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Model-based vision is firmly established as a robust approach 
to recognizing and locating known rigid objects in the presence of 
noise, clutter, and occlusion. It is more problematic to apply model- 
based methods to images of objects whose appearance can vary, 
though a number of approaches based on the use of flexible tem- 
plates have been proposed. The problem with existing methods 
is that they sacrifice model specificity in order to accommodate 
variability, thereby compromising robustness during image inter- 
pretation. We argue that a model should only be able to deform 
in ways characteristic of the class of objects it represents. We 
describe a method for building models by learning patterns of 
variability from a training set of correctly annotated images. These 
models can be used for image search in an iterative refinement 
algorithm analogous to that employed by Active Contour Models 
(Snakes). The key difference is that our Active Shape Models can 
only deform to fit the data in ways consistent with the training 
set. We show several practical examples where we have built such 
models and used them to locate partially occluded objects in noisy, 
cluttered images. Q 199s A&& prrss, IN. 

1. INTRODUCTION 

We address the problem of locating examples of known 
objects in images. Image interpretation using rigid models 
is well established [l,  21. However, in many practical 
situations objects of the same class are not identical and 
rigid models are inappropriate. In medical applications, 
for instance, the shape of organs can vary considerably 
through time and between individuals. In addition, many 
industrial applications involve assemblies with moving 
parts, or components whose appearance can vary. In such 
cases flexible models, or deformable templates, can be 
used to allow for some degree of variability in the shape 
of the imaged objects [3-231. 

In this paper we present new methods of building and 
using flexible models of image structures whose shape 
can vary. The models are able to capture the natural 
variability within a class of shapes and can be used in 
image search to find examples of the structures that they 
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represent. Previous approaches have allowed models to 
deform, but have not tailored the Variability to the class 
of shapes concerned-the models are not specific. Our 
main contribution is to describe how to create models 
which allow for considerable variability but are still spe- 
cific to the class of structures they represent. 

Our technique relies upon each object or image struc- 
ture being represented by a set of points. The points can 
represent the boundary, internal features, or even exter- 
nal ones, such as the center of a concave section of bound- 
ary. Points are placed in the same way on each of a training 
set of examples of the object. This is done manually, 
though tools are available to aid the user. The sets of 
points are aligned automatically to minimize the variance 
in distance between equivalent points. By examining the 
statistics of the positions of the labeled points a “Point 
Distribution Model” is derived. The model gives the aver- 
age positions of the points, and has a number of parame- 
ters which control the main modes of variation found in 
the training set. 

Given such a model and an image containing an example 
of the object modeled, image interpretation involves 
choosing values for each of the parameters so as to find 
the best fit of the model to the image. We describe a 
technique which allows an initial very rough guess for the 
best shape, orientation, scale, and position to be refined 
by comparing the hypothesized model instance with image 
data, and using differences between model and image to 
deform the shape. We have previously described how to 
obtain the initial guess [7]. The method has similarities 
with the Active Contour Models (or snakes) of Kass et 
al. [3], but differs in that global shape constraints are 
applied; to make this distinction clear we have adopted 
the term Active Shape Models. The key point is that 
instances of the models can only deform in ways found 
in the training set. 

Our results demonstrate that the method for con- 
structing models combined with the active matching tech- 
nique provides a systematic and effective paradigm for 
the interpretation of complex images. In the remainder 
of the paper we review some of the relevant literature, 
describe the modeling method, and show examples of 
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trained models. The active matching technique is de- 
scribed and results are given, showing how the models 
can be used to interpret images. 

2. BACKGROUND 

There is a substantial literature describing the use of 
flexible models or deformable templates to aid image inter- 
pretation. Such models usually have a number of parame- 
ters to control the shape and pose of all or parts of the 
model. We give a brief review of some of the most signifi- 
cant work, which relates mainly to two-dimensional 
images. 

2.1. “Hand Crafted” Models 

Flexible models can be built up from simple subcompo- 
nents, such as circles, lines, or arcs, which are allowed 
some degree of freedom to move around relative to one 
another, and possibly change scale and orientation. Yuille 
et al. [5] model parts of the face, such as the eyes and 
mouth, in this way. When attempting to fit a model to an 
image they first obtain an approximate fit, which they 
refine by changing different parts of the model, one at a 
time. Lipson et al. [6] apply a similar scheme to map 
ellipitical models of vertebrae onto CT images of the 
spine. Hill et al. [7] use a handcrafted model of the heart 
in combination with Genetic Algorithm search to find the 
left ventricle in echocardiograms. 

