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Combining microstructural mechanical models with
experimental data enhances our understanding of
the mechanics of soft tissue, such as tendons. In
previous work, a Bayesian framework was used to
infer constitutive parameters from uniaxial stress—
strain experiments on horse tendons, specifically the
superficial digital flexor tendon (SDFT) and common
digital extensor tendon (CDET), on a per-experiment
basis. Here, we extend this analysis to investigate
the natural variation of these parameters across a
population of horses. Using a Bayesian mixed effects
model, we infer population distributions of these
parameters. Given that the chosen hyperelastic model
does not account for tendon damage, careful data
selection is necessary. Avoiding ad hoc methods,
we introduce a hierarchical Bayesian data selection
method. This two-stage approach selects data per
experiment, and integrates data weightings into the
Bayesian mixed effects model. Our results indicate
that the CDET is stiffer than the SDFT, probably due
to a higher collagen volume fraction. The modes of the
parameter distributions yield estimates of the product
of the collagen volume fraction and Young’s modulus
as 811.5 MPa for the SDFT and 1430.2 MPa for the
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CDET. This suggests that positional tendons have stiffer collagen fibrils and/or higher collagen
volume density than energy-storing tendons.

1. Introduction

Accurate description of the nonlinear mechanical behaviour of collagen is important for
understanding and predicting the properties of a wide range of soft tissues, including arterial
walls [1,2], skin [3,4] and tendons [5-7]. This knowledge is vital for designing artificial tissues for
grafts and surgical interventions [8]. In this paper, we focus on a model for tendons; however, the
underlying approach could be extended to other soft tissues.

Bayesian inverse methods are increasingly used in biomechanics to estimate soft tissue
parameters while quantifying uncertainty. Such approaches have been applied to infer
viscoelastic properties from acoustic radiation force imaging [9] and to calibrate hyper-
viscoelastic models of brain tissue under varying experimental protocols [10]. A Bayesian
framework has also been used for model selection and sensitivity analysis in studies of the
knee meniscus [11]. These examples illustrate the value of Bayesian inference for parameter
identification in complex, heterogeneous tissues.

Tendons are fibrous tissues that connect and transfer forces between, muscles and bones [5,12].
Their complex microstructure gives rise to anisotropy and nonlinear stress—strain profiles [13-15].
An example of a typical stress—strain profile for a tendon undergoing a uniaxial stretch along
its longitudinal axis is given in figure 1. Tendons consist of collagen fibrils of varying lengths
that assume a crimped waveform within collagen fibres. The fibres are embedded within a non-
collagenous matrix (NCM), and reinforce the tendon along a preferred axis [5,16], which causes
anisotropy. A schematic representation of a tendon’s microstructure is shown in figure 2. As the
tendon is stretched, the fibrils begin to straighten and contribute to the stress response. Owing to
the fibrils having varying lengths, their recruitment is gradual, which results in the nonlinearity
of the stress profile.

The characteristic shape of the stress—strain graph has four regions: (I) toe, (II) heel, (III) linear
and (IV) damage, with each region corresponding to a different physical phenomenon. The toe,
region corresponds to the fibrils being slack, resulting in a stress profile that is approximately
linear, as governed by the NCM. In the heel region, fibrils gradually become taut and contribute
to the stress response, resulting in a nonlinear profile. In the linear region, all of the fibres have
been recruited and the stress profile is primarily governed by the fibril stress response. In the final
region, failure occurs, the tendon is damaged, fibrils begin to break gradually and the tendon no
longer deforms elastically.

In figure 1, the stress response is idealized. In reality, fibrils may begin breaking in earlier
regions (Il or even II), resulting in data in region III being recorded, which is not consistent with
models which neglect damage. Typically, the data are manually trimmed to a specified limit [18].
This approach tends to include a large portion of the linear region (region III), and fitting models
to these data can lead to inaccurate estimates of various parameters in the presence of early fibril
damage. For this reason, when fitting models to tendon stress—strain data, it is beneficial to use a
more sophisticated data selection method to include as much data as possible that is valid under
the assumptions of the mechanical model used, while down-weighting the contribution of data
points that do not satisfy the model’s assumptions [19].

Models for the stress response of tendons often describe the deformation in terms of the
physical parameters of their constituents, such as the Young’s modulus and shear modulus. These
models are known as microstructural models and have been used by several authors for various
soft tissues [5,20].

One of the advantages of microstructural modelling is that the model parameters have a direct
physical meaning and can be measured experimentally. However, a problem that arises is that a
wide range of values is often reported for the same parameter. The Young’s modulus of type 1
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Figure 1. Idealized stress profile of a tendon. The four regions are: (1) toe, (Il) heel, (IIl) linear and (IV) damage. In reality, damage
may begin occurring in region lll, or even region II, due to the shorter fibrils breaking.
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Figure 2. Microstructure of a typical tendon. Bundles of fibrils form fibres, which are embedded within fascicles, which make
up the tendon. The NCM is the non-collagenous portion of the tendon. Adapted from Jull et al. [17].

collagen fibrils, for example, has been reported to be as low as 32 MPa [21] and as high as 2.8 GPa
[22]. This spread of reported values could be due to several factors, such as differences in the ages
of the samples, inter-species variation, model misspecification within the inference or even that
the parameters may be poorly identifiable from the data. Owing to this, it is often not entirely
clear what the credible range for a given parameter value is, no which values are most likely.
Quantification of this spread is key to understanding the natural behaviour of soft tissues and
their constituents. In this paper, we tackle the problem of intra-species variation. That is, within
a given species, individuals can yield varying values for constitutive parameters due to naturally
occurring heterogeneity within the population. For context, the individuals in this study are horse
tendons, and the species are the superficial digital flexor tendon (SDFT) and the common digital
extensor tendon (CDET) types.

To tackle the uncertainty in the parameter values, we employ a Bayesian approach. This
provides a rigorous framework with which to combine prior knowledge, mechanical models and
data. Typically, inference is performed on data from a single individual from the population at
a time, as in previous work [16]. In this paper, we instead use data from multiple individuals to
infer the population-level variation in the constitutive parameters of a microstructural, nonlinear
elastic tendon model, through a statistical mixed effects model.

