.2, we state that the macroscopic yield point
should correspond to the point at which the first fibril yields. In the
EPD model this is equivalent to setting 𝑎𝑌 equal to the macroscopic
yield point. Whilst this can provide a good fit in some cases, we opted
to remove this restriction when fitting both models to the whole set
of data, because in some cases it is too restrictive. This could be an
indication that some fibrils begin to yield before others have become
taut, or that the yield point determined by Goh et al. is inaccurate.

Fig. 9 shows an example of the EPD model fitted to data from Goh
et al. (2018), containing a plateau region rather than a well-defined
peak. We can achieve a good fit to this data by assuming the yield
stretch and rupture stretch follow symmetric triangular distributions.
The RMSE for the fit is 1.13 MPa, compared with 7.39 MPa for the
ER model using the generic fitting approach. The error is considerably
larger for the ER model because it cannot generate a second linear
region. The initial non-linear toe region covers the support of the
critical stretch distribution and the region between the supports of
the critical stretch and marginal yield distributions corresponds to the
macroscale linear region. Fibrils begin to yield when the tendon stretch
falls within the support of the marginal yield distribution, leading to
a decrease in the gradient of the stress. There is then a region before
fibrils start failing, where all fibrils are deforming plastically. The stress
then decreases to zero as fibrils begin to rupture.

Fig. 10 shows a second set of data from Goh et al. (2018), containing
a well-defined peak along with step-like failure behaviour in region
IV. The same fitting procedure was followed, but using a bimodal
triangular distribution for the rupture stretch, in order to capture the
step-like failure behaviour in region IV. The root mean squared error
for the fit in Fig. 10 is 2.21 MPa, compared with 7.57 MPa for the
ER model using the generic fitting approach. The resulting yield and
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Fig. 9. The black dashed line shows the EPD model, with bilinear elastoplastic fibrils,
fitted to data from Goh et al. (2018). The critical stretch distribution, shown in red,
was found by fitting the purely elastic model to the data in regions I and II. The blue
and green curves show the marginal yield and rupture distributions, defined in Eq. (9).
The right hand axis refers to these distributions. The critical, yield, and rupture stretch
were assumed to follow symmetric triangular distributions. The macroscale stress–strain
curve contains a plateau region which could not be accounted for using previous
models. The crimp distribution parameters are 𝑎 = 1.0 and 𝑏 = 1.036. The fibril Young’s

odulus is 𝐸 = 895.7 MPa, and 𝑘 = 0. The yield stretch distribution parameters are
𝑌 = 1.059 and 𝑏𝑌 = 1.117. The rupture stretch distribution parameters are 𝑎𝑅 = 1.196
nd 𝑏𝑅 = 1.213. The RMSE for the fit is 1.13 MPa. The grey dashed line shows the ER
odel fitted to the same data, where the RMSE is 7.39 MPa.

Fig. 10. The EPD model fitted to data from Goh et al. (2018) containing a well-defined
peak and step-like failure behaviour. The black dashed line shows the stress, whilst the
red, blue, and green curves show the critical stretch, the marginal yield stretch, and
the marginal rupture stretch distributions, respectively. A bimodal rupture distribution
is able to capture the step-like failure behaviour observed at the tendon level. The
crimp distribution parameters are 𝑎 = 1.0 and 𝑏 = 1.081. The fibril Young’s modulus is

= 1160 MPa, and 𝑘 = 0.349. The yield stretch distribution parameters are 𝑎𝑌 = 1.088
nd 𝑏𝑌 = 1.112. The rupture stretch distribution parameters are 𝑎(1)𝑅 = 1.095, 𝑏(1)𝑅 = 1.131,
(2)
𝑅 = 1.159, and 𝑏(2)𝑅 = 1.263. The second peak of the rupture stretch distribution has
weighting of 𝑊 = 0.72 relative to the first peak. The RMSE for the fit is 2.21 MPa.

he grey dashed line shows the ER model fitted to the same data, with a RMSE of
.57 MPa.

upture stretch distributions overlap, leading to a well-defined peak in
he stress. This also means that there is a range of tendon stretch values
, where there simultaneously exists undamaged, yielded, and ruptured
ibrils. The stress in the tendon begins to decrease as fibrils rupture,
nd once the tendon stretch passes into the region between the rupture
istribution peaks, the gradient of the stress becomes less negative,
ecause fewer fibrils are rupturing. As 𝜆 passes into the second rupture
istribution peak, the gradient becomes more negative, and the tendon
ventually fails.

