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Chapter 1

Overview

The ultimate goalof machine vision is imageunderstanding- the abilit y not only to recover image
structure but also to know what it represents. By de¯nition, this involves the use of models
which describe and label the expected structure of the world. Over the past decade,model-
basedvision has beenapplied successfullyto imagesof man-madeobjects. It has proved much
more di±cult to develop model-basedapproaches to the interpretation of images of complex
and variable structures such as facesor the internal organsof the human body (as visualised in
medical images). In such casesit has even beenproblematic to recover imagestructure reliably,
without a model to organisethe often noisy and incomplete image evidence. The key problem
is that of variabilit y. To be useful, a model needsto be speci¯c - that is, to be capable of
representing only 'legal' examplesof the modelled object(s). It has proved di±cult to achieve
this whilst allowing for natural variabilit y. Recent developments have overcomethis problem;
it has beenshown that speci¯c patterns of variabilit y inshape and grey-level appearancecan be
captured by statistical models that can be useddirectly in image interpretation.

This document describes methods of building models of shape and appearance,and how
such models can be usedto interpret images.
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Chapter 2

In tro duction

The majorit y of tasksto which machine vision might usefully beapplied are 'hard'. The examples
we usein this work are from medical imageinterpretation and facerecognition, though the same
considerationsapply to many other domains. The most obvious reasonfor the degreeof di±cult y
is that most non-trivial applications involve the needfor an automated system to 'understand'
the images with which it is presented - that is, to recover image structure and know what
it means. This necessarilyinvolves the use of models which describe and label the expected
structure of the world. Real applications are also typically characterised by the need to deal
with complex and variable structure - facesare a good example - and with imagesthat provide
noisy and possibly incomplete evidence- medical imagesare a good example, where it is often
impossibleto interpret a given image without prior knowledgeof anatomy.

Model-basedmethods o®er potential solutions to all these di±culties. Prior knowledge of
the problem can, in principle, be used to resolve the potential confusion causedby structural
complexity, provide tolerance to noisy or missing data, and provide a means of labelling the
recovered structures. We would like to apply knowledge of the expected shapes of structures,
their spatial relationships, and their grey-level appearanceto restrict our automated system
to 'plausible' interpretations. Of particular interest are generative models - that is, models
su±ciently completethat they areable to generaterealistic imagesof target objects. An example
would be a facemodel capableof generatingconvincing imagesof any individual, changing their
expressionand soon. Using such a model, imageinterpretation can be formulated asa matching
problem: given an image to interpret, structures can be located and labelled by adjusting the
model's parameters in such a way that it generatesan 'imagined image' which is as similar as
possibleto the real thing.

Becausereal applications often involvedealingwith classesof objects which arenot identical -
for examplefaces- weneedto dealwith variabilit y. This leadsnaturally to the ideaof deformable
models- modelswhich maintain the essential characteristicsof the classof objects they represent,
but which can deform to ¯t a range of examples. There are two main characteristics we would
like such models to possess.First, they should be general - that is, they should be capable of
generatingany plausible exampleof the classthey represent. Second,and crucially, they should
be speci¯c - that is, they should only be capableof generating 'legal' examples- because,as we
noted earlier, the whole point of using a model-basedapproach is to limit the attention of our
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system to plausible interpretations. In order to obtain speci¯c models of variable objects, we
needto acquire knowledgeof how they vary.

Model-basedmethods make use of a prior model of what is expected in the image, and
typically attempt to ¯nd the best match of the model to the data in a new image. Having
matched the model, one can then make measurements or test whether the target is actually
present.

This approach is a `top-down' strategy, and di®erssigni¯cantly from `bottom-up' or `data-
driven' methods. In the latter the image data is examined at a low level, looking for local
structures such as edgesor regions, which are assembled into groups in an attempt to identify
objects of interest. Without a global model of what to expect, this approach is di±cult and
prone to failure.

A wide variety of model basedapproacheshave beenexplored (seethe review below). This
work will concentrate on a statistical approach, in which a model is built from analysing the
appearanceof a set of labelledexamples.Where structures vary in shape or texture, it is possible
to learn what are plausible variations and what are not. A new image can be interpretted by
¯nding the best plausible match of the model to the image data. The advantages of such a
method are that

² It is widely applicable. The samealgorithm can be applied to many di®erent problems,
merely by presenting di®erent training examples.

² Expert knowledgecanbecaptured in the systemin the annotation of the training examples.

² The models give a compact representation of allowable variation, but are speci¯c enough
not to allow arbitrary variation di®erent from that seenin the training set.

² The systemneedmake few prior assumptionsabout the nature of the objects being mod-
elled, other than what it learnsfrom the training set. (For instance, there are no boundary
smoothnessparameters to be set.)

The models described below require a user to be able to mark `landmark' points on each of
a set of training images in such a way that each landmark represents a distinguishable point
present on every example image. For instance, when building a model of the appearanceof an
eye in a face image, good landmarks would be the cornersof the eye, as thesewould be easyto
identify and mark in each image. This constrains the sorts of applications to which the method
can be applied - it requires that the topology of the object cannot changeand that the object is
not so amorphousthat no distinct landmarks can be applied. Unfortunately this rules out such
things as cells or simple organismswhich exhibit large changesin shape.