Since fibril damage occurs at different points for different individuals, we are prompted to
use a more sophisticated data selection technique than uniform trimming of all datasets (for
example, after a certain strain has been reached [18]). We implement a hierarchical Bayesian
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data selection technique, which allows us to infer which data are consistent with the chosen
microstructural model [19]. We use a two-stage approach. The first stage involves data selection
on a per-individual basis, leading to a re-weighting of each of the observations in the likelihood,
along with an automatically chosen truncation of the data. The second stage uses the data from all
individuals (the population), with re-weighted observations and truncations, in the population-
level inference, which computes the population posterior distribution for the microstructural
model parameters. The reason for performing the inference in two stages is that it would be
prohibitively costly to simultaneously perform data selection and calculation of mixed effects
posteriors. Moreover, the trimming of data with low weightings which have large discrepancies
with the chosen mechanistic model improves overall model fit and reduces the bias in the overall
inference [19].

We employ a mixed effects model to infer from multiple individuals simultaneously. This
allows us to pool information and build knowledge of population-level distributions of the
parameters in addition to the parameter distributions of each individual. Mixed effects models
have previously been used to study soft tissue mechanical parameters [23,24], as has the Bayesian
framework [12,16,25]; however, to the authors” knowledge, there are no examples of a Bayesian
mixed effects model being used for soft tissue inference in the literature. Wang et al. [24] used
a linear mixed effects model to infer model parameters without any Bayesian modelling, while
Wang et al. [25] used Bayesian modelling to infer model parameters without incorporating mixed
effects. Bayesian mixed effects models have been used across many other areas of study, however,
such as in recommender systems [26], neurology [27] and pharmacokinetics [28].

The structure of the paper is as follows. In §2a, we introduce the microstructural model.
To quantify the variability and uncertainty in the model parameters, we describe the Bayesian
approach in §2b. The data we use in this study are outlined in §2c. To calculate the resulting
posterior distributions, we use Markov chain Monte Carlo (MCMC) sampling. We ensure
that we are inferring model parameters using data where the microstructural model is valid,
for example, before a considerable amount of damage has occurred, by implementing a
Bayesian data selection technique, described in §2d. To model the heterogeneity of the physical
parameters across individuals in the population, a mixed effects model is used, which we
discuss in §2f. We discuss our choice of priors for the parameters in §2g, and in §2h, we
discuss the implementation of the Hamiltonian Monte Carlo (HMC) sampler using the Stan
package [29] and also discuss sampler parameter tuning to ensure convergence of the Markov
chains. The results of our modelling approach are given in §3. We conclude with a discussion
in §4.

2. Methods

In this paper, we consider the inverse problem of inferring model parameters from observational
data. There are many approaches to tackling inverse problems, including maximum-likelihood
estimation and Bayesian maximum a posteriori estimation. In many circumstances, quantifying
the uncertainty in parameter estimates is of interest, for example, by estimating credible ranges
for the model parameters. One approach to achieving this is to use a Bayesian framework to
determine model parameter posterior distributions from the data. Typically, these distributions
are not analytically computable and require approximation via numerical methods such as
MCMC. While MCMC is the gold standard for Bayesian inverse problems, it incurs a high
computational cost due to the large number of forward model evaluations required. However, if
it is computationally feasible to implement for a given model, the samples produced can be used
to provide detailed statistical information, including credible regions for the model parameters
[30].

We also consider the problem of selecting data for inference where a subset of the data is
known not to be consistent with the model. To do this, we again employ a Bayesian framework,
this time to infer the values of parameters which convey how well the model fits each data point.
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These parameters can then be used to tune out data with mild discrepancies or to trim data with
moderate to severe discrepancies with the model.

(@) Microstructural tendon model

To study the deformation of tendons, we use the microstructural model introduced by Haughton
et al. [16]. We assume the tendons under consideration can be modelled as circular cylinders,
with fibres oriented along their long axes. Using cylindrical polar coordinates and denoting the
deformed and undeformed configurations with lower- and upper-case letters, respectively,
the deformation can be described as (r,0,z) = (A_%R, ©,1Z), where A is the longitudinal stretch.
The deformation gradient is defined as the gradient of the deformed position vector x with respect
to the undeformed coordinates, denoted

F=Vx, 2.1)

where V is the gradient operator with respect to the undeformed coordinates. For the prescribed
uniaxial deformation, it takes the form

0
F = O )\4-% 0 . (2.2)
A

From F, we can calculate the left Cauchy-Green strain tensor B=FF'. Denoting the
undeformed fibril orientation as M, we can calculate the deformed fibril orientation m = FM and
define invariants of the deformation I, I», I3, I4, and I5 as

I =tr(B),

L= %(tr(B)z — tr(B?)),

I; = det(B), (2.3)
I;=M-BM
and Is=M - B’M.

We assume that tendons are incompressible, so that I[3=1, and follow the widely used
assumption that the deformation of the NCM can be described solely in terms of I; and that
of the collagen fibrils in terms of I4 [5,16,31]. Furthermore, we assume that the strain energy
function decomposes additively into contributions from the NCM and the fibrils, each scaled
by their respective volume fractions. Denoting ¢ as the collagen volume fraction, these are 1 — ¢
and ¢, respectively. It is assumed that the NCM is neo-Hookean with shear modulus p, while the
fibrils are assumed to be Hookean, with Young’s modulus E, after the macroscale stretch reaches a
critical value Ac, which is treated as a random variable (the value of A¢ corresponds to the length
of each fibril relative to the section of tendon in which it is embedded, with longer fibrils having
higher values of A¢). The critical stretch is assumed to have a triangular distribution, with lower
limit a, upper limit b and mode c.