Although the EPD model presents a good fit in the majority of cases,
t can sometimes fail to capture the observed behaviour. Figs. 11 and
2 show two examples where this is the case.

The EPD model fails to capture the multiple steps present in the
tress–strain data shown in Fig. 11. These could be captured by using a
8

Fig. 11. The black dashed line shows the EPD model, with a bimodal rupture stretch
distribution, fitted to data from Goh et al. (2018) (RMSE = 2.02 MPa). The data
contains more than one step in the macroscopic failure region and so it would require
more than two modes in the rupture stretch distribution to capture this behaviour. The
grey dashed line shows the ER model fitted to the same data (RMSE = 8.51 MPa).

Fig. 12. The black dashed line shows the EPD model fitted to data from Goh et al.
(2018) (RMSE = 2.45 MPa). Assuming that the critical stretch distribution is symmetric
leads to a poor overall fit. The grey dashed line shows the ER model fitted to the same
data (RMSE = 1.84 MPa).

rupture stretch distribution with more than two modes, but due to the
low number of data points we chose not to attempt this. In Fig. 12, the
assumption that the critical stretch distribution is symmetric leads to a
poor fit in regions I and II, causing the peak stress to be underestimated.

5. Discussion

We have shown that we can construct a mathematical model of
tendon failure by splitting the fibril stress into elastic and plastic parts,
and allowing the fibril yield stretch and rupture stretches to follow
distributions, rather than being single-valued. When a single value of
these parameters is used, as in the ER model, the plastic behaviour of
the tendon is determined entirely by the critical stretch distribution.
In at least 47% of cases (see Appendix B) it is not possible to get a
good fit using the ER model because the stress–strain data contains
a second linear region, step-like failure behaviour, or both. The EPD
model provides a microstructural explanation for these features, and
has the additional benefit of only including parameters that can be
measured directly.

The introduction of a plastic stress function to the fibril constitutive
behaviour is not new. Hamedzadeh et al. (2018) define their model in
terms of a general fibril constitutive behaviour, thereby encompassing
that part of the EPD model. The key difference in our approach is
with the use of distributions to describe the fibril yield stretch and
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rupture stretch. Whilst modifying the fibril stress to become more flat
can generate second linear regions, it is not enough to produce the
range of behaviour observed by Goh et al. (2018). We must have a
combination of both flattening fibril stress and a distribution of fibril
yield stretch in order to capture all observed behaviour in region III.
Without a distribution of yield stretch, the transition between a first
and second linear region will be fixed by the fibril crimp distribution,
meaning that sets of data with a narrow region I but a wide region
III cannot be fitted using the model. Without a distribution of fibril
rupture stretch, we cannot produce step-like failure behaviour at the
tendon scale without also incorporating it at the fibril scale. Failure
tests carried out on individual collagen fibrils show that this would not
be realistic.

By using distributions to represent the failure properties of collagen
fibrils, we are able to encapsulate the variation observed between
the stress–strain curves of individual fibrils. There is not enough data
available to study specific forms of these distributions, but we know
that they will be heavily influenced by the structural properties of the
fibrils. For example, changes in cross-link density synonymous with
tendon maturation have been shown to alter the mechanical properties
of fibrils, affecting the yield stretch in particular (Depalle et al., 2015).
To model such a change using the framework introduced in this paper,
we would simply feed this change into the yield stretch distribution,
which would alter the whole tendon stress–strain curve.