Although such models can capture detailed knowledge 
of expected shapes, the approach lacks generality. It is 
necessary to design both a new model and a scheme for 
fitting to images for each application. 

2.2. Articulated Models 

A number of authors consider articulated models built 
from rigid components connected by sliding or rotating 
joints. Beinglass and Wolfson [8] describe a scheme for 
locating such objects using a Generalized Hough Trans- 
form with the point of articulation as the reference point 
for each subpart. Connected subparts then vote for the 
same reference point. Grimson [2] has extended his “in- 
terpretation tree” approach to object recognition to in- 
clude some articulations, and reviews other work along 
the same lines. This approach is only applicable to a re- 
stricted class of variable shape problems. 

2.3. Active Contour Models (“Snakes”) 

Kass et al. [3] describe flexible contour models which 
are attracted to image features. These energy minimizing 
spline curves are modeled as having stiffness and elastic- 
ity and are attracted toward features such as lines and 
edges. Constraints can be applied to ensure that they 
remain smooth and to limit the degree to which they can 
be bent. 

Snakes can be considered as parameterized models, 
the parameters being the spline control points. They are 
usually free to take almost any smooth boundary with 
few constraints on their overall shapes. The idea of fitting 
by using image evidence to apply forces to the model and 
minimizing an energy function is effective. 

Hinton et al. [4] describe a type of spline snake gov- 
erned by a number of control points which have preferred 
“home” locations to give the snake a particular default 
shape. Deformations are caused by moving the control 
points away from their “home” locations. Although the 
average shape of an object is represented, the modes of 
shape variation are only coarsely defined by the number 
and position of control points. 

2.4. Fourier Series Shape Models 

expansion of trigonometric functions, 
Scott [9] proposes a method of modeling shapes by an 

x = xo + C a,  sin(n0 + +,J 

y = yo + b, sin(n0 + $,). 
n ( 1 )  

n 

The shape produced is a function of the parameters a,,  
b,, +,, $,. By varying the parameters and the number of 
terms used, different shapes can be generated. Scott 
shows how to fit such a shape model to image data by 
varying the parameters so as to minimize an energy term. 
The model is almost infinitely deformable, and contains no 
prior shape information. Staib and Duncan [10] describe 
similar Fourier models, and use them to interpret medical 
images. They derive distributions for each of the parame- 
ters over a training set and while fitting the model to an 
image maximize a probability measure determining how 
likely it is that the current example is the desired object. 
Bozma and Duncan [ 111 describe how such a technique 
can be used to model organs in medical images. A given 
shape is represented by a list of values for the parameters 
and is deformed by varying the parameters from these 
values. They describe ways of incorporating relationships 
between several flexible objects by applying constraints 
to the parameters of the models. 

Trigonometric basis functions are not suitable for de- 
scribing general shapes; for example, using a finite number 
of terms, they can only approximate a square corner. The 
relationship between variations in shape and variations 
in the parameters of the trigonometric expansion is not 
straightforward. 

2.5. Statistical Models of Shape 

A number of workers have studied the distributions of 
sets of “landmark” points which mark significant posi- 
tions on an object. Goodall [14] discusses the registration 
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FIG. 2. Image of printed circuit board showing examples of resistors. 

3. POINT DISTRIBUTION MODELS 

Suppose we wish to derive a model to represent the 
shapes of resistors as they appear on printed circuit 
boards, as shown in Fig. 2. Different examples of resistor 
have sufficiently different shapes so that a rigid model 
would not be appropriate. Figure 3 shows some examples 
of resistor boundaries which were obtained from backlit 
images of individual resistors. Our aim is to build a model 
which describes both typical shape and typical variability, 

FIG. 3. Examples of resistor shapes from a training set. 

using the examples in Fig. 3 as a training set. We achieve 
this by representing each example as a set of labeled 
‘landmark’ points, calculating the mean positions of the 
points and the main ways in which the points from each 
example tend to vary from the mean. 

