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Introduction

Global food availability is a growing concern. In order to feed a growing global population
it is essential that more food is produced [Keesstra et al., 2016]. All human food besides
aquatic resources comes either directly or indirectly from plants which, in turn, gather their
nutrients from soil via their roots. However, the majority of the soil that can be used for
growing crops is already begin utilised and it is being eroded faster than new top soil can
be formed. It is vital that crops take full advantage of resources in the soil to achieve the
highest yield possible.

Fundamental to optimising plant growth, is the understanding of how root systems grow
and adapt to the soil environment. One of the greatest challenges in this field is that
plants grow in an opaque medium. This can be overcome thanks to advances in X-ray
computer tomography (XCT) [Keyes et al., 2013]. These developments have made it possible
to visualise root systems in three dimensions within the soil. This means that root traits,
such as length density, tortuosity and transport characteristics, can be analysed in situ.

For an XCT scan of soil containing the roots of one plant, the soil appears as a hetero-
geneous mixture with high density minerals appearing white, organic material, water and
clays appearing as various shades of grey and any air appears dark grey or black. The roots
themselves are also a shade of grey, somewhere within the range for organic material, water
and clays, but can be identified by eye due to edge effects and their long cylindrical geometry.
This makes automatic segmentation difficult as traditional methods such as thresholding are
not appropriate. Manual segmentation of the roots can be carried out by manually selecting
the root on individual 2D slices from the 3D image stack and interpolating between the slices.
This is time consuming and user dependent. and manual segmentation is not appropriate
when a large number of samples need to be analysed, as is the case in biological studies, in
a way that is not biased or user dependent.

Of particular interest is how plant roots adapt to their local environment, for example,
to local sources of nutrients and soil structure. One approach to investigate this area is to
XCT the same plant’s root system over multiple time points under different conditions. This
increases the number of scans that need to be analysed making manual method much less
attractive. It also becomes necessary to correlate individual roots in each scan to a scan of
the same plant at a different time point. The plant roots impact the surrounding soil both
physically, by improving soil stability, and chemically [Barré and Hallett, 2009].

1



Twelve wheat plants in different soil conditions have been scanned at multiple time
points [Ahmed et al., 2015]. A subset of this data was provided; 3 XCT reconstructions of
a single wheat plant scanned at 6, 8 and 10 weeks. The aim was to design an algorithm to
automatically segment the roots from the soil. This algorithm could then be applied to the
whole data set. This will allows use to investigate the effect of the different soil conditions
on the plant roots using an appropriate sized sample set to improve the statistical analysis
and reduce the uncertainties of the biological population.

The three-dimensional data sets provided are challenging to segment automatically due
to the fact that:

e the greyscale values of the features of interest (i.e. the plant roots) are very similar to
those of the surrounding soil grains,

e the average greyscale value of the roots varies from slice to slice when the data set is
represented by a stack of two-dimensional images,

e the roots are in contact with the soil grains in several locations.

To overcome these difficulties, we developed a methodology that automatically detects the
roots in a slice based on the average greyscale value of the roots in the previous slice.
Therefore, the only human input that may be needed is a manual segmentation of the top
slice (which is often quick and straightforward). In fact, this step can often also be automated
if the top slice is above soil level since there is sufficient contrast between the plant and air
to allow the use of simple thresholding techniques. Once the top slice has been accurately
segmented, the algorithm marches down through the stack image by image, detecting the
roots in each slice. The alogrithm is described in detail below.

The algorithm

To illustrate how the algorithm works, we shall make reference to one particular stack of
images, whose top, middle and bottom slices are shown in Figure la. These images are
cropped versions of larger data sets, as shown in Figure 1b. The top slice is straightforward
to segment; however, further down, identifying the roots is much more difficult and automatic
segmentation cannot be easily achieved without some prior information. Therefore, we
decided to use an algorithm that in a first step segments the top slice and then iteratively
the slices below.

Most of the steps are straightforward and are available from various image analysis tools.
We created implementations in Mathematica, Matlab, and ImageJ. Interestingly the results
were very similar but not identical. Cause for this is most likely slight variants in the
implementation of various algorithmic steps, e. g. the opening.
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(a) Horizontal cross sections of the base of a wheat plant and its roots. The plant is the easily
identifiable set of dark grey objects in the centre of the image in the top slice. As we move down
through the stack of images, this object splits into many smaller objects (the roots). By the middle
slice, identifying the roots is much more difficult and automatic segmentation cannot be easily
achieved without some prior information.
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(b) The larger images from which the images in Figure la are taken.

Figure 1: Sample slices taken from an image stacks.
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Pixels from top slice of (b) A morphological opening (c) The binary image from
Figure la with a greyscale using a disk matrix of radius Figure 2b was multiplied by
value ranging between 0.2 and 6, followed by a dilation of ra- the original image to obtain
0.4 displayed as a binary im- dius 1 were applied to the im- this image.

age in Figure 2a to remove the
soil grain edges and to ensure
that the edges of the plant
were not excluded.

Figure 2: Initial segmentation of top slice, steps 1.1 to 1.3.

Step 1: Segment the top slice

This step is the only step that requires human input. It can be achieved by any methodology
that is satisfactory to the user; however, for the purposes of this report, the methodology
that was used in this example is described in detail:

1. Firstly, a crude thresholding was applied to select all pixels with a greyscale value

between 0.2 and 0.4 (where 0 corresponds to black and 1 to white - in an 8-bit image,
this is equivalent to selecting pixels with greyscale values ranging between 51 and 102).
The resulting binary image is shown in Figure 2a.

Next, a morphological opening using a disk matrix of radius 6 as a structuring element,
followed by a dilation of 1 pixel were carried out to remove the soil grain edges and
to ensure that the edges of the plant were not unintentionally excluded. The resulting
image is shown in Figure 2b. This is a rough segmentation that forms the basis for the
more precise segmentation described below.

The binary image from Figure 2b was then multiplied by the original image to obtain
the image in Figure 2c.

The mean and standard deviation of the greyscale values of the non-black pixels from
the image in Figure 2c were then calculated. In this case, the calculated mean, p, and
standard deviation, o, of the greyscale values were

= 0.31 and o = 0.05, (1)
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Figure 3: Pseudo-Gaussian mapping function plotted for x = 0.5 and, from left to right,
0 =0.15,0 =0.1, c = 0.05, 0 = 0.01. For all of these plots, both the horizontal and vertical
axes range from 0 to 1.

respectively.

5. The values calculated in step 4, above, were then used as the basis of an image trans-
formation that took the original image and changed its greyscale values via a pseudo-
Gaussian mapping using the following equation
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where x is the greyscale value of a pixel in the original image and y is the greyscale
value of the corresponding pixel in the transformed image. This equation is similar to
a Gaussian probability distribution function, but always peaks at a value of 1. This
function is plotted for i = 0.5 and several values of ¢ in Figure 3. The result of applying
this transformation with the parameter values given by equation 1 is shown in Figure
4a. Figure 5 shows a histogram of the number of occurances of each greyscale level over
the whole image in red, just the root region in blue and the applied pseudo-Gaussian
mapping function in black.

6. Next, a median filter (over a range-5 neighbourhood) was applied to the transformed
image, giving the image shown in Figure 4b. This reduced the greyscale value of the
thin soil grain edges, whilst leaving a high greyscale value on the features of interest.

7. Since the features of interest are now of a much higher greyscale value than the rest
of the image, simple thresholding can be used to select them. In Figure 4c, all pixels
with greyscale value greater than 0.5 were selected.

8. Finally, another morphological opening was applied using a disk matrix of radius 2 as
the structuring element in order to remove the small patches of noise. The resulting
selection is shown in Figure 4d. This concludes step 1.

Substeps 1-8, above, are summarised in Figure 6.

Step 2: Dilate, then image multiply the next slice

Once the top slice has been successfully segmented, the resulting binary image is dilated
using a radius 10 disk matrix as a structuing element. The dilated binary image is then
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(a) The result of applying the transform
given by equation (2) with the parameters
given by equation (1) to the original image
from Figure 1a.

(¢) A simple thresholding of the image from
Figure 4b, in which all pixels with a greyscale
value greater than 0.5 were selected.

(b) The result of applying a median filter
(over a range-5 neighbourhood) to the im-
age from Figure 4a.

(d) A morphological opening using a disk
matrix of radius 2 as the structuring element,
applied to the image in Figure 4c.

Figure 4: Automatic segmentation of the first slice, steps 1.5 to 1.8.
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Figure 5: A histogram of the number of occurances of each greyscale level in the top slice
over the whole image (red), just the root region (blue) and the applied pseudo-Gaussian
mapping function (black). Note that since this was an 8-bit image, the greyscale intensities
are expressed as ranging between 0 (black) and 255 (white).
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Figure 6: A summary of the image processing steps taken to segment the plant in the top
slice.
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(a) The result of dilating the
image in Figure 4d using a
radius 10 disk matrix as a
structuring element, then im-
age multiplying the resulting
binary image by the next slice
down.

(b) The result of applying
the pixel greyscale remapping
given by equation (2) to the
image in Figure 7a using the
mean and standard deviation
calculated from the previous
slice.

(¢) The result of applying
a median filter to Figure

7b over a range-5 neigh-
bourhood, binarising using
a threshold wvalue of 0.4,
then applying a morphologi-
cal opening using a disk ma-

trix of radius 2 as the struc-
turing element.

Figure 7: Segmentation of slice 2, steps 2 and 3.

image multiplied with the next slice to determine a region of interest within which the roots
are expected to lie. This method assumes that between one slice and the next, the roots
will not have moved laterally by more than 10 pixels. The image resulting from this step is
shown in Figure 7a.

Step 3: Remap the pixel greyscale levels

This step is the same as substep 5 from step 1, above, whereby the greyscale levels of the
image are modified using the function given in equation (2); however, this time, the mean
and standard deviation to input into the function are calculated from the previous slice. The
result of applying this step to the image in Figure 7a is given in Figure 7b. We found that
if the standard deviation calculated from a given slice gets too high, then this remapping
erroneously maps soil particles to high greyscale levels and the algorithm therefore wrongly
identifies some soil particles as being part of the root system. To overcome this difficulty,
we capped the maximum allowed standard deviation at 0.025; therefore, if the calculated
standard deviation of pixel greyscale values from slice ¢ was higher than 0.025, then the value
of o used in equation (2) to transform slice ¢ + 1 would be set to 0.025.



Figure 8: A three-dimensional visualisation of the three segmented root system.

Step 4: Apply a median filter, binarise, then open

This step is the same as substeps 6-8 from step 1, above. A median filter was applied over
a range-5 neighbourhood, the image was binarised (this time the value 0.4 was used as the
threshold greyscale level value), then a morphological opening was carried out using a disk
matrix of radius 2 as the structuring element. The resulting image is shown in Figure 7c.

Step 5: Apply steps 2-4 to every subsequent slice

Finally, we repeat steps 2-4 for every other slice, each time using the immediately preceding
slice as the input to step 2. The algorithm was applied to three different data sets (each
representing the same plant at different stages of growth). The resulting three-dimensional
volume representations of these root systems are shown in Figure 8.

Optional Step: Cleaning 3d detected roots

After the iterative application of the steps above the root structure can be detected but
potentially also small fragments that, for example, represent organic material in the soil (see
left panel in Fig. 9). Such small fragments have a much smaller volume, defined as the number
of voxels, than the detected roots. Therefore we can apply an algorithm that detects and
measures all connected components (bwconncomp in Matlab) and delete components below a
certain size. This threshold should be chosen manually, in the example in Fig. 9 we deleted
components with less than 120 voxels. If it is chosen to low to much organic material is still
present and if it chosen to high parts of the root that are seemingly disconnected might be
deleted, too.

Discussion

The algorithm contains a number of parameters that were selected either arbitrarily or via
trial and error. These values worked well for the three data sets they were tested on during
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Figure 9: The cleaning of the detected root structure. Left: Uncleaned detected root struc-
ture. Right: Cleaned root structure after removal of small components.

the study group, but could be optimised to further improve the results. The relevant param-
eters are listed and discussed in Table 1. Using the values listed in the table, the algorithm
presented is able to automatically segment a root system once the first slice has been seg-
mented. It sometimes fails to detect smaller roots as the median filter and morphological
opening steps result in smaller objects being removed. One possible extension would be to
allow the parameters listed in the table to depend on depth and to reduce the size of the
median filter neighbourhood and morpholoigcal opening structuring element matrix as the
root diameters get smaller deeper into the soil. Further work is required to investigate the
best way to do this.

One limitation of this methodology is that, if for any reason the algorithm loses track of
a given root (for example if the binarisation threshold parameter was set too low to select a
root after the median filter has been applied to a particular slice), it has no way of picking it
back up unless it moves within 10 pixels of another root that is being tracked. To attempt to
overcome this difficulty, we investigated removing step 2 from the algorithm. This results in
the algorithm looking for roots in a slice globally based on the greyscale values of the roots
in the previous slice. This approach allows us to pick up roots after they have been lost for
a few slices, but also leads to some soil particles being selected (see Figure 10 and compare
with the first image from Figure 8). One option would be to use this three-dimensional
volume, remove the smaller soil particles by applying a three-dimensional morphological
opening, then manually remove the larger soil particles (and those connected to the roots).
The remaining root system could then be interpolated to fill in the gaps where the roots had
been missed.

Besides the presented algorithm we also tested other approaches that were less successful.
One attempt was to analyse the image slice-wise but rather as one three-dimensional array
in a single step. Although this approach might seem more powerful on first sight, because
it takes more information into account in a single step it was limited by mainly two factors:
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Parameter Step | Value Discussion
Radius of disk matrix | 2 10 This parameter could be increased
used for dilation or decreased depending upon how
much lateral movement is expected
from slice to slice
Cap on the standard 3 0.025 | We found that a relatively small
deviation input to value worked best for the data sets
equation (2) tested, but a different value may
work better for other data sets.
Range neighbourhood | 4 D This parameter should be varied
of the median filter depending upon the width of the
soil grain edges that are
highlighted in step 3.
Binarisation 4 0.4 The algorithm is not very
parameter sensitive to this parameter,
but optimsing it could potentially
improve the results.
Radius of disk matrix | 4 2 Should be kept as small as possible
used for opening whilst still removing noise

Table 1: List of parameters used in the algorithm and the the values selected for the example

data set.
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Figure 10: A three-dimensional visualisation of the first root system when step 2 is removed
from the algorithm.

Firstly, the analysis of a large three-dimensional array is computationally more demanding
as one that only computes on the information from two slices at a point in time. Therefore
the performance of a slice-wise algorithm is better and the memory demand much lower.
Note however, that out algorithm is not straightforward parallelisable since at each step
the information from the slice before is needed. Secondly, in the practical work of image
analysis a lot of fine-tuning of parameters under the inspections of the output is necessary.
This procedure is much easier if the analysed slices can be inspected individually and not
in one three-dimensional array. This could be overcome by a more advanced image-analysis
pipeline but was not possible during the short time frame of the project.

Another algorithm was implemented in Matlab that allowed the user to click on a root
within a 2D image slice. The algorithm then used the mean and standard deviation in the
region of this initial selection to segment 40 slices below and above the image that was used
as the initial selection. This worked well for small sections of individual roots and could be
used as a method to fill the breaks within roots that can be seen in Figure 10.

All the codes developed during the workshop can be found at https://github.com/
gustavdelius/root_segmentation.
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Future Work

The algorithm will be validated by comparison with manual segmentation of the same scans.
It can then be applied to the remaining scans in the original data set. This will enable the
analysis of a statistically relevant sample size. The algorithm could also be validated for
other plants, that may have morphologically different root structures. This will overcome
the major bottleneck to investigating roots in soil.
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