Our model does not contain any direct dependence on collagen
fibril diameter, but there is some evidence to suggest that step-like
failure could be due to the tendon possessing a multimodal distribu-
tion of fibril diameters.Yamamoto and Nakamura (2017) were able to
determine a relationship between collagen fibril diameter and failure
strain, for fibrils extracted from mouse tail tendons. Fibrils with a larger
diameter seemed to fail at larger strains. It could be the case that
in stress–strain data where we see step-like failure behaviour, there
is a multimodal distribution of collagen fibril diameters, leading to a
multimodal distribution of fibril failure strain. Although it is common
to see multimodal fibril diameter distributions in tendons (Chang et al.,
2020), the diameter distributions recorded by Goh et al. (2018) seem
to be unimodal for mice in the age groups where step-like failure is
most commonly observed (see Table B.1 in Appendix B). Whilst this
seems to contradict the theory that the step-like behaviour is due to
groups of fibrils with different diameters failing in turn, it does not
rule it out. The diameter distributions recorded by Goh et al. (2018)
were found by taking the average across multiple fascicles, whilst the
stress–strain data itself is from single fascicles. We cannot find the
diameter distribution of a tendon and then stretch it to failure, as these
are both destructive procedures. It remains plausible that the fascicles
whose stress–strain curves contained step-like failure behaviour possess
a multimodal diameter distribution, but that the average diameter
distribution for that age group appears to be unimodal. Another pos-
sibility is that the relationship between collagen fibril diameter and
rupture stretch is more complex than the linear relationship suggested
by Yamamoto and Nakamura (2017), somehow causing the unimodal
diameter distribution to result in a multimodal rupture stretch distri-
bution. It could also be the case that it is the distribution of rupture
stretch that gives rise to the distribution of diameters as the tendon
matures, i.e. the fibrils may grow differently depending on their initial
mechanical properties.

Using a multimodal distribution to represent the fibril failure strain
is not the only way to account for the step-like failure behaviour
observed at the macroscale. We can also produce this behaviour by
having a multimodal distribution of critical stretch, representing a
scenario where different fibre bundles have a different mean length.
Step-like failure behaviour would therefore occur when these bundles
fail at different times during a deformation. One attractive part of this
approach is that it ties together the behaviour in every region of the
tendon stress–strain curve, reducing the freedom brought about by the
9

large number of parameters in the EPD model. However, if a tendon
possesses a multimodal distribution of critical stretch, we would expect
to see multiple distinct linear regions with increasing gradient before
the tendon yields. We do not see this in any of the stress–strain data
from Goh et al. (2018) where step-like failure is observed. It would
still be possible to produce step-like failure behaviour with a single
linear elastic region if there was a large amount of overlap between
the yield stretch distribution and the additional modes of the critical
stretch distribution. This would mean that fibrils in the first group
begin to yield before fibrils in the other groups become taut, preventing
additional linear regions and leading to steps in the macroscopic failure
region. Fitting such a model to the data from Goh et al. would prove
difficult in cases where all three distributions overlap due to the low
number of data points in some of the tests.

Step-like failure could also be due to technical issues with the ex-
periment, rather than due to the tissue microstructure itself. Clamping
apparatus could cause fibre bundles to become differentially loaded,
leading to some failing before others. Whilst this may have had an
impact on the stress–strain data we were using, we chose to explore
how this behaviour could arise from physiological differences in the
tendon microstructure. In the absence of strong evidence for either
the rupture stretch distribution or the critical stretch distribution being
multimodal, we chose to do our fitting with the former for the sake of
simplicity.

In order to get a sense of how our model compares with the ER
model, we fitted both models to data from Goh et al. (2018). We chose
to follow the physically motivated fitting approach for the EPD model,
but opted to leave the lower bound of the yield stretch distribution 𝑎𝑌
as a fitting parameter, rather than setting it equal to the macroscopic
yield point. Whilst this can lead to cases where some fibrils yield before
others have become taut, the macroscopic yield data provided by Goh
et al. proved to be too restrictive when used to fix the value of 𝑎𝑌 .
To get a fair comparison between the EPD and ER models, we used
symmetric triangular critical stretch distributions throughout, assuming
that the lower bound of the critical stretch distribution 𝑎𝐶 is equal to
. This helped us to reduce the number of fitting parameters and lower
he risk of overfitting. We found that in 82% of cases the EPD model
rovided a better fit than the ER model. In many of the remaining cases,
he overall quality of the fit was hindered by a poor fit in the elastic
egion. This was often due to the assumption of symmetry in the critical
tretch distribution, leading to an underestimation of the modulus, and
poor fit overall. The average RMSE reduced from 4.50 MPa using the
R model, to 2.29 MPa with the EPD model. The value of the plasticity
arameter 𝑘 found through fitting often did not change from its initial
alue of 𝑘 = 0, suggesting that either it is not always that important to
he model, or it cannot be determined from tendon stress–strain data
lone.