From these assumptions, the resulting strain energy function [16] is given by

A(ly,a,b,¢)
2

C(Ig,a,b,c D(ly,a,b,c
+(42 )I4+ (42 )

W, 1) = (1~ ) (h —3) + 9 ( log s + (B(ls,a,b,¢) — D(Iy,a,b, )T

VIilogly + Glls,a,b, c)) , 1)

where A, B, C, D and G are piecewise constant functions of I3, which are defined in [16]. Using
this strain energy function, the only non-trivial entry of the engineering stress tensor, N, can be
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calculated in terms of the applied stretch 1 as
NG (L~ 6, 6, a,b,0) = (1 — p)u (x - j—?_) + 2E(A0%, 00,0+ B2 a,b,00

+ C(+2,a,b,0)3% + D(A2,a,b,¢)x log 1). (2.5)

A full derivation of this relationship is available in [16]. For our statistical inference, we use the
stress—stretch formula N(-) as the response function.

(i) The linear modulus

The linear modulus is the gradient of the stress in the linear region. Assuming a small contribution
of the NCM to the stress response (typically E/u ~ 10° [18]), the linear region is dominated by the
fibril stress. Under this assumption, the linear modulus, LM, can be calculated by Taylor series
expanding the linear region of the fibril contribution to the engineering stress,

Niinear(A) = ij <—1 + 4ku log{a/(fl}jbb);og{b/c}> )

(2.6)

about the stretch at which it is being calculated, 1, say, and taking the coefficient of the linear term,
which gives

_ dNiinear (1)

oF
LM = -
dn

A=A 22

2.7)

We see that in the linear region of our model, the linear modulus is proportional to ¢E, but since
% > 1, it will always be less than ¢E. In §3b, we will compare direct estimates of the linear modulus
with our inferred values of ¢E.

(b) Bayesian inference

We wish to infer the unknown model parameter values, given the data y, using the model
N(-). To simplify the model and to reduce the dimension of the target parameter space, we
assume that the distribution of the critical stretch is symmetric, meaning that the parameter c
is completely determined by a and b as c=(a+ b)/2, and we, therefore, infer the parameters
using the model M(%, (1 — ¢)u, pE,a,b) =N(r, (1 — ¢)u, E,a,b, (a + b)/2). We denote the model
parameters of interest as 0 =[(1 — ¢)u, ¢E,a,b] €R2>o X Ril. Based on initial exploration, we
concluded that the parameter ¢ was not identifiable from the data, and so we cannot infer ¢,
w and E independently. Fortunately, measurements and estimations of ¢ can be made in a lab
setting; however, this is a destructive process and therefore separate representative samples must
be destroyed to measure ¢ [32].

In the Bayesian framework, our knowledge about the parameters 6 is captured via the
posterior probability distribution, whose density 7 (f |y; M) is obtained by combining prior
knowledge with information from the observed data, y. Prior knowledge is encoded through
the choice of an appropriate prior distribution, whose probability density we denote as 7((8). The
contribution from the data is captured by the likelihood, denoted L(y|#; M). Bayes’ theorem then
allows us to express the posterior density as

70|y, M)xL(y|0; M)my(8), (2.8)

which yields an expression for the unknown density 7 (6 | y; M) in terms of the known densities
L(y|0; M) and (), up to a constant of proportionality. Since we only consider a single model
in this study, henceforth, the dependence on the model is left implicit.

(c) Data

The experimental data that we use to infer the constitutive parameters of our tendon model,
which was collected by Thorpe et al. [33], consists of tensile tests applied to two types of tendons
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Figure 3. Plots of experimental tensile test data for the two tendon types: SDFT (left) and (DET (right). The data were manually
trimmed to 20% strain (equivalent to a stretch of 1.2). Each experiment is labelled ‘hXX’, where XX are numbers that refer to the
label given to each horse by Screen et al. [33].

harvested from 18 different horses. The two types of tendons were the SDFT and the CDET. SDFTs
are energy-storing tendons, whereas CDETs are positional tendons [33]. Figure 3 shows plots of
all 18 tests for the 2 tendon types, manually trimmed to 20% strain. It is clear that there is a
common trend in the stress profiles of each experiment which indicates that it may be possible to
use the same model of deformation to infer subject-specific model parameters for each individual
tendon. Heterogeneity of the model parameters is present, as can be seen by the data having
varying gradients in the linear region (region III, governed by the product ¢E), and the onset
of the heel region (region II, governed by the parameters of the triangular distribution a and b).
Since the data were collected by the same team using the same equipment, we assume that all
experiments have the same observational noise.

Another feature of the data is heterogeneity in the suspected onset of damage between
experiments, as indicated by the changing gradient, and differing failure stretches. For most
experiments, the damage region appears to begin somewhere in the stretch range of 1.06-1.10,
whereas a few experiments appear to have damage potentially occurring much earlier, at stretches
of approximately 1.03. Clearly, trimming all of the experiments to a singular stretch value would
not accurately remove the entire damage region for all tendons without also removing large
portions of the elastic region for many of them. Using subjective methods to pick the point at
which to trim the data for each experiment has the potential to lead to biased and/or more
uncertain estimates of the model parameters, depending on whether the truncation is under-
or over-zealous. We are, therefore, motivated to explore a more sophisticated methodology to
quantify where the data can and cannot be well represented by the chosen mechanistic model. To
do so, in the next section, we adapt a hierarchical Bayesian data selection method, as laid out in
[19], to identify the regions of data where damage has occurred and the data-model discrepancy
is high. These methods were first applied to unlabelled landmark matching of digital images,
specifically matching biological cell clusters imaged via different modalities [34].

(d) Bayesian data selection

In previous work by Haughton ef al. [16], a Bayesian framework was used to infer the
microstructural model parameters and their associated uncertainty. In an attempt to remove
data where the fibrils had started to be damaged, the data were truncated at 10% strain. In the
entire population dataset shown in figure 3, however, it is evident that, in some tendons, damage
initiates prior to 10% strain, and thus an elastic model would not fit all of this data well, whereas
in other cases, the elastic region appears to continue beyond 10% strain and thus there would
potentially be unused valid data if all curves were truncated at 10%.
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In this work, we aim to use the data from all 18 of the tensile experiments on two types
of horse tendon, and we are, therefore, required to select data from a total of 36 experiments.
To do this in an automated and objective manner, we employ hierarchical Bayesian data
selection, which enables identification of regions where there is good agreement between the
model and data, thereby eliminating the need for subjective manual truncation of the data
prior to model fitting. The method involves the introduction of parameters which indicate
the fidelity of the model for each data point, and thus greatly increases the dimensionality of
the target distribution. Unfortunately, this means that it becomes computationally infeasible to
simultaneously incorporate both Bayesian data selection and the mixed effects model, which
we describe in §2f. Instead, we propose a two-stage process in which we first conduct Bayesian
data selection on a per-individual basis, identifying which data to trim, and re-weighting the
remaining data in the likelihood. In the second stage, we use trimmed data, and the posterior
means of the fidelity weights, within the mixed effects model.