3.1. Labeling the Training Set 

In order to model a shape, we represent it by a set of 
points. For the resistors we have chosen to place points 
around the boundary, as shown in Fig. 4. This must be 
done for each shape in the training set. The labeling of 
the points is important. Each labeled point represents a 
particular part of the object or its boundary. For instance, 
in the resistor model, points 0 and 31 always represent 
the ends of a wire, points 3,  4, and 5 represent one end 
of the body of the resistor, and so on. The method works 
by modeling how different labeled points tend to move 
together as the shape varies. If the labeling is incorrect, 
with a particular point placed at different sites on each 
training shape, the method will fail to capture shape vari- 
ability reliably. In the examples shown below the points 
were either placed manually on each image, or tools were 
used to mark points on boundaries segmented by hand. 
It is worth noting that the points are only placed manually 
during the training phase; it is not necessary to find these 
points in advance when the models are used for image 
interpretation-we describe later how this is achieved 
implicitly using an automatic method. 

Bookstein [16, 171 labeled significant points in images 
of biological and medical specimens in order to examine 
and measure shape changes which could be correlated 
with other factors. We use representative points to cap- 
ture shape constraints and build models which may be 
used to construct plausible new examples of the shape 
for use in image interpretation. Bookstein calls his repre- 
sentative points ‘‘landmark points” and describes them 
in terms of their usefulness. For our purposes they can 
be reduced to three different types: 

1. points marking parts of the object with particular 
application-dependent significance, such as the center of 
an eye in the model of a face or sharp corners of a 
boundary ; 

2. points marking application-independent things, 
such as the highest point on an object in a particular 
orientation, or curvature extrema; 

5 10 
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FIG. 4. Thirty-two point model of the boundary of a resistor. 
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that of the mean. In this case the landmark point positions 
will be chosen to best match the mean, rather than rigidly 
imposed. This leads to better models. 

The convergence condition in the alignment procedure 
can be tested by examining the average difference be- 
tween the transformations required to align each shape 
to the recalculated mean and the identity transformation. 
Experiments show that the method converges to the same 
result independent of which shape is aligned to in the first 
stage, though a formal proof of convergence has yet to 
be devised. We have considered direct methods of solu- 
tion but have found problems with numerical stability. 
Since computational efficiency is not an issue during 
model construction the iterative method is adequate for 
our purposes. 

3.3.  Capturing the Statistics of a Set of 
Aligned Shapes 

In Fig. 5 the coordinates of the some of the vertices of 
the aligned resistor shapes are plotted, with the mean 
shape overlaid. It can be seen that some of the vertices 
show little variability over the training set, while others 
form more diffuse “clouds.” The Point Distribution 
Model (PDM) seeks to model the variation of the coordi- 
nates within these clouds. However, it must be remem- 
bered that landmarks do not move about indepen- 
dently-their positions are partially correlated. 

Each example in the training set, when aligned, can be 
represented by a single point in a 2n dimensional space 
(see Eq. (2)). Thus a set of N example shapes gives a 
cloud of Npoints in this 2n dimensional space. We assume 
that these points lie within some region of the space, 
which we call the “Allowable Shape Domain,” and that 
the points give an indication of the shape and size of this 
region. Every 2n-D point within this domain gives a set 
of landmarks whose shape is broadly similar to that of 
those in the original training set. Thus by moving about 
the Allowable Shape Domain we can generate new shapes 
in a systematic way. The approach given below attempts 
to model the shape of this cloud in a high dimensional 
space, and hence to capture the relationships between the 
positions of the individual landmark points. We make the 
assumption that the cloud is approximately ellipsoidal, 
and proceed to calculate its center (giving a mean shape) 
and its major axes, which give a way of moving around 
the cloud. Later we will discuss the implications of this 
ellipsoid assumption breaking down. 

Given a set of N aligned shapes, the mean shape, SG (the 
center of the ellipsoidal Allowable Shape Domain), is cal- 
culated using 

l N  
% = - E X i  

Ni=, (7) 

*++ i+ + + 

+ rB+ + 
$++ 

FIG. 5. Scatter of some points from aligned set of resistor shapes, 
with the mean shape overlaid. 