It is difficult to judge whether the distributions used to generate
he stress–strain curves in Figs. 9 and 10 are realistic because in all
he references we could find, only a small number of collagen fibrils
re stretched to failure. Liu et al. (2016) state that for fibrils extracted
rom rat patellar tendons, the yield point falls between 10% and 20%
train. In Fig. 9, the lower and upper bounds of the yield distribution
re at 6% strain and 12% strain, respectively, whilst in Fig. 10, the yield
istribution is bounded between 8% and 14% strain. The histograms of
𝑌 and 𝑏𝑌 presented in Fig. C.13 in Appendix C paint a similar picture:

the mean values of 𝑎𝑌 and 𝑏𝑌 are 1.06 (6% strain) and 1.12 (12%
strain), respectively. Despite the data from Goh et al. (2018) and Liu
et al. (2016) coming from different sources, we believe that the similar-
ities between the range of fibril yield strains observed experimentally,
and the values we have found through our fitting, suggest that the EPD
model is suitable for modelling the post-yield tendon behaviour (region
III).

Fibrils tested by Liu et al. (2016) failed between 35% and 107%
strain. Yamamoto et al. quote a failure strain of 34 ± 11% for fibrils
extracted from mouse tail tendons (Yamamoto, 2017), and in a follow

up paper, a range of 7%–81% (Yamamoto and Nakamura, 2017). All
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of these ranges exceed the upper bounds of the rupture distributions
presented in Figs. 9 and 10, which are 23% and 25%, respectively. In
fact, over all the fittings, the mean value of 𝑏𝑅 was found to be 1.22
(22% strain). Liu et al. (2016) claim that because the tendon failure
strain is typically much lower than the fibril rupture strain, there must
be another component that is limiting the strength of the tendon, such
as proteoglycans. We believe there are several reasons why the fibril
rupture strain appears to be much larger than the tendon failure strain.
Firstly, in tests carried out on individual collagen fibrils, the sections
of fibril stretched to failure are much shorter than the entire length
of the fibril. The fibrils tested by Yamamoto and Nakamura (2017)
had a length of 19–64 μm, and whilst reliable data on the length of
mouse tail tendon fibrils is not available, fibrils have been traced along
the entire length (125 μm) of the mouse stapedius tendon (Svensson
et al., 2017). If tail tendon fibrils are at least as long as those found
in the stapedius tendon, then we can assume the sections tested by
Yamamoto et al. were also significantly shorter than the total length of
the fibril. Baldwin et al. (2020) provide evidence that collagen fibrils,
extracted from bovine tail, possess regions of mechanical susceptibility,
due to a variation in structure along the length of the fibril. If fibrils
are continuous throughout the length of the tendon, then the strength
of the tendon will be limited by the strength of the weakest parts of
its fibrils. By only testing small sections of fibrils to failure, rather
than entire fibrils, these weakest sections are likely to be missed.
This would lead to an overestimation of the fibril strength, potentially
having a large effect on the perceived failure strain of collagen fibrils,
depending on the frequency and strength of the regions of mechanical
susceptibility. This idea is supported by evidence from Svensson et al.
(2018), who found that the failure strain of longer sections of fibril
(>100 μm) extracted from rat tail tendons was around 9%, prompting
them to come to similar conclusions. This is closer to the values we
found through fitting, but still exceeded the failure strain of the whole
tendon, which was found to be around 5%. Secondly, it is possible
that fibrils are subjected to inhomogeneous strains within the tendon.
This could be due to the geometry of the tendon, or because the
mechanical properties of the fibrils vary through the length of the
tendon. An inhomogeneous strain applied to a fibril could cause it to
rupture at a lower value of end-to-end strain than it would otherwise
rupture at, outside of the tendon. Although some of the fibril failure
strains reported in the literature (Shen et al., 2010; Yamamoto and
Nakamura, 2017) exceed the upper bounds of the rupture distributions
used to generate the stress–strain curves in this paper, the quality of fit
achieved demonstrates that the EPD model is still useful for modelling
failure in tendons.