(i) Definition of the likelihood

Each experiment corresponds to a single tendon and consists of a sequence of measurements
of the stress, Yj, required to achieve stretch Aj (j=1,...,N), where N eN is the number of
observations in the data. We assume that each observation is subject to additive, zero mean,
Gaussian, independent and identically distributed noise, that is:

yi =M, 0) +n;, nj~NO,05,), 2.9)

andwelety=[yy,..., yN]T. Therefore, the likelihood without data selection is given by

N
Lyl8,00)=]]

1 1 )
e exp [~y Iy — M2, 0)] )
j=1 ,/27‘[0§bs ( 2Gobs

We fix crgb s to a value that was estimated by fitting the model to very low strain data for
all tendons. Then we introduce ‘fidelity” parameters for each data point, following the naming
convention of previous works [19,34], which indicate the model’s ability to represent a single

(2.10)

observation in the data. The fidelity parameters take values y € (0, 1)N, where values close to 0
correspond to tuning out that data point’s contribution to the likelihood and values close to 1
correspond to a standard contribution to the likelihood (as in the absence of data selection). This
is implemented through a modification to the likelihood:

N
1 Y 2
L(y18,05s )= exp (— ly; — M(%;,0)] ) (2.11a)
obs g o2 )/~71 Zagbs ] ]
] obs /j
N - .
o] ‘/erxp —ng,-—M(x,a)F . (2.11b)
=1 Oobs Zaobs

This approach is similar to that of power likelihoods in a generalized Bayesian framework [35],
except that instead of picking a single value for the exponent of the likelihood, we have the
additional flexibility of having different values of the likelihood exponent for each individual
observation in the data. Our aim in hierarchical Bayesian data selection is to infer the values of
the Vi

(i) Data selection prior

By invoking Bayes’ rule, the posterior is given by

N7 ¥
(0,05 ¥) xmo(@)mo(r) | | —]2 exp (—20; ly; — M(A»,o)F) , (2.12)
j=1 ‘/Zﬂaobs obs
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where 7((@) is the prior for the microstructural parameters 6 as described in §2g, and 7o(y) is the
prior on the fidelity parameters.

The prior we define on y must be supported on (0, 1), encode some correlation between Y
and y; as a function of |A; — A;|, dependent on a given length scale and reflect our knowledge
that there is unlikely to be damage occurring within the region of data with less than 5% strain.
We adopt a logit Gaussian process prior for the fidelity field, which describes the prior fidelity
at all possible points in the observation space [19]. Since we are only interested in the values of
the fidelity field at our observation points, this logit Gaussian process prior collapses to a logit
multivariate normal prior on y, where the logit function is applied element-wise. Therefore, the
prior on the transformed fidelity parameters, x, = logit(y), is given by a multivariate normal
distribution with mean u and covariance matrix X, .

One problem that can occur if naively applying Bayesian data selection is that, in some
experiments, there is some early damage and then a considerable amount of additional strain
before further damage or failure occurs. In this scenario, without the application of an appropriate
prior, the Bayesian data selection posterior may select the data following the initial damage,
leading to low fidelity means for the early observations, which we know are unlikely to have been
subject to damage. To mitigate this, we choose 11 and o,, which define the multivariate normal
prior on the transformed fidelity parameters, such that the fidelity parameters have higher mean
values for observation points with low strain.

Therefore, we allow 1, (1), as well as the standard deviation, o, (1), to vary with strain. We
relate the mean and standard deviations to strain via
K, — A,

ty M) =Au+ 1+ exp(—=B(r — X))

(2.13q)

and
K, — Ay

T exp(—BG. — 40))’

oy(A)=A (2.13b)
where A,, A, and K, K, are the left/right asymptotic values of u or o, respectively, B is the rate
of decrease/increase between the two asymptotes, and Ag is chosen as the strain value at which
we believe that damage is likely to have started to have an effect.

To construct the covariance matrix, X, which is N x N and encodes the correlation between
fidelity parameters, we use a vertical scaling of a squared exponential kernel such that

N B Rp 0 )14
27[]1]]_0)/()“]) 0)/()‘]’) exp 2 ’ (2.14)

where [ is the length scale of the kernel and describes the length of correlation between
fidelity parameters, and oy, (-) is the standard deviation at a given strain value according to
equation (2.13b). We choose A, =4, K, =1, A; =025, K, =1,B=50, 10 =1.1, | = 0.05 to ensure
we have high prior mean and low variance for strains less than 5% where we expect significant
damage to the tendon to be rare, and high variance (and therefore lower mean) for strains above
10% where damage is likely to have started to have an effect (see figure 4).

Without careful tuning of these parameters, we do see the data selection method fitting
primarily to the yield region rather than the undamaged linear region for some of the
experiments, which is unwanted. The heterogeneity of the onset of damage does make this a
challenging data selection problem. However, the prior we arrive at aligns with our prior beliefs,
in which we know that it is extremely unlikely for the tendon to have become damaged (and
therefore not align with our model) at low strains.

(iii) Markov chain Monte Carlo to infer fidelity parameters

We implemented a Metropolis-within-Gibbs framework to sample from the data selection
posterior (equation (2.12)), alternating between updating the microstructural parameters and the
fidelity parameters. The random walk step-sizes were tuned for the model and fidelity parameters
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Figure 4. Twenty realizations of the logit-multivariate normal prior on the data fidelity parameters with respect to tendon
strain. Dashed line represents the 95% confidence interval of the prior samples.

independently to achieve 23.4 + 5% acceptance [36]. Three chains were initialized randomly for
each dataset, with a burn-in of 2.5 x 10° iterations and 5 x 10° iterations post-burn-in.
To handle the constraints on the parameters we first transformed to an unbounded scale,
giving
X, =T, (y) =logit(y) e RY

(2.15)
and £=17,(0) cR"
For full details of 7y see appendix A. The posterior in the transformed space is
(& Xy 1y) < Fo(E)T0 (X, )L(Y | To(§), 0gs Ty (X)), (2.16)
where
70(8) = N(&; 1, 05p,) (2.17a)
and
7o(x ) =N(Xyiky, Zy), (2.17b)
and L(y | Zg(&), Ugbs’ 7y(x,)) is as defined in equation (2.11D).

We employed the random walk Metropolis proposal within the Metropolis-within-Gibbs
method to sample from the posterior distribution, with proposals made separately for the model
parameters and the fidelity parameters. The covariance of the microstructural parameters was
learned during sampling with the proposal covariance adjusted accordingly in an adaptive
manner. The covariance matrix of the proposal distributions for the fidelity parameters was
chosen to be proportional to the prior covariance matrix.

(e) Data truncation

Following successful characterization of the posterior distributions of the fidelity parameters, we
need to truncate the data. The reason for this is twofold. Firstly, it is required as there are many
observations with extremely small fidelity parameters whose effect on the posterior is negligible,
but whose effect on the cost of computing the posterior is significant. Secondly, as has been seen
in previous work, including data on the boundaries of regions with low posterior fidelity can
lead to significant bias in the parameter estimates [19]. As such, we take the same approach
as in [19], trimming all data from the first observation with posterior fidelity mean below 0.3.
Using a threshold below 0.3 leads to significant shifts in the peaks of the parameter distributions,
indicating bias caused by model-data discrepancies. Increasing the threshold above 0.3 leads to
the removal of data in regions where the data-model fit is still very good, lowering the information
gain and increasing uncertainties.
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(f) Inferring population-level natural variation via a mixed effects model

Figure 3 clearly demonstrates that the values of key constitutive parameters vary between
individuals. To account for and quantify this data heterogeneity, we assume that the ith tendon
has its own individual parameters 6; € R2>0 X R2>1 forie{l,2,...,N,} where N, is the number of
individuals within the population. In our case, N, = 18 for each of the two populations, SDFT and
CDET, which we model separately. We denote the truncated observed stresses of the ith individual
as §; € RV and X; € RNi as the set of stretches for which y; was measured. The associated fidelity
parameters are denoted y; € [0.3, 1)N" . In the following, it is assumed that the data have been pre-
processed and trimmed using the fidelity threshold of 0.3 such that N; represents the length of the
data after trimming. The inferred fidelity parameters are given in §3a.

By letting 5»17 be the jth value of the stretch A; corresponding to the jth measured data point
of the i-th experiment ;;, along with the jth fidelity parameter y;;, the likelihood for the ith
experiment can be expressed as

N;i
L(F;104, 0005 i, v) < [ |
=1 Oobs

exp { ——T1—( — MUy 80 | (2.18)
obs

Experiments on different tendons are conditionally independent given the tendon-specific
parameters; therefore, the joint likelihood of all experiments is the product of the likelihoods
for each individual tendon. From now on, the value of Ugbs is chosen to be fixed with a value of
0.15MPa? and shall be dropped from future notation.

To facilitate the specification of the random effects distribution, we transform the tendon-
specific parameters to an unbounded scale using the same reparametrization as in §2d(iii),
giving

PE; Vi
b; pi

We assume that the unbounded parameters are samples from a common population, and model
the population with a normal distribution with mean ppo, and covariance Xpop, which is
a common choice for the population distribution [37-39]. The parameters &; are assumed to
be conditionally independent and are distributed as &; | Rpops Zpop ~ N (pops Zpop)- We define
Tpop (- | &, X) to be the probability density function (PDF) of a normal distribution with parameters
p and X such that mpop(&; | Rpops Zpop) is the PDF of the population distribution.

The joint prior density of the unconstrained parameters 7 (&, ..., §y,) can be expressed [40] as
the conditionally independent, continuous mixture

N,

.z ]
(.. EN) = / 77(? (ﬂpop/ Epop) 1_[ 7Tpop(Ei | Hpop/ Ep()p) d”’pop d2p0p~
i=1

For conciseness, we denote the list of parameters &4, ..., &y, as {§ ,-}?i”l, and use similar notation
for other parameters.

In a Bayesian context, we can simultaneously infer the per-individual parameters and the
population parameters and then marginalize out the population parameters from the distribution.
We can write the joint prior distribution of the per-individual parameters and population
parameters as

N,
N, )
n({gi}l’zlr ’Lpopr Epop) = n(él (Mpop/ Epop) 1_[ npop(&i I Mpop/ Z:pop)'
i=1
Finally, we must set priors for the population parameters to complete the statistical model.
These are discussed in §2g and, for now, are denoted 716“2 ([l.pop, Zpop)- The posterior distribution
can be constructed, therefore, from three parts: (1) the per-individual likelihood, (2) the
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population model, (3) the priors [38]. In terms of the unconstrained parameters, the posterior
distribution is given by
Ne
N, ~ \Ne N, ~ 1
ﬂ({éi}izl, K pop/ Zpop | {¥i}iZy, {Vi}izlraobs) & 1_[ L(Y;1T9(E), Ais Vi Oobs)
i=1
Nr:
z
: 1_[ Tpop(§; M pop/ Zpop) - 77(’)1 (ﬂpc)p/ Zpop)-  (2.20)
i=1
To obtain the posterior distribution in terms of the constrained, untransformed parameters
0;, the parameters £; are transformed back to the constrained scale, which requires a Jacobian
adjustment of the posterior distribution in equation (2.20) due to the transform 7y (-), resulting in
the posterior distribution of the untransformed parameters:

N,
N, ~ N, N, A S
701221 pops Zpop | ki1, 7Yy 0obs) o | [ L5105 44, ¥ 00ps)
i=1

N. 1
‘ _ d7, (0,
: | | ”pop(TQ 1(01') | Hpop- Epop) - - 1
i=1 do;
wx
) (ﬂpop/ Zpop)- (2.21)

To understand the population variability in the mechanical parameters, we compute the
posterior predictive distribution of the parameters 8 for a future randomly selected tendon from
the same population. This takes into account both population variability of the parameters and
our uncertainty about that variability due to limited data.

(g) Mixed effects model prior selection

Eliciting priors for use in a Bayesian context is often a non-trivial task requiring expert knowledge
of the domain to inform the choice of distributions and the parameters of those distributions
[41-43]. To evaluate the posterior density equation (2.20), we must first set priors for the
parameters Kpop, and X},op. Furthermore, following common practices [37,39], we do not infer
the covariance matrix directly but rather a scale matrix, S, and correlation matrix, C, such that
Zpop can be written as

Fpop = SCS.

The scale matrix, S, is a diagonal matrix containing the population standard deviations for each
component of §;. The Cholesky factorization of Xpop is, therefore, SLc, where L is the Cholesky
factor of the correlation matrix, C.

Given the posterior distribution in equation (2.21) and the above discussion, we must choose
the prior distribution rr(’f ’S'C(upop, S, C). We assume that the population parameters Rpops S, and
C are independent and, therefore, the prior distribution decomposes into the product of the priors
of each parameter 7 (ﬂpop)ﬂg (S)7$(0).

In previous work [16], priors were set on the model parameters, #, using distributional
parameters informed by values found in the literature. Due to the hierarchical model used in
this paper, we are unable to set priors directly on the ; as these parameters are governed by the
population distribution. Instead, priors that were previously set on the model parameters are now
placed on Rpop = [Vpop. Npop, Tpop, ppop]T. Following the previous work, a transformation is used
based on the natural bounds of the parameters, as described in appendix A.

Conveniently, the transformation used in the previous work, which was used to boost
computational efficiency by matching the support of the parameters and the MCMC transition
kernel is also an invertible transformation, as given in equation (2.19), which is required for the
mixed effects model.
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We set the following independent priors on the entries of pp,p:

vpop ~ N (1.05309738, 1.309270567),

Npop ~ N (6.83672018,0.47191773?),

Tpop ~ N(—3.80045123, 0.64387023%)
and ppop ~ N'(—3.59771868,0.7310165%).

The prior distributional parameters were derived using values from Silver [44], Purslow [45]
and Goh [46]. We reduced the variance of the prior distributions in comparison to the previous
study [16] due to regions of high probability density of the priors coinciding with relatively
unphysical parameter ranges of the model parameters in that study.

Setting priors for a correlation matrix is non-trivial. Many distributions have been proposed
as priors for correlation matrices [43], such as the Jeffreys prior, per-entry uniform priors and a
per-entry Gaussian process prior [47]. An increasingly common choice for correlation priors is the
Lewandowski-Kurowicka—Joe (LK]) distribution [48,49] with parameter « > 0. We set an LKJ(1)
prior on the correlation matrix, which is the default recommendation of the brms R package [50].
Finally, for the entries of the scale matrix, S, we set half Student’s t prior with three degrees of
freedom, mean zero and unit scale, in line with the brms defaults [50].

Since our data appear to be very informative about the parameters in our model, the posterior
is not overly sensitive to the choice of priors used here. The prior was chosen to cover values from
the literature, including those collagen from skin rather than tendons, and to be overdispersive,
so as to cover all possibilities and prevent an overinformative prior.

(h) Posterior sampling implementation

To characterize the mixed effects posterior distribution equation (2.21), we use the Stan library
[29]. Below, we discuss the specific configuration of Stan used for the inference. The sampling
algorithm used in Stan is based on the HMC algorithm [51] and its extension, the No-U-Turn
sampler (NUTS) [52].

In classical HMC sampling, the proposal vector @’ obtained by integrating Hamilton’s
equations is conditionally accepted using the Metropolis acceptance ratio. In comparison, the
HMC+NUTS algorithm builds a binary tree along the integrated Hamiltonian by integrating
forwards and backwards with respect to the ‘time” variable. Rather than using a Metropolis
acceptance step, the proposed state 6’ is taken to be the point along the integrated trajectory
that is furthest away from the initial state where the integration began, where integrating the
Hamiltonian any further would cause the path to ‘turn back” on itself [52]. The number of points
generated along the trajectory is controlled by a parameter jmax > 1 that limits the maximum
depth of the tree generated to be no more than 2= — 1. In Stan, this parameter is called
max_t r ee_dept h and defaults to 10.

Stan automatically tunes the leapfrog parameters and the Euclidean metric during an adaptive
warm-up period before sampling. More information about these parameters, and what they
mean in the context of the HMC+NUTS algorithm can be found in the Stan user manual [29].
The user is able to control the adaptation of the integrator parameters by changing the values
of user-facing parameters called st ep_si ze and adapt _del t a. The st ep_si ze parameter
defines the starting guess for the integration step size before the adaptation phase. The parameter
adapt _del ta acts as a surrogate for a target Metropolis acceptance ratio and controls the
adaptation of the number of integration steps, the estimation of the Euclidean metric and the
integration step size.

If the HMC+NUTS parameters are not set properly or are unable to adapt to optimal values,
then the integrator will accrue enough errors that the integrated Hamiltonian trajectory will not
follow the true trajectory. This divergence from the true trajectory is reported to the user, and
divergences indicate poor exploration of the state space and the simulation cannot be trusted.

YE00SZ07 18 ¥ 205 % 2014 edsi/feuinof BioBuiysiignd/aposiefos



Downloaded from https://royal societypublishing.org/ on 08 October 2025

With the posterior distribution we are sampling from in this study, the default parameter values
resulted in divergences, poor effective sample sizes and non-convergence to the posterior as
reflected by the split R-hat statistic. Instead, we used the following values for the parameters:
st ep_si ze =0.01, adapt _del t a=0.99, and max_t r ee_dept h = 14. To interface with Stan, we
used ecmdstanr [53] with a modified Stan script generated from brms [50].

For our analysis, we generated 4000 samples per chain, with 10 chains running in parallel, for
a total of 40,000 posterior samples. The average sampling time per chain was approximately 60 hr
between both runs using a server with an Intel(R) Xeon(R) CPU E5-4627 v2 @ 3.30 GHz (32 core)
with 64 GB memory, with each chain utilizing one core.

3. Results

We provide numerical results for the data selection method, introduced in §2d, in §3a. Using these
results, we truncate the data as explained in §2e, and feed the truncated data into the mixed effects
inference. Results for the mixed effects model, using the data fed from the data selection method,
are given in §3b.

(a) Data selection results

Each individual tendon sample dataset was fitted using the microstructural model with data
selection. Stress—strain data were extracted up to the point of maximum stress as the model
is elastic and, therefore, not capable of describing subsequent decreases in stress that are
associated with damage. The model and fidelity parameters were inferred using the MCMC
methodology outlined in §2d(iii). Here, we focus on the fidelity parameter marginal means, which
are subsequently used within the mixed effects model. The majority of samples exhibited fidelity
parameter profiles which started at values close to unity and decreased to zero at some point
between 5% and 10% strain (see figures 5 and 6a). Some fidelity profiles, however, exhibited
a secondary, smaller increase beyond 10% strain. This was simply due to the model and data
crossing at larger strains. It was evident that the model had already diverged from the data by
this point and the increase was simply an artefact of model extrapolation (see figure 6b).
Interestingly, the fidelity parameters of all the tendons reduced to values below 0.3 before
10% strain, indicating a significant reduction in the contribution of the data to the likelihood
beyond this point. This is shown in figure 7 where the stress—strain profiles of the SDFTs and
CDETs have been trimmed to the point where the fidelity parameters first go below 0.3. There
is considerable variability in the strain at which the fidelity parameters first reduce below 0.3, in
both the SDFTs and CDETs. This further supports our approach of using data selection and the
inference of fidelity parameters as opposed to homogeneous manual trimming of the data.

(b) Mixed effects model results

Next, we use the truncated data and fidelity parameter posterior means to infer the population-
level distributions of the constitutive parameters. We used the MCMC methods described in
§2h to sample from the posterior distribution of the mixed effects model as outlined in §2f.
The mechanical model consists of two elastic parameters, (1 — ¢)u and ¢E, and two structural
parameters, a and b. Owing to the nature of the transformation 7y (-) and the priors, the posterior
predictives for the parameters are best understood through their modes and not their means. This
is because the posterior distributions are heavy tailed and may not necessarily have finite means
or variances.

(i) Posterior predictives for model parameters

The posterior predictives of the model parameters are compared for the SDFTs and CDETs in
figure 8. For the CDET distributions, ¢E has a peak at 1430.2 MPa, whereas the corresponding
peak for the SDFT lies at 811.5MPa. In addition, the CDET population distribution for (1 — ¢)u
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Figure 5. Posterior means of the fidelity parameters against strain for (a) SDFT and (b) CDET tendon samples. Each line
represents a fidelity profile for a single tendon.
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fidelity parameters decrease with strain and (b) a tendon (H15 SDFT) where the fidelity parameters decrease but then increase
again at a larger strain due to model-data crossing.
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Figure 7. Plots of experimental tensile test data for SDFT (left) and CDET (right), trimmed automatically using Bayesian data
selection and a fidelity threshold of 0.3.

has density closer to zero in comparison to the SDFT population distribution. Both of these
quantities include the non-identifiable structural parameter ¢. There are two possible causes,
which in some combination could give rise to the differences that we see in the mechanical
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Figure 8. Comparison of the marginal posterior predictive distribution for each model parameter.

parameter distributions. The CDET could contain fibres that are stiffer than those found in the
SDFT and/or the CDET could contain a larger volume fraction of fibrils than the SDFT.

For the structural parameters, a and b, the distributions for the SDFT tend to favour higher
values than those of the CDET. The parameter, b, has peak probability density at a value of 1.05
for the SDFT, a larger value than the CDET peak density value of 1.04, and the spread of values is
larger for the SDFT than the CDET.

These differences in peak probability density relate to the biological functions of the tendons.
As the SDFT is an energy-storing tendon that extends and contracts to facilitate locomotion [33],
the higher values for the structural parameters reflect the larger range of strains the tendon
operates over and the correspondingly longer collagen fibril lengths. The lower values of the
mechanical parameters indicate lower stiffness, complementing the functionality of the tendon.
The higher stiffness and lower values for structural parameters of CDET reflect their relative
inextensibility, which facilitates the transfer of force between muscle and bone.

Note that these distributions do not solely represent the natural variation of the parameters in
the population but also the uncertainty in these distributions due to the relatively small number
of individuals that have been used in the inference. As such, it is likely that these distributions are
overdispersed compared to the true underlying distributions. It is infeasible to disentangle this
uncertainty from the natural variation of the parameters, but with the addition of further data,
the posterior would probably contract further.

The tangent modulus in the linear region of a tendon’s stress—strain curve is often reported as
an important mechanical quantity [33]. As a naive estimate, the linear modulus might be used
as an approximation of ¢E; however, as we showed in §2a(i), an exact calculation of the linear
modulus of our model shows that it will be strictly less than ¢E. To explore whether the linear
modulus can be used as a reasonable estimate of ¢E, we compare our posterior distributions to
distributions of the linear modulus of the respective tendon type. To define the linear region,
for the upper bound, we used the cut-off stretch as calculated in §3a, and for the lower bound,
the posterior mean of samples of b from independent inferences of each dataset was used. For the
SDFT, 12 of the 18 datasets had valid detected linear regions, where the lower bound is less than
the upper bound, and 16 of the 18 data for the CDET had valid detected linear regions. From
the data with valid linear regions, we used linear regression to find the gradient of a straight
line fit to the data as the linear modulus. Then, motivated by ¢E being strictly non-negative, and
the lognormal-like priors as described in §2g along with the parameter transform described in
appendix A, in figure 9, we plot lognormal distributions for the linear moduli with mean and
variance equal to the mean and variance of the linear moduli calculated from the regression data.
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Figure 9. Estimates of the posterior distributions of @£ for the SDFT (left, blue) and CDET (right, green) compared with
lognormal distributions with prescribed means and variances equal to the mean and variance of the linear moduli as calculated
from the data (both, red). The means of each distribution are indicated with vertical lines (linear modulus: dotted; SDFT/CDET:
dashed) in the corresponding colours for their respective distributions.
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Figure 10. Posterior predictives for the CDET datasets h15 and h17. For h15, there are not many data points as determined by
the fidelity threshold chosen, whereas h17 has many data points. The difference in inferential power is seen by the 95% spread
of the predictive. The large spread is due to the lack of information about the mechanical parameters (1 — ¢)u and E.

The means of the plotted distributions are shown as vertical lines. As anticipated, using the linear
modulus as a direct estimate of ¢ E underestimates its value compared to the inferences from our
model; however, there is considerable overlap in the assumed distribution of the linear modulus
and our posterior distributions for ¢E.

(ii) Posterior predictives for the stress

To visualize the fit and the amount of data included in the inference in context, we considered
the posterior predictive distribution for the response of each tendon. This can be understood
as the marginal posterior distribution of new stresses y; observed in a hypothetical replication
of the experiment for the ith tendon at the same stretch levels as in the original data, and can
be simulated by evaluating the microstructural model M(:) at the observed stretches 1;, using
posterior samples for the model parameters 6;.

Figure 10 shows posterior predictives for the response of two CDET individuals that have
differing numbers of data points after being trimmed using our data selection method. We see
that, for data with fidelity parameters that do not decay until well within region III of the stress
response, there is a very tight predictive with a small standard deviation about the median.
By contrast, where much of the data have been removed in the selection process, the inference
results in a diffuse predictive with a high standard deviation. The reduction in the amount
of inferred data included in the inference greatly increases the uncertainty in the posterior
predictive distributions of the parameters in experiments with small N;. However, the data
selection methodology enabled us to fit our model to regions where the probability of the data
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being consistent with the chosen model was highest, ultimately giving a truer reflection of the
constitutive parameter values.

4. Discussion

In this paper, we introduced a two-stage process for producing higher-quality inferences from
stress—strain tests to failure, where the mechanical model that we fitted to the data does not
account for damage or failure. Several studies have proposed methods to identify the start of
the yield region, often relying on curve-fitting or localized gradient estimates. Techniques such
as moving-average smoothing of tangent moduli [33], spline fitting for yield point detection [54]
and polynomial fitting to identify inflection points [55] offer practical means of identifying which
data should be used for inference, though they rely on heuristic choices. Others have noted that
there can be challenges in parameter identifiability, particularly when relying on uniaxial data
alone [56].

The first stage of our approach involved inferring fidelity parameters which measure how
consistent the model is with the data. By using a Gaussian process prior for the underlying fidelity
field, we were able to learn the different regions of observation space for which the model is not
valid. After inferring fidelity parameters independently for each dataset, a fidelity threshold was
chosen which was used to trim each dataset automatically, and the observational noise value for
each observation was scaled by its fidelity value, effectively tuning out data points which are less
consistent with the model. As used in previous work [19], we chose a threshold of 0.3.

Using the Bayesian data selection method, we obtained higher-quality inferences which
accurately trimmed the data on a per-individual basis, to minimize bias and maximize
information quality. This was necessary because of the heterogeneity of the data between
experiments, leading to the model being a valid representation of the data for different strain
ranges in each case. This research provides a basis for improving the predictive power of
results derived from Bayesian inferences and point estimates as our data selection method is
agnostic to the statistical method chosen in the second stage. It is clear from figures 3 and 7 that
capturing the heterogeneity in damage is important in the modelling process and ignoring it
will skew parameter estimates away from their true values. It is important to note the additional
computational cost of our approach; an additional inference was required for each of the tendon
experiments to appropriately trim the data. However, these can be conducted in parallel, and on
modern computer infrastructures this can be achieved straightforwardly. The additional cost of
the data selection is still relatively small in comparison with the cost of characterizing the Bayesian
mixed effects posterior, which has a large number of correlated parameters that make mixing of
the Markov chain challenging.

Following the data selection stage, the trimmed and re-weighted data were fed into a Bayesian
mixed effects statistical model which was used to infer population-level parameters for the
mechanical model. We found that the product of the collagen volume fraction and collagen fibril
Young’s modulus, ¢E, has posterior modal values of 811.5 MPa for the SDFT and 1430.2 MPa for
the CDET. We found that CDETs are stiffer than SDFTs, due either to having stiffer fibrils, a higher
collagen volume fraction or both. We also found that the SDFTs have longer fibrils on average.

The better a model is at representing data, the more of the data can be used to infer its
parameters. For example, using models which attempt to model damage or failure of the tendon
[57,58] will increase the number of data points that are valid under the assumptions of the
model, and therefore less data will be lost to trimming. The use of a more computationally
costly mechanical model, however, will add to the computational complexity of characterizing
the posterior distribution. In addition, it is very likely that however sophisticated and flexible the
chosen model is, the experimental data will still require some level of selection prior to analysis to
arrive at accurate parameter estimates. Combining sophisticated data selection methodology with
mixed effects models enabled us to analyse the natural variability of parameters which define the
physical properties of horse tendons more accurately than previous approaches.
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Appendix A. Parameter transform

In [16], a transformation of the model parameters § was used to improve the computational
efficiency of the random walk Metropolis—-Hastings algorithm. The transformation arises from
considering the natural bounds on the model parameters. The parameters, E and p, are greater
than 0, and ¢ is a parameter constrained to the interval [0, 1]; therefore, (1 — ¢)u and ¢E are non-
negative. Thus, a logarithmic transform is appropriate. The structural parameter, g, is greater than
1, and b is greater than a, so we consider the parameters 2 — 1 and b — a which are both greater
than 0 and such that their logarithms exist on the entire real line. The transform 74(-) and its
inverse ’Z;;l(-) is therefore given by

v\ ({1 - ) exp(v}
Ay e |7 In{¢E} _ _ exp{n}
Ty 0)=¢= T In{a — 1} = 0=TE)= exp{t}+1
P In{b — a} exp{p} +exp{r}+1
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