The principal axes of a 2n-D ellipsoid fitted to the data 
can be calculated by applying a principal component anal- 
ysis (PCA) to the data [25]. Each axis gives a “mode of 
variation,” a way in which the landmark points tend to 
move together as the shape varies. For each shape in the 
training set we calculate its deviation from the mean, dxi, 
where 
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ance Matrix Derived from a 
Set of Resistor Shapes 
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A1 66% 
A2 8% 
A3 5% 
A4 4% 
A5 3% 
A6 3% 

scription of the deformation. Compare Figs. 7-9 with 
Fig. 3.  Varying the first parameter (b,) adjusts the position 
of the body of the resistor up and down the wire. The 
second parameter varies the shape of the ends of the main 
body of the resistor, between tapered and square. The 
third parameter affects the curvature of the wires at either 
end. Subsequent parameters have smaller effects, includ- 
ing the wires bending in opposite directions. These modes 
of variation effectively capture the variability present in 
the training set. Note that the apparently large variability 
in the positions of individual points in Fig. 3 is in fact 
highly constrained, and the overall variation in shape can 
be described by a small number of modes. This model 
has been used to locate resistors in images (see below). 

3.4.2. Heart Model. Figure 10 shows examples from 
a set of 66 heart chamber boundaries obtained by asking 
a cardiologist to draw over echocardiogram images. Each 

b2 

Q Q  
0 

Q Q  

0.20- 

0 

0 

0 

0 

-2J;iT - bl - 2 J z  

FIG. 7. Effects of varying the first parameter of the resistor model. 

structure is represented by 96 points. This example shows 
how a single model can represent several shapes and the 
spatial relationships between them. The shape variation 
arises from two sources: the training set was derived from 
several individuals, and in each case images were taken 
from different stages in the cardiac cycle, during which 
the sizes and shapes of the heart chambers can change 
considerably. The points represent the boundary of the 
left ventricle, part of the boundary of the right ventricle, 
and part of the boundary of the left atrium (below the 
ventricle in the figures). Table 2 shows the eigenvalues 
of the covariance matrix obtained for the training set. 
Figure 11 suggests that b, and 6, are again independent, 
and Fig. 12 shows reconstructed shapes obtained by vary- 
ing the first four model parameters in turn. The first param- 
eter varies the width of the shape. The second parameter 
varies the appearance of the septum (the wall separating 
the left from the right ventricle). The third and fourth 
parameters vary the shape of the left ventricle and the 
modeled part of the atrium below. It should be emphasized 
that these modes are derived entirely automatically, and 
arise from a statistical analysis of the variation in the data. 
This model has been used to locate the boundary of a 

:. 
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FIG. 6. Plot of b, vs b2 for a training set of resistor shapes. 
FIG. 8. Effects of varying the second parameter of the resistor 

model. 
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-2JIi- b3 - 2& -2A- b4 2A 
FIG. 12. Effects of varying each of the first four parameters of the heart ventricle model individually. 

0 and 6, form curved clouds, the centroids of which do 
not lie inside the clouds. The mean shape generated in 
this way is thus not sufficiently similar to the training set 
to give a satisfactory model. The first three modes of 
variation of a PDM trained on this data are shown in Fig. 
18. Ideally one would expect a model to have the first 
and second order curvature as its first two modes. The 
first mode of the PDM is an approximation to bending, 
generated by fitting straight lines to the curved “clouds” 
of points. The second mode gives the corrections required 
because the linear approximation is poor. The third mode 
of the model gives an approximation to second order bend- 
ing. Figure 19 shows the relationship between the first 
two parameters b,  and b,. Though they are linearly inde- 
pendent, there are clearly nonlinear relationships present. 
One cannot choose the parameters independently and ex- 

FIG. 14. Effects of varying each of the first three parameters of the 
hand model individually. 

FIG. 13. Training set of hand shapes, each defined by 72 points. FIG. 15. Examples from a set of “worm” shapes. 
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the structures of interest in the image. An instance of the 
model is given by 

X = M ( s ,  @[XI + X,, where 

x, = wc, Y,,X,, y,, * * * ,x,, YJT  

M ( s ,  e)[ 3 is a rotation by 8 and a scaling by s, and (17) 

(X,, Y,) is the position of the centre 

of the model in the image frame. 