This report is in two main parts. The ¯rst describes building statistical models of shape
and appearance. The seconddescribeshow thesemodels can be used to interpret new images.
This involves minimising a cost function de¯ning how well a particular instance of a model
describes the evidencein the image. Two approaches are described. The ¯rst, Activ e Shape
Models,manipulates a shape model to describe the location of structures in a target image. The
second,Activ e AppearanceModels (AAMs), manipulate a model cabable of synthesising new
imagesof the object of interest. The AAM algorithm seeksto ¯nd the model parameterswhich
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generatea synthetic imageas closeas possibleto the target image. In each casethe parameters
of the best ¯tting model instance can be used for further processing,such as for measurement
or classi¯cation.



Chapter 3

Background

There is now a considerableliterature on using deformablemodels to interpret images. Below I
mention only a few of the relevant works. (One day I may get the time to extend this review to
be more comprehensive).

The simplest model of an object is to usea typical exampleasa `goldenimage'. A correlation
method can be used to match (or register) the golden image to a new image. If structures in
the golden image have been labelled, this match then gives the approximate position of the
structures in the new image. For instance, one can determine the approximate locations of
many structures in an MR imageof a brain by registering a standard image,wherethe standard
image has been suitably annotated by human experts. However, the variabilit y of both shape
and texture of most targets limits the precision of this method.

One approach to representing the variations observed in an image is to `hand-craft' a model
to solve the particular problem currently addressed. For instance Yuille et al [129] build up a
model of a human eye using combinations of parameterisedcircles and arcs. Though this can
be e®ective it is complicated, and a completely new solution is required for every application.

Staib and Duncan [111] represent the shapes of objects in medical images using fourier
descriptorsof closedcurves. The choiceof coe±cients a®ectsthe curvecomplexity. Placing limits
on each coe±cient constrains the shape somewhatbut not in a systematic way. It can be shown
that such fourier models can be made directly equivalent to the statistical models described
below, but are not as general. For instance, they cannot easily represent open boundaries.

Kass et al [65] intro duced Activ e Contour Models (or `snakes') which are energyminimising
curves. In the original formulation the energy has an internal term which aims to impose
smoothness on the curve, and an external term which encouragesmovement toward image
features. They are particularly useful for locating the outline of general amorphous objects.
However, sinceno model (other than smoothness) is imposed,they are not optimal for locating
objects which have a known shape.

Alternativ e statistical approaches are described by Grenander et al [46] and Mardia et al
[78]. These are, however, di±cult to use in automated image interpretation. Goodall [44]
and Bookstein [8] use statistical techniques for morphometric analysis, but do not addressthe
problem of automated interpretation. Kirb y and Sirovich [67] describe statistical modelling of
grey-level appearance(particularly for face images)but do not addressshape variabilit y.

9
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A more comprehensive survey of deformablemodels usedin medical image analysis is given
in [81].

Various approaches to modelling variabilit y have been described. The most common is to
allow a protot ype to vary according to somephysical model. Bajcsy and Kovacic [1] describe
a volume model (of the brain) that deforms elastically to generatenew examples. Christensen
et. al.[19, 18] describe a viscous°ow model of deformation which they also apply to the brain,
but is very computationally expensive. Park et. al.[91] and Pentland and Sclaro®[93] both
represent the outlines or surfacesof protot ype objects using ¯nite element methods and describe
variabilit y in terms of vibrational modes though there is no guarantee that this is appropriate.
Turk and Pentland [116] useprincipal component analysis to describe the intensity patterns in
faceimagesin terms of a set of basisfunctions, or `eigenfaces'.Though valid modesof variation
are learnt from a training set, and are more likely to be more appropriate than a `physical'
model, the representation is not robust to shape changes,and doesnot deal well with variabilit y
in poseand expression.Eigenfacescan, however, be matched to imageseasily using correlation
basedmethods.

Poggio and co-workers [39] [62] synthesize new views of an object from a set of example
views. They ¯t the model to an unseenview by a stochastic optimization procedure. This
is slow, but can be robust becauseof the quality of the synthesized images. Cootes et al [24]
describe a 3D model of the grey-level surface,allowing full synthesis of shape and appearance.
However, they do not suggesta plausible search algorithm to match the model to a new image.
Nastar et. al.[89] describe a related model of the 3D grey-level surface,combining physical and
statistical modesof variation. Though they describe a search algorithm, it requiresa very good
initialization. Lades et. al.[73] model shape and somegrey level information using an elastic
meshand Gabor jets. However, they do not imposestrong shape constraints and cannot easily
synthesizea new instance.

In the ¯eld of medical image interpretation there is considerableinterest in non-linear image
registration. Typically this involves¯nding a dense°ow ¯eld which mapsoneimageonto another
soasto optimize a suitable measureof di®erence(egsumof squareserror or mutual information).
This can be treated as interpretation through synthesis, where the synthesized image is simply
a deformed version of one of the ¯rst image. Examples of such algorithms are reviewed in [77],
and include the work of Christensen [19, 18], Collins et. al.[21], Thirion [114] and Lester et.
al.[75] amongst others.

In developing our new approach we have bene¯ted from insights provided by two earlier
papers. Covell [26] demonstrated that the parametersof an eigen-featuremodel can be usedto
drive shape model points to the correct place. The AAM described here is an extension of this
idea. Black and Yacoob [7] uselocal, hand-crafted models of image°ow to track facial features,
but do not attempt to model the whole face. The AAM can be thought of asa generalizationof
this, in which the image di®erencepatterns corresponding to changesin each model parameter
are learnt and usedto modify a model estimate.

In a parallel development Sclaro®and Isidoro have demonstrated `Active Blobs' for tracking
[101]. The approach is broadly similar in that they use image di®erencesto drive tracking,
learning the relationship between image error and parameter o®set in an o®-line processing
stage. The main di®erenceis that Activ e Blobs are derived from a single example, whereas
Activ eAppearanceModelsusea training setof examples.The former usea singleexampleasthe
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original model template, allowing deformations consistent with low energy mesh deformations
(derived using a Finite Element method). A simply polynomial model is usedto allow changes
in intensity acrossthe object. AAMs learn what are valid shape and intensity variations from
their training set.



Chapter 4

Statistical Shape Mo dels

Here we describe the statistical models of shape which will be used to represent objects in
images. The shape of an object is represented by a set of n points, which may be in any
dimension. Commonly the points are in two or three dimensions. Shape is usually de¯ned as
that quality of a con¯guration of points which is invariant under sometransformation. In two
or three dimensionswe usually considerthe Similarit y transformation (translation, rotation and
scaling). The shape of an object is not changedwhen it is moved, rotated or scaled.

Recent advancesin the statistics of shape allow formal statistical techniques to be applied
to setsof shapes,making possibleanalysis of shape di®erencesand changes[32].

Our aim is to derive models which allow us to both analysenew shapes, and to synthesise
shapessimilar to those in a training set. The training set typically comesfrom hand annotation
of a set of training images, though automatic landmarking systemsare being developed (see
below). By analysing the variations in shape over the training set, a model is built which can
mimic this variation.

Much of the following will describe building models of shape in an arbitrary d-dimensional
space,under a similarit y transform Tµ (where µ are the parametersof the transformation). Most
exampleswill be given for two dimensional shapes under the Similarit y transformation (with
parametersof translation, scaling and orientation), as theseare the easiestto represent on the
page,and probably the most widely studied.

Note however that the dimensionsneednot always be in space,they can equally be time or
intensity in an image. For instance

3D Shap es can either be composedof points in 3D space,or could be points in 2D with a time
dimension (for instance in an image sequence)

2D Shap es can either be composedof points in 2D space,or onespaceand onetime dimension

1D Shap es can either be composedof points along a line, or, as is usedbelow, intensity values
sampledat particular positions in an image.

There an numerousother possibilities. In each casea suitable transformation must bede¯ned
(eg Similarit y for 2D or global scaling and o®setfor 1D).

12



4.1. SUITABLE LANDMARKS 13

4.1 Suitable Landmarks

Good choices for landmarks are points which can be consistently located from one image to
another. The simplest method for generating a training set is for a human expert to annotate
each of a series of images with a set of corresponding points. In practice this can be very
time consuming, and automatic and semi- automatic methods are being developed to aid this
annotation.

In two dimensionspoints could be placedat clear cornersof object boundaries,`T' junctions
between boundaries or easily located biological landmarks. However, there are rarely enough
of such points to give more than a sparsedesription of the shape of the target object. This
list would be augmented with points along boundarieswhich are arranged to be equally spaced
betweenwell de¯ned landmark points (Figure 4.1).

Object Boundary

High Curvature

`T' Junction

Equally spaced
intermediate points

Figure 4.1: Good landmarks are points of high curvature or junctions. Intermediate points can
be usedto de¯ne boundary more precisely.

If a shape is described n points in d dimensions we represent the shape by a nd element
vector formed by concatenating the elements of the individual point position vectors.

For instance, in a 2-D image we can represent the n landmark points, f (x i ; yi )g, for a single
exampleas the 2n element vector, x , where

x = (x1; : : : ; xn ; y1; : : : ; yn )T (4.1)

Given s training examples,we generates such vectors x j . Before we can perform statistical
analysison thesevectors it is important that the shapesrepresented are in the sameco-ordinate
frame. We wish to remove variation which could be attributable to the allowed global transfor-
mation, T.

4.2 Aligning the Training Set

There is considerableliterature on methods of aligning shapesinto a commonco-ordinate frame,
the most popular approach being Procrustes Analysis [44]. This aligns each shape so that the
sum of distancesof each shape to the mean (D =

P
jx i ¡ ¹x j2) is minimised. It is poorly de¯ned

unlessconstraints are placedon the alignment of the mean(for instance,ensuringit is centred on
the origin, has unit scaleand some¯xed but arbitrary orientation). Though analytic solutions
exist to the alignment of a set, a simple iterativ e approach is as follows:
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1. Translate each exampleso that its centre of gravit y is at the origin.

2. Chooseone exampleas an initial estimate of the mean shape and scaleso that j ¹x j = 1.

3. Record the ¯rst estimate as ¹x0 to de¯ne the default referenceframe.

4. Align all the shapeswith the current estimate of the mean shape.

5. Re-estimatemean from aligned shapes.

6. Apply constraints on the current estimate of the mean by aligning it with ¹x0 and scaling
so that j ¹x j = 1.

7. If not converged,return to 4.

(Convergenceis declaredif the estimate of the meandoesnot changesigni¯cantly after an
iteration)

The operations allowed during the alignment will a®ectthe shape of the ¯nal distribution.
For two and three dimensionalshapesa commonapproach is to centre each shape on the origin,
scaleeach so that jx j = 1 and then choose the orientation for each which minimises D . The
scaling constraint meansthat the aligned shapes x lie on a hypersphere,which can intro duce
signi¯cant non-linearities if large shape changesoccur. For instance, Figure 4.2(a) shows the
cornersof a set of rectangleswith varying aspect ratio (a linear change), aligned in this fashion.
The scaleconstraint ensuresall the corners lie on a circle about the origin. A linear change in
the aspect ratio intro ducesa non-linear variation in the point positions. If we can arrange that
the points lie closer to a straight line, it simpli¯es the description of the distribution usedlater
in the analysis.

An alternativ e approach is to allow both scaling and orientation to vary when minimising
D . SupposeTs;µ(x) scalesthe shape, x, by s and rotates it by µ.

To align two 2D shapes,x1 and x2, each centred on the origin (x1:1 = x2:1 = 0), we choose
a scale,s, and rotation, µ, soasto minimise jTs;µ(x1) ¡ x2j2, the sum of squaredistancesbetween
points on shape x2 and those on the scaledand rotated version of shape x 1. Appendix B gives
the optimal solution.

If this approach is usedto align the set of rectangles,Figure 4.2(b), their cornerslie on circles
o®setfrom the origin. This intro duceseven greater non-linearity than the ¯rst approach.

A third approach is to transform each shape into the tangent space to the mean so as to
minimise D . The tangent spaceto x t is the hyperplaneof vectorsnormal to x t , passingthrough
x t . ie All the vectors x such that (x t ¡ x):x t = 0, or x:x t = 1 if jx t j = 1. Figure 4.2(c)
demonstrates that for the rectangles this leads to the corners varying along a straight lines,
orthogonal to the lines from the origin to the corners of the mean shape (a square). This
preserves the linear nature of the shape variation. The simplest way to achieve this is to align
the shapeswith the mean, allowing scaling and rotation, then project into the tangent spaceby
scaling x by 1=(x:¹x).

Di®erent approachesto alignment can produce di®erent distributions of the aligned shapes.
We wish to keep the distribution compact and keep any non-linearities to a minimum, so use
the tangent spaceapproach in the following.
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c) Tangent space

Figure 4.2: Aligning rectangleswith varying aspect ration. a) All shapes set to unit scale,b)
Scaleand angle free, c) Align into tangent space

4.3 Mo delling Shape Variation

Supposenow we have s sets of points x i which are aligned into a common co-ordinate frame.
These vectors form a distribution in the nd dimensional spacein which they live. If we can
model this distribution, we can generatenew examples,similar to those in the original training
set, and we can examinenew shapesto decidewhether they are plausible examples.

In particular we seeka parameterisedmodel of the form x = M (b), where bis a vector of
parametersof the model. Such a model can be usedto generatenew vectors, x . If we can model
the distribution of parameters, p(b we can limit them so that the generatedx 's are similar to
those in the training set. Similarly it should be possibleto estimate p(x) using the model.

To simplify the problem, we ¯rst wish to reduce the dimensionality of the data from nd to
something more manageable.An e®ective approach is to apply Principal Component Analysis
(PCA) to the data. The data form a cloud of points in the nd-D space. PCA computes the
main axesof this cloud, allowing one to approximate any of the original points using a model
with fewer than nd parameters. The approach is as follows.

1. Compute the mean of the data,

¹x =
1
s

sX

i =1

x i (4.2)

2. Compute the covariance of the data,

S =
1

s ¡ 1

sX

i =1

(x i ¡ ¹x)(x i ¡ ¹x)T (4.3)

3. Compute the eigenvectors, Ái and corresponding eigenvalues ¸ i of S (sorted so that ¸ i ¸
¸ i +1 ). When there are fewer samples than dimensions in the vectors, there are quick
methods of computing theseeigenvectors - seeAppendix A.
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If © contains the t eigenvectors corresponding to the largest eigenvalues, then we can then
approximate any of the training set, x using

x ¼ ¹x + ©b (4.4)

where © = (Á1jÁ2j : : : jÁt ) and b is a t dimensional vector given by

b = ©T (x ¡ ¹x) (4.5)

The vector b de¯nes a set of parametersof a deformablemodel. By varying the elements of
b we can vary the shape, xusing Equation 4.4. The variance of the i th parameter, bi , acrossthe
training set is given by ¸ i . By applying limits of § 3

p
¸ i to the parameter bi we ensurethat the

shape generatedis similar to those in the original training set.
The number of eigenvectors to retain, t, can be chosenso that the model represents some

proportion (eg 98%) of the total variance of the data, or so that the residual terms can be
considerednoise. Seesection 4.4 below.

For instance, Figure 4.3 shows the principal axes of a 2D distribution of vectors. In this
caseany of the points can be approximated by the nearestpoint on the principal axis through
the mean. x ¼ x0 = ¹x + bp where b is the distance along the axis from the mean of the closest
approach to x. Thus the two dimensional data is approximated using a model with a single
parameter, b. Similarly shape modelscontrolling many hundredsof model points may needonly
a few parameters to approximate the examplesin the original training set.

x

p

b

x

p

x

x'

Figure 4.3: Applying a PCA to a set of 2D vectors. p is the principal axis. Any point xcan be
approximated by the nearestpoint on the line, x 0 (seetext).

4.4 Choice of Num ber of Mo des

The number of modes to retain, t, can be chosenin several ways. Probably the simplest is to
chooset so as to explain a given proportion (eg 98%) of the variance exhibited in the training
set.

Let ¸ i be the eigenvaluesof the covariancematrix of the training data. Each eigenvalue gives
the variance of the data about the mean in the direction of the corresponding eigenvector. The
total variance in the training data is the sum of all the eigenvalues,VT =

P
¸ i .
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We can then choosethe t largest eigenvaluessuch that

tX

i =1

¸ i ¸ f vVT (4.6)

where f v de¯nes the proportion of the total variation one wishes to explain (for instance,
0.98 for 98%).

If the noiseon the measurements of the (aligned) point positions has a variance of ¾2
n , then

we could choosethe largest t such that ¸ t > ¾2
n , assumingthat the eigenvaluesare sorted into

descendingorder.
An alternativ e approach is to choose enough modes that the model can approximate any

training example to within a given accuracy. For instance, we may wish that the best approxi-
mation to an examplehas every point within one pixel of the corresponding examplepoints.

To achieve this we build models with increasing numbers of modes, testing the abilit y of
each to represent the training set. We choosethe ¯rst model which passesour desiredcriteria.

Additional con¯dencecan be obtained by performing this test in a miss-one-outmanner. We
choosethe smallest t for the full model such that models built with t modes from all but any
one examplecan approximate the missing examplesu±ciently well.

4.5 Examples of Shape Mo dels

Figure 4.4 shows the outlines of a hand usedto train a shape model. They were obtained from
a set of imagesof the authors hand. Each is represented by 72 landmark points. The endsand
junctions of the ¯ngers are true landmarks, other points wereequally spacedalong the boundary
between.

Figure 4.4: Example shapesfrom training set of hand outlines

Building a shape model from 18 such examples leads to a model of hand shape variation
whosemodesare demonstrated in ¯gure 4.5.
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Mode 1

Mode 2

Mode 3

Figure 4.5: E®ect of varying each of ¯rst three hand model shape parameters in turn between
§ 3 s.d.

Images of the face can demonstrate a wide degreeof variation in both shape and texture.
Appearancevariations are causedby di®erencesbetweenindividuals, the deformation of an indi-
vidual facedue to changesin expressionand speaking, and variations in the lighting. Typically
one would like to locate the features of a face in order to perform further processing(seeFig-
ure 4.6). The ultimate aim varies from determining the identit y or expressionof the person to
deciding in which direction they are looking [74].

Figure 4.6: Example face image annotated with landmarks

Figure 4.7 shows example shapes from a training set of 300 labelled faces(seeFigure 4.6
for an example image showing the landmarks). Each image is annotated with 133 landmarks.
The shape model has 36 modes, which explain 98% of the variance in the landmark positions
in the training set. Figure 4.8 shows the e®ectof varying the ¯rst three shape parameters in
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turn between§ 3 standard deviations from the meanvalue, leaving all other parametersat zero.
These modes explain global variation due to 3D pose changes,which causemovement of all
the landmark points relative to one another. Lesssigni¯cant modes causesmaller, more local
changes. The modes obtained are often similar to those a human would chooseif designing a
parameterisedmodel. However, they are derived directly from the statistics of a training set
and will not always separateshape variation in an obvious manner.

Figure 4.7: Example shapesfrom training set of faces

Mode 1

Mode 2

Mode 3

Figure 4.8: E®ect of varying each of ¯rst three face model shape parameters in turn between
§ 3 s.d.

4.6 Generating Plausible Shapes

If we wish to use the model x = ¹x + ©b to generateexamplessimilar to the training set, we
must choosethe parameters,b, from a distribution learnt from the training set. Thus we must
estimate this distribution, p(b), from the training set. We will de¯ne a set of parameters as
`plausible' if p(b) ¸ pt , where pt is somesuitable threshold on the p.d.f.. pt is usually chosenso
that someproportion (eg 98%) of the training set passesthe threshold.

If we assumethat bi are independent and gaussian,then
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logp(b) = ¡ 0:5
tX

i =1

b2
i

¸ i
+ const (4.7)

To constrain b to plausible values we can either apply hard limits to each element, bi , (for
instance jbi j · 3

p
¸ i ), or we can constrain b to be in a hyperellipsoid,

Ã tX

i =1

b2
i

¸ i

!

· M t (4.8)

Where the threshold, M t , is chosenusing the Â2 distribution.

4.6.1 Non-Linear Mo dels for PDF

Approximating the distribution as a gaussian(or as uniform in a hyper-box) works well for a
wide variety of examples,but cannot adequately represent non-linear shape variations, such as
those generatedwhen parts of the object rotate, or there are changesin viewing position of a
3D object. There have beenseveral non-linear extensionsto the PDM, either using polynomial
modes [109], using a multi-la yer perceptron to perform non-linear PCA [108] or using polar
co-ordinatesfor rotating sub-parts of the model [51].

However, all theseapproachesassumethat varying the parametersb within given limits will
always generateplausible shapes,and that all plausible shapescan be so generated. This is not
always the case.For instance, if a sub-part of the shape can appear in one of two positions, but
not in-between, then the distribution has two separatepeaks,with an illegal spacein between.
Without imposing more complex constraints on the parametersb, models of the form x = f (b)
are likely to generateillegal shapes.

For instance, consider the set of synthetic training examplesshown in Figure 4.9. Here 28
points are used to represent a triangle rotating inside a square (there are 3 points along each
line segment). If we apply PCA to the data, we ¯nd there are two signi¯cant components.
Projecting the 100 original shapesx into the 2-D spaceof b (using (4.5)) givesthe distribution
shown in Figure 4.10. This is clearly not gaussian. To generatenew examplesusing the model
which are similar to the training set we must constrain the parametersb to be near the edgeof
the circle. Points at the mean (b = 0) should actually be illegal.

One approach would be to usean alternativ e parameterisation of the shapes. Heapand Hogg
[51] usepolar coordinates for someof the model points, relative to other points. A more general
approach is to usenon-linear models of the probabilit y density function, p(b). This allows the
modelling of distinct classesof shape as well as non-linear shape variation, and doesnot require
any labelling of the classof each training example.

A useful approach is to model p(b) using a mixture of gaussiansapproximation to a kernel
density estimate of the distribution.

pmix (x) =
mX

j =1

wj G(x : ¹ j ; Sj ) (4.9)

SeeAppendix G for details.
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Figure 4.9: Examplesfrom train-
ing set of synthetic shapes
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Figure 4.10: Distribution of bfor
100 synthetic shapes

Example of the PDF for a Set of Shapes

Figure 4.11 shows the p.d.f. estimated for b for the rotating triangle set described above. The
adaptivekernelmethod wasused,with the initial h estimatedusingcross-validation. The desired
number of components can be obtained by specifying an acceptableapproximation error. Figure
4.12 shows the estimate of the p.d.f. obtained by ¯tting a mixture of 12 gaussiansto the data.

Figure 4.11: Plot of pdf esti-
mated using the adaptive kernel
method

Figure 4.12: Plot of pdf approxi-
mation using mixture of 12 gaus-
sians

4.7 Finding the Nearest Plausible Shape

When ¯tting a model to a new set of points, we have the problem of ¯nding the nearestplausible
shape, x to a target shape, x '. The ¯rst estimate is to project into the parameter space,giving
b0 = ©T (x0¡ ¹x).

We de¯ne a set of parameters as plausible if p(b) ¸ pt . If p(b) < pt we wish to move x to
the nearestpoint at which it is consideredplausible.
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If our model of p(b) is asa singlegaussian,we can simply truncate the elements bi such that
jbi j · 3

p
¸ i . Alternativ ely we can scaleb until

Ã tX

i =1

b2
i

¸ i

!

· M t (4.10)

Where the threshold, M t , is chosenusing the Â2 distribution.
If, however, we use a mixture model to represent p(b), and p(b0) < pt , we must ¯nd the

nearestb such that p(b) ¸ pt . In practice this is di±cult to locate, but an acceptableapproxi-
mation can be obtained by gradient ascent - simply move uphill until the threshold is reached.
The gradient of (4.9) is straightforward to compute, and suitable step sizescan be estimated
from the distance to the mean of the nearestmixture component.

For instance,Figure 4.13shows an exampleof the synthetic shape usedabove, with its points
perturb ed by noise. Figure 4.14 shows the result of projecting into the spaceof b and back.
There is signi¯cant reduction in noise, but the triangle is unacceptably large compared with
examplesin the training set. Figure 4.15 shows the shape obtained by gradient ascent to the
nearestplausible point using the 12 component mixture model estimate of p(b). The triangle is
now similar in scaleto those in the training set.

Figure 4.13: Shape with
noise

Figure 4.14: Projection
into b-space

Figure 4.15: Nearby
plausible shape

4.8 Fitting a Mo del to New Poin ts

An example of a model in an image is described by the shape parameters, b, combined with
a transformation from the model co-ordinate frame to the image co-ordinate frame. Typically
this will be a Similarit y transformation de¯ning the position, (X t ; Yt ), orientation, µ, and scale,
s, of the model in the image.

The positions of the model points in the image, x, are then given by

x = TX t ;Yt ;s;µ( ¹x + ©b ) (4.11)

Where the function TX t ;Yt ;s;µ performs a rotation by µ, a scaling by s and a translation by
(X t ; Yt ). For instance, if applied to a single point (xy),

TX t ;Yt ;s;µ

Ã
x
y

!

=

Ã
X t

Yt

!

+

Ã
scosµ ssinµ

¡ ssinµ scosµ

! Ã
x
y

!

(4.12)



4.9. TESTING HOW WELL THE MODEL GENERALISES 23

Supposenow we wish to ¯nd the best poseand shape parametersto match a model instance
xto a newset of imagepoints, Y . Minimising the sum of squaredistancesbetweencorresponding
model and image points is equivalent to minimising the expression

jY ¡ TX t ;Yt ;s;µ( ¹x + ©b )j2 (4.13)

A simple iterativ e approach to achieving this is as follows:

1. Initialise the shape parameters,b, to zero

2. Generate the model instance x = ¹x + ©b

3. Find the poseparameters(X t ; Yt ; s; µ) which best map xto Y (SeeAppendix B).

4. Invert the poseparametersand useto project Y into the model co-ordinate frame:

y = T ¡ 1
X t ;Yt ;s;µ(Y ) (4.14)

5. Project y into the tangent plane to ¹x by scaling by 1=(y :¹x).

6. Update the model parameters to match to y

b = ©T (y ¡ ¹x) (4.15)

7. Apply constraints on b(see4.6,4.7above).

8. If not converged,return to step 2.

Convergenceis declared when applying an iteration producesno signi¯cant change in the
poseor shape parameters. This approach usually convergesin a few iterations.

4.9 Testing How Well the Mo del Generalises

The shape models described use linear combinations of the shapes seenin a training set. In
order to be able to match well to a new shape, the training set must exhibit all the variation
expectedin the classof shapesbeing modelled. If it doesnot, the model will be over-constrained
and will not be able to match to sometypesof new example. For instance,a model trained only
on squareswill not generaliseto rectangles.

One approach to estimating how well the model will perform is to use jack-knife or miss-
one-out experiments. Given a training set of s examples,build a model from all but one, then
¯t the model to the examplemissedout and record the error (for instanceusing (4.13)). Repeat
this, missing out each of the s examples in turn. If the error is unacceptably large for any
example,more training examplesare probably required. However, small errors for all examples
only mean that there is more than one example for each type of shape variation, not that all
typesare properly covered (though it is an encouragingsign).

Equation (4.13) gives the sum of square errors over all points, and may averageout large
errors on one or two individual points. It is often wise to calculate the error for each point and
ensurethat the maximum error on any point is su±ciently small.
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4.10 Estimating p(shape)

Given a con¯guration of points, x , we would like to be able to decidewhether x is a plausible
exampleof the classof shapesdescribed by our training set.

The original training set, oncealigned, can be considereda set of samplesfrom a probabilit y
density function, p(x), which we must estimate.

Any shape can be approximated by the nearestpoint in the sub-spacede¯ned by the eigen-
vectors, ©. A point in this subspaceis de¯ned by a vector of shape parameters,b.

Let dx = x ¡ ¹x. Then the best (least squares)approximation is given by x 0 = ¹x + ©b where
b = ©T dx.

The residual error is then r = dx ¡ ©b .
The squaremagnitude of this is

jr j2 = r T r
= dxT dx ¡ 2dxT ©b + bT ©T ©b

jr j2 = jdx j2 ¡ jbj2
(4.16)

Applying a PCA generatestwo subspaces(de¯ned by © and its null-space) which split the
shape vector into two orthogonal components with coe±cients described by the elements of band
r , which we assumeto be independent.

Thus
p(x) = p(r ):p(b) (4.17)

logp(x) = logp(r ) + logp(b) (4.18)

If we assumethat each element of r is independent and distributed as a gaussian with
variance ¾2

r , then

p(r ) / exp(¡ 0:5jr j2=¾2
r )

logp(r ) = ¡ 0:5jr j2=¾2
r + const

(4.19)

The distribution of parameters, p(b), can be estimated as described in previous sections.
Given this, we can estimate the p.d.f.at a new shape, x, using

logp(x) = logp(b) ¡ 0:5(jdx j2 ¡ jbj2)=¾2
r + const (4.20)

The value of ¾2
r can be estimated from miss-one-outexperiments on the training set.

Non-linear extensionsof shape models using kernel basedmethods have been presented by
Romdani et. al.[99] and Twining and Taylor [117], amongst others.

4.11 Relaxing Shape Mo dels

When only a few examplesare available in a training set, the model built from them will be
overly constrained - only variation observed in the training set is represented.

It is possibleto arti¯cially add extra variation, allowing more °exibilit y in the model.
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4.11.1 Finite Elemen t Mo dels

Finite Element Methods allow us to take a single shape and treat it as if it were made of an
elastic material. The techniquesof Modal Analysis give a set of linear deformations of the shape
equivalent to the resonant modesof vibration of the original shape. Such an approach has been
used by several groups to develop deformable models for computer vision, including Pentland
and Sclaro®[93], Karaolani et. al.[64] and Nastar and Ayache [88]. However, the modes are
somewhatarbitrary and may not be representativ e of the real variations which occur in a class
of shapes.

A elastic body can be represented as a set of n nodes, a mass matrix M and a sti®ness
matrix K . In two dimensionsthese are both 2n £ 2n. Modal Analysis allows calculation of a
set of vibrational modesby solving the generalisedeigenproblem

K© v = M© v­ 2 (4.21)

where ©v is a matrix of eigenvectors representing the modesand ­ 2 = diag(! 2
1; : : : ; ! 2

n ) is a
diagonal matrix of eigenvalues. (! i is the frequencyof the i th mode). The energyof deformation
in the i th mode is proportional to ! 2

i .
If we assumethe structure can be modelled as a set of point unit massesthe massmatrix,

M , becomesthe identit y, and (4.21) simpli¯es to computing the eigenvectors of the symmetric
matrix K ,

K© v = ©v­ 2 (4.22)

Thus if u is a vector of weights on each mode, a new shape can be generatedusing

x = ¹x + ©vu (4.23)

4.11.2 Com bining Statistical and FEM Mo des

Equation 4.23is clearly related to the form of the statistical shape modelsdescribed above. Both
are linear models. This suggeststhat there is a way to combine the two approaches. If we have
just one example shape, we cannot build a statistical model and our only option is the FEM
approach to generating modes. If, however, we have two examples,we can build a statistical
model, but it would only have a single mode, linearly interpolating betweenthe two shapes. It
would have no way of modelling other distortions.

One approach to combining FEMs and the statistical models is as follows. We calculate the
modesof vibration of both shapes, then use them to generatea large number of new examples
by randomly selecting model parameters u using somesuitable distribution. We then train a
statistical model on this new set of examples. The resulting model would then incorporate a
mixture of the modes of vibration and the original statistical mode interpolating between the
original shapes.

Such a strategy would be applicable for any number of shapes. However, we should decrease
the magnitude of the allowed vibration modes as the number of examples increasesto avoid
incorporating spurious modes. As we get more training examples, we need rely less on the
arti¯cial modesgeneratedby the FEM.
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It would be time consumingand error prone to actually generatelarge numbers of synthetic
examples from our training set. Fortunately the e®ectcan be achieved with a little matrix
algebra.

For simplicit y and e±ciency, we assumethe modes of vibration of any example can be
approximated by those of the mean.

Let ¹x be the meanof a set of s examples,S be the covarianceof the set and © v be the modes
of vibration of the mean derived by FEM analysis.

Supposewewereto generatea setof examplesby selectingthe valuesfor u from a distribution
with zero mean and covariance Su . The distribution of ©vu then has a covariance of

©vSu©T
v (4.24)

and the distribution of x = x i + ©vu will have a covariance of

C i = x i xT
i + ©vSu©T

v (4.25)

about the origin.
If we treat the elements of u as independent and normally distributed about zero with a

variance on ui of ®¸ ui , then

Su = ®¤ u (4.26)

where ¤ u = diag(¸ u1 : : :).
The covariance of x i about the origin is then

C i = x i xT
i + ®©v¤ u©T

v (4.27)

If the frequencyassociated with the j th mode is ! j then we will choose

¸ uj = ! ¡ 2
j (4.28)

This givesa distribution which has large variation in the low frequency, large scaledeforma-
tion modes,and low variation in the more local high frequencymodes.

One can justify the choice of ¸ uj by considering the strain energy required to deform the
original shape, ¹x, into a new examplex. The contribution to the total from the j th mode is

E j =
1
2

u2
j ! 2

j (4.29)

The form of Equation 4.29 ensuresthat the energy tends to be spread equally amonst all
the modes.

The constant ® controls the magnitude of the deformations, and is discussedbelow.
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4.11.3 Com bining Examples

To calculate the covarianceabout the origin of a set of examplesdrawn from distributions about
m original shapes, f x i g, we simply take the mean of the individual covariances

s0 = 1
m

P m
i=1

³
®©v¤ u©T

v + x i xT
i

´

= ®©v¤ u©T
v + 1

m
P m

i=1 x i xT
i

= ®©v¤ u©T
v + Sm + ¹x ¹xT

(4.30)

where Sm is the covariance of the m original shapesabout their mean.
Thus the covariance about the mean ¹x is then

S = S0¡ ¹x ¹xT

= Sm + ®©v¤ u©T
v

(4.31)

We can then build a combined model by computing the eigenvectors and eigenvaluesof this
matrix to give the modes. When ® = 0 (the magnitude of the vibrations is zero) S = Sm and
we get the result we would from a pure statistical model.

When we allow non-zerovibrations of each training example, (® > 0), the eigenvectors of S
will include the e®ectsof the vibrational modes.

As the number of examplesincreaseswe wish to rely more on the statistics of the real data
and less on the arti¯cial variation intro duced by the modes of vibration. To achieve this we
must reduce® as m increases.We usethe relationship

® = ®1=m (4.32)

4.11.4 Examples

Two sets of 16 points were generated,one forming a square, the other a rectangle with aspect
ratio 0.5. Figure 4.16 shows the modes corresponding to the four smallest eigenvalues of the
FEM governing equation for the square. Figure 4.17 shows those for a rectangle.

Figure 4.16: First four modesof vi-
bration of a square

Figure 4.17: First four modesof vi-
bration of a rectangle
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Figure 4.18 shows the modes of variation generatedfrom the eigenvectors of the combined
covariancematrix (Equation 4.31). This demonstratesthat the principal mode is now the mode
which changesthe aspect ratio (which would be the only one for a statistical model trained on
the two shapes). Other modesare similar to those generatedby the FEM analysis.

Figure 4.18: First modesof variation of a combined model containing a squareand a rectangle.
The mode controlling the aspect ratio is the most signi¯cant.

4.11.5 Relaxing Mo dels with a Prior on Covariance

Rather than using Finite Element Methods to generatearti¯cