
1.1 Derivation of Concentration Profile within a Porous
Catalyst with a 1st Order Reaction

The concentration through a porous catalyst for a first order reaction can be described by
the differential equation,
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This equation can be turned into a dimensionless version by defining 2 dimensionless
variables,
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This means that we can write,

r = λR (1.1.4)
d r = Rdλ (1.1.5)

and,

CA = CAsφ (1.1.6)
dCA

d r
= CAs

dφ

d r
(1.1.7)

d2CA

d r2
= CAs

d2 φ

d r2
(1.1.8)

Combining with our definition of d r we then produce,
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Substituting this into equation 1.1.1 produces,
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We can now define a final dimensionless parameter,
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Thus producing a dimensionless form of the differential equation for the concentration
through a porous catalyst,
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The boundary conditions can also be defined in terms of the dimensionless parame-
ters1,

CA = CAs at r = R ⇒ φ = 1 at λ = 1

dCA

d r
= 0 at r = 0 ⇒ dφ

dλ
= 0 at λ = 0 (1.1.14)

Equation 1.1.13 can be solved by defining a new variable y = φλ, which means that,
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Substituting these into equation 1.1.13 produces,
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This differential equation can now be solved by substituting an exponential form for y
as,

y = eβλ (1.1.19)

where β is a value to find. Substituting this expression into equation 1.1.18 allows β to
be calculated as,

β2eβλ − ϕ2eβλ = 0

β2 − ϕ2 = 0

(β − ϕ) (β + ϕ) = 0

β = ± ϕ (1.1.20)

This means that from the linear combination of all solutions, then the full integrated ex-
pression can be given as,

y = Aeϕλ +Be−ϕλ (1.1.21)

or using the definition of y, equation 1.1.15,

φ =
A

λ
eϕλ +

B

λ
e−ϕλ (1.1.22)

1It should be noted here that if the reaction order is less than 1 it is possible to have what is called a
dead zone, i.e. the concentration of the reactant drops to 0 before the centre of the catalyst, this means that
the second boundary condition is not true in this case and needs to be replaced with φ = 0 at λ = λc where
λc has to be calculated from the balance equations. For example, see R. L. York, K. M. Bratlie, L. R. Hile,
and L. K. Jang, (2011) Catalysis Today, 160:204-212.
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We can now use the boundary conditions, equation 1.1.14, to find the constants A and B.
The differential of equation 1.1.22 is,
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Thus with our boundary condition at the centre of the particle we get,

0 = A(1)(−1)−B(1)(1)

A = −B (1.1.24)

With this and our boundary condition at the surface of the particle we get,
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)
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= −B (1.1.25)

where we have used the mathematical definition of sinh ax =
eax − e−ax

2
. Substituting

these constant values into equation 1.1.22 gives,
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(1.1.26)
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