In this section we describe an iterative method for find- 
ing the appropriate X given a very rough starting approxi- 
mation. Hill et al. have described elsewhere how Genetic 
Algorithm search can be used to find a good starting ap- 
proximation quite rapidly [26, 7, 271; this is applicable if 
there is no prior knowledge of the expected location of 
objects of interest. In practice, the starting value of X 
does not need to be very close to the final solution, so 
that, for many practical applications, the method below 
can be used on its own. 

The idea of the iterative scheme is to place the current 
estimate of X into the image and examine a region of the 
image around each model point to determine a displace- 
ment which moves it to a better location. These local 
deformations are transformed into adjustments to the 
pose, scale, and shape parameters of the PDM. By enforc- 
ing limits on the shape parameters, global shape con- 
straints can be applied ensuring the shape of the model 
example remains similar to those of the training set. The 
procedure is repeated until no significant changes result. 
Because the models attempt to deform to better fit the 
data, but only in ways which are consistent with the 
shapes found in the training set, we call them “Active 
Shape Models” or “Smart Snakes.” 

4.1. Calculating a Suggested Movement for Each 
Model Point 

Given an initial estimate of the positions of a set of 
model points which we are attempting to fit to an image 

Model Boundary 

. ..... L4-- Model Points 

FIG. 20. 
image object. 

Part of a model boundary approximating to the edge of an 

Edge 
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. . . . . . . . . . . . . . . . . . . . . . . . 

FIG. 21. Suggested movement of point is along normal to boundary, 
proportional to maximum edge strength on normal. 

object we need to find a set of adjustments which will 
move each point toward a better position. When the model 
points represent the boundaries of objects (Fig. 20) this 
involves moving them toward the image edges. There are 
various approaches that could be taken. In the examples 
we describe below we use an adjustment along a normal 
to the model boundary toward the strongest image edge, 
with magnitude proportional to the strength of the edge 
(Fig. 21). 

An alternative approach is to generate potential images 
such as those described by Kass et al. [3], possibly one 
for each model point, describing the likelihood of each 
point in the image being the model point. Adjustments to 
each point position can then be derived from the gradient 
of the potential image at the current estimate of the point’s 
position. 

However they are obtained, we denote the set of adjust- 
ments (Fig. 22) as a vector d X ,  where 

dX  = (dX0, dY0, . . . , dX,- 1 ,  d Y,-I)* 

C dX3 

FIG. 22. Adjustments to a set of points. 
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The vector b should lie within a hyperellipsoid about 
the origin. If updating b using (26) leads to an implausible 
shape, i.e., D, > D,,, and the point lies outside the ellip- 
soid, b can be rescaled to lie on the closest point of the 
allowed volume using 

Note that we have already applied implicit limits of 
zero to the weights of the eigenvectors truncated from 
our representation (i.e., bi = 0 V i > t ) .  Once the parame- 
ters have been updated, and limits applied where neces- 
sary, the updated positions of the model points can be 
calculated, and new suggested movements derived for 
each point. The procedure is repeated until no significant 
change results. 

4.4. EXAMPLES USING ACTIVE SHAPE MODELS 

The techniques described above have been used suc- 
cessfully in a number of applications, both industrial and 
medical [26,27,331. Here we show results using the resis- 
tor, heart,, and hand models described above. 

In each case initial estimates of the position, orienta- 
tion, and scale are made, and the shape parameters of the 
Active Shape Model (ASM) are initialized at zero (b,  = 
0 (i = 1, . . . , t ) ) .  Suggested movements for each model 
point are calculated by finding the strongest edge (of the 
correct polarity) along the normal to the boundary at the 
point (see 4.1 and Fig. 21). Adjustments to the parameters 
are calculated and applied, and the process is repeated. 

We have constructed a 
Point Distribution Model of a resistor, representing its 
boundary using 32 points (Section 3.4.1). Figure 23 shows 
an image of part of a printed circuit board with the resistor 
boundary model superimposed as it iterates toward ti corn- 
ponent in the image. We interpolate an additional 32 
points, one between each pair of model points around the 
boundary, and calculate adjustments to each point by 
finding the strongest edge along profiles 20 pixels long 
centred at each point. We use a shape model with 5 de- 
grees of freedom. Each iteration of the ASM takes about 
0.015 s on a Sun Sparc 10 Workstation. 