Throughout this paper we make a number of simplifying assump-
tions that may have a significant effect on its performance when it
is used to model more complex deformations. We assume that fibrils
are continuous and that damage on the macroscale occurs when the
fibrils themselves become damaged. Whilst this approach is able to
capture many of the stress–strain features observed experimentally, it
may be necessary to extend the model to include interfibrillar sliding
in order to fully capture all of the observed post-yield behaviour.
There is some evidence that fibrils are discontinuous throughout the
length of tendons (Peterson and Szczesny, 2020; Gupta et al., 2010;
Puxkandl et al., 2002), and if the length of a fibril is shorter than some
critical length (Agarwal et al., 2017), slippage between the fibril and
the matrix will occur before the fibril itself can yield. Szczesny and
Elliott (2014b,a) have shown that models based on this approach can
be used to recreate the post-yield behaviour of tendons, getting good
fits to experimental data. On the other hand, Craig et al. (1989) provide
evidence that collagen fibrils in rat tail tendons are at least as long as
the critical length required for fibrils to be structurally continuous.

The stress–strain curves of fibrils extracted from energy storing
tendons have been shown to include an additional region of strain-
stiffening, not present in the response of fibrils from positional ten-
dons (Svensson et al., 2013; Quigley et al., 2018). The inclusion of
10
Fig. C.13. Histograms of the EPD model parameters found by applying the fitting
routine described in Section 4 to stress–strain data from Goh et al. (2018).

interfibrillar sliding may be necessary in order to relate this behaviour
to the macroscale tendon response. As imaging techniques improve and
we get a better sense of the true length distribution of collagen fibrils,
we will understand more about the mechanisms that lead to tendon
failure. It may be possible in future to develop a failure model based
on fibril length distribution, where fibrils below the critical length will
slip, and those above the critical length will yield.
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Fig. C.13. (continued).

There are several other simplifications we make that can be easily
included when the model presented in this paper is used within a finite
strain formulation. These include contributions to the stress from the
extra-collagenous matrix, and the effects of fibre orientation. In the
model presented by Hamedzadeh et al. (2018), the authors compute
the stress in a way that allows them to incorporate a distribution of
fibre orientation and a matrix term. A similar approach could be used
to make our model more realistic, where the stress in the direction of
the fibres is described using the expression in Eq. (5), with additional
structural information imposed on top.
11
Fig. C.13. (continued).
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Appendix A. Analytic expression for the stress in the elastic-
rupture model

When using the ER model, it is possible to determine an analytic
expression for the stress in the tendon when the fibril critical stretch
follows a triangular distribution. In this case, the tendon stress is given
by
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ppendix B. Age breakdown of features present in stress–strain
ata

able B.1
he number of stress–strain curves from Goh et al. (2018) containing second linear
egions 𝑁linear, and step-like failure behaviour 𝑁steps for each age group of mice, as
escribed in Section 2.3. 𝑁either gives the number with either a second linear region,
tep-like failure behaviour, or both. The final column gives the number with both

both.
Age group 𝑁total 𝑁linear 𝑁steps 𝑁either 𝑁both

1.6 month 27 7 (26%) 16 (59%) 20 (74%) 3 (11%)
2.6 month 25 13 (52%) 14 (56%) 19 (76%) 8 (32%)
4.0 month 17 7 (41%) 7 (41%) 11 (65%) 3 (18%)
11.5 month 34 16 (47%) 3 (9%) 18 (53%) 1 (3%)
23.0 month 33 7 (21%) 3 (9%) 9 (27%) 1 (3%)
29.0 month 43 11 (26%) 4 (9%) 14 (33%) 1 (2%)
31.5 month 40 13 (33%) 3 (8%) 15 (38%) 1 (3%)
35.3 month 41 12 (29%) 4 (10%) 15 (37%) 1 (2%)

Total: 260 86 (33%) 54 (21%) 121 (47%) 19 (7%)

Appendix C. Fitting parameters

This section contains histograms showing the spread of the fitting
parameters obtained when we fit the EPD model to 223 sets of stress–
strain data from Goh et al. (2018). For a tendon with a distribution
of critical stretch 𝛬𝐶 (𝜆𝐶 ), we can find the mean crimp angle 𝜃 by
computing

𝜃 = ∫

∞

1
arccos

(

1
𝜆𝐶

)

𝛬𝐶 (𝜆𝐶 )d𝜆𝐶 . (C.1)
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