The method is effective in maintaining the global shape 
constraints of the model and works well, given a suffi- 
ciently good starting approximation; we discuss methods 
of obtaining such initial hypotheses elsewhere [26, 271. 

Figure 24a shows 
an example of an echocardiogram. The left ventricle is in 
the top right of the imaged region. Figure 24b shows the 
initial placement of an instance of the 96 point heart cham- 
ber model described above (Section 3.4.2). Figure 24c 

4.4.1. Locating Resistors. 

4.4.2. Locating Keart Ventricles. 

shows the ASM after 80 iterations. After 200 iterations 
(Fig. 24d) the model gives a good fit to the data. The shape 
model used has 12 degrees of freedom. The adjustments to 
each point are calculated using the strongest edge in a 
smoothed image along a profile 40 pixels long centered 
on the point. Each ASM iteration takes about 0.03 s on 
a Sun Sparc 10 workstation. In this example the model 
is able to infer the position of the parts of the boundary 
where there are missing data (for example, the top of the 
ventricle) by using the knowledge of the expected shape 
combined with information from the areas of the image 
where good evidence for the ventricle wall can be found. 
Without the prior knowledge of the shape given by the 
model it would not be possible to delineate the ventricle 
boundary accurately. Further medical applications of the 
method are described in [33]. 

We have constructed a Point 
Distribution Model of a hand, representing the boundary 
using 72 points (Section 3.4.3). Figure 25 shows an image 
of one of the author’s hands amid some clutter and occlu- 
sion, and an example of the model iterating towards it. 
We calculate adjustments to each point by finding the 
strongest edge on a profile 35 pixels long centred on the 
point. The shape model has 8 degrees of freedom, and 
each ASM iteration takes about 0.02 seconds on a Sun 
Sparc 10 Workstation. The result demonstrates that the 
method can deal with clutter and limited occlusion. 

4.4.3. Locating Hands. 

5. DISCUSSION 

The examples given above illustrate the main features 
of our approach. Using a single method, specialized only 
by training with an appropriate set of examples, we have 
been able to locate automatically a range of structures in 
complex, noisy, and cluttered images. Other examples 
reported elsewhere include faces [36], handwritten char- 
acters [36], anatomical structures in magnetic resonance 
images of the. brain and abdomen [33], vertebrae in radio- 
graphs [33], parts of the foot in pressure images [38] and 
all the parts in an automobile brake assembly [34]. We 
discuss below some of the issues which arise from this 
work, including areas where further development is re- 
quired. 

5.1. Point Distribution Models 

5.1.1. Choice of Model Points and Training Exam- 
ples. It is important that landmark points be placed on 
the training images as accurately as possible. If a point 
is not in the correct position on each shape, the model 
will be unable to correctly represent the position of that 
point-it will include terms describing the noise caused 
by errors in point location. It is equally important to ar- 
range that all the examples used to train the model are 
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FIG. 24. 
200 iterations. 

Echocardiogram image with heart chamber boundary model superimposed, showing its initial position and its location after 80 and 

tools to ease the procedure. Techniques such as those 
described by Burr [29] and the Finite Element Models of 
Sclaroff and Pentland [30] or Nastar and Ayache [21] may 
be able to assist the user in locating point correspondences 
during this training phase. 

In some cases occlusion and noise will lead to images 
in which some points cannot be accurately located. It is 
straightforward to adjust the calculation of mean shape 

(7) and the covariance matrix (9) to give a weighting to 
each point in each example in the training set. When some 
points are missing, the weights for known points can be 
set to unity; those for unknown points can be set to zero. 
As long as only a small proportion of points are missing 
in any one example, and no points are missing from all 
examples, it is still possible to build useful models. 

In principle it is possible to “overtrain” a model. Sup- 
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pose that a large proportion of the examples were close 
to the mean and there were only one or two examples 
demonstrating some particular form of shape variation. 
It is possible that when the number of modes to be used, 
t ,  is chosen, the mode which best describes the infrequent 
shape variation will be truncated, since it will explain only 
a small amount of the total variance. However, since the 
training examples are typically selected and labeled by 
hand, it is time consuming and inefficient to include many 
similar shapes-it is better to choose a variety of different 
shapes which cover the whole range of variations one is 
likely to observe (where such are available). It is at this 
stage that the expert knowledge of a human can play a 
part. 

The heart example illus- 
trates an important fact-that the points used to construct 
a PDM and its derived ASM do not need to belong to a 
single object or shape. The connectivity of the points is 
not relevant to the construction of the PDM and is only 
used by the ASM to determine the direction of the local 
normal at each point during image search. The shapes of 
multiple subparts of a complex assembly and the spatial 
relationships between them can thus be represented by a 
single PDM. A significant advantage of handling shape and 
spatial relationships in a unified way is that correlations 
between the positions and shapes of subcomponents can 
be modeled; this is important, for example, in assemblies 
of interlinked mechanical components or in medical im- 
ages where several organs are “packed” into the same 
cavity. 

5.1.2. Multipart Models. 

5.1.3. Modeling Shape Variation. We showed in Sec- 
tion 3.3 that each aligned shape can be considered as a 
single point in 2n dimensional space, and the whole train- 
ing set as a cloud of points in this space. We attempt to 
model this cloud using the idea of an Allowable Shape 
Domain. For the search method to work effectively it is 
important that this domain be simply connected, and that 
we have a simple method of navigating around the domain. 
The assumption that the domain is an ellipsoid (or a box 
with the same axes) allows us to do this. However, under 
certain circumstances this is an inappropriate model. 
When there is a large degree of bending or relative rotation 
in the training set, nonlinear relationships between land- 
marks can give the cloud in the 2n dimensional space a 
“banana” shape or worse. Under these circumstances, 
as was demonstrated in Section 3.4.4, the ellipsoidal as- 
sumption gives a shape model which can generate shapes 
badly distorted when compared with those from the train- 
ing set. The model is not as specijic as one would like, 
and only a subset of the shapes it can generate would be 
considered “legal.” In some situations this is not disas- 
trous. For instance, the worm model given can be used 
successfully to locate examples of worms in images, but 

the models are more susceptible to being distorted by 
noise or clutter than a more specific model would be. 

A more general model of the allowable shape domain 
could lead to more specific shape models. We have experi- 
mented using polynomials, rather than straight lines, for 
the axes of the domain with encouraging results. Instead 
of each mode defining straight line motion for each point, 
the points follow polynomial curves as the parameter var- 
ies. Results will be presented in a further paper. 

5.1.4. Dealing with Small Numbers of Examples. If 
there are fewer training examples, N ,  than point coordi- 
nates (2n),  as is often the case, particularly for complex 
models, there can be no more than N - 1 degrees of 
freedom in the model. The principal component analysis 
required for the method uses the eigenvectors of the 2n x 
2n matrix S (Eqs. 9, 10). When N < 2n this matrix has 
no more than N - 1 nonzero eigenvalues. Calculating all 
2n eigenvectors in this case is unnecessary. An efficient 
way of calculating the eigenvectors associated with non- 
zero eigenvalues is given in Appendix B. 

Rather than have one 
“flat” PDM representing a complex assembly, it is possi- 
ble to build a hierarchical PDM in which the top layer 
controls the position, scale, orientation, and shape param- 
eters of the layer below. The bottom layer can consist of 
a number of subcomponents, each represented by a “flat” 
PDM. Varying the parameters of the top layer varies the 
pose, scale, and shape of the various components below. 
This avoids problems with the PDM due to rotating sub- 
components-their orientation relative to the rest of the 
assembly can be modeled explicitly, rather than implicitly 
in a single-layer linear PDM. 

It is also easy to extend the Point Distribution Model to 
deal with three dimensional data, for example, 3D medical 
images. We have recently described a successful system 
for automated interpretation of 3D Magnetic Resonance 
images of the brain using a 3D PDM [35]. 

5.1.6. The Chord Length Distribution. Elsewhere we 
have described how to derive a shape model from a train- 
ing set using the distances between pairs of points-a 
Chord Length Distribution Model [31]. The distance, R,, 
between every pair of points i, j in each example of the 
training set is calculated, and the way these chord lengths 
vary is modeled by calculating their mean and covariances 
and applying a Principal Component Analysis. A model 
with several parameters is obtained, which returns sets 
of interpoint distances, R,, from which a new shape can be 
constructed. Varying the parameters varies the distances, 
which causes the shape to change. Such a system is able 
to model the rigid parts of an object regardless of their 
orientation, since it relies only on internal distances. 
Though this technique is sometimes better than the linear 
PDM at representing objects which can bend (such as 

5.1.5. Extensions to the Model. 
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on methods which incorporate the advantages of both 
approaches. 

5.2.4. A Framework f o r  Object Modeling and Recogni- 
tion. We have conducted experiments which suggest 
that our local optimization method can be fruitfully used 
in conjunction with a Genetic Algorithm (GA) search 
[26-281. The GA can be run as a cue generator to produce 
a number of object hypotheses, which can be refined using 
the Active Shape Model. Alternatively, the ASM can be 
combined with the GA search, applying one iteration at 
each generation of the Genetic Algorithm. Both tech- 
niques have been used successfully to locate complex 
structures in a variety of images. 

, 

6. CONCLUSIONS 

We have described Point Distribution Models 
(PDMs)-statistical models of shape which can be con- 
structed from training sets of correctly labeled images. A 
PDM represents an object as a set of labeled points, giving 
their mean positions and a small set of modes of variation 
which describe how the object’s shape can change. 
Applying limits to the parameters of the model enforces 
global shape constraints ensuring that any new examples 
generated are similar to those in the training set. Given 
a set of shape parameters, an instance of the model can 
be calculated rapidly. The models are compact and are 
well suited to generate-and-test image search strategies. 

Active Shape Models (ASMs) exploit the linear formu- 
lation of PDMs in an iterative search procedure capable of 
rapidly locating the modeled structures in noisy, cluttered 
images-even if they are partially occluded. Object identi- 
fication and location are robust because the models are 
specific in the sense that instances are constrained to be 
similar to those in the training set. 

We have demonstrated the ability to create compact 
models of resistors, hearts (in echocardiograms), and 
hands. We have also shown that these models can be 
used successfully in image search. Using a conventional 
workstation a good interpretation can typically be ob- 
tained in seconds. We have described elsewhere various 
other applications in which the same methods have been 
exploited successfully, including examples where very 
complex structures (e.g., faces and automobile brake as- 
semblies) are modeled. The important point to stress is 
that precisely the same software can be applied to a broad 
range of image interpretation problems-both medical 
and industrial-specialized only by training with suitable 
examples. 

We believe that this approach holds considerable prom- 
ise as a practical but generic technique for automated 
image interpretation. 

APPENDIX A: ALIGNING A PAIR OF SHAPES 

Given two similar shapes, x1 and x2, we would like to 
choose a rotation, 8, a scale, s, and a translation, ( tx ,  t,), 
mapping x2 onto M(x2) + t so as to minimize the weighted 
sum 

E = (XI - M ( s ,  8)[x,l - t)TW(X, - M ( s ,  8)[x,l - 0, (3) 

where 

(s cos 8)xjk - (s sin 8)yjk 
(s sin 8)xjk + (s cos 8)yjk 

M ( s ,  8 ) [ x j k ]  = ( 
Yjk 

and W is a diagonal matrix of weights for each point. If 
we write 

a, = s cos 8 ay = s sin 8, 

a least-squares approach (differentiating with respect to 
each of the variables a,, a y ,  t,, ty)  leads to a set of four 
linear equations, 

where 

n- 1 n-1 

xi=  WkXik Yi = WkYik 
k=O k=O 

These can be solved for a,, a y ,  t, , and ty using standard 
matrix methods. 

APPENDIX B: CALCULATING THE EIGENVECTORS OF 
THE COVARIANCE MATRIX WHEN THERE ARE FEWER 

SAMPLES THAN CO-ORDINATES 

When there are fewer training examples, N ,  than point 
co-ordinates, 2n ,  the eigenvectors of the 2n X 2n  covari- 
ance matrix S can be calculated from the eigenvectors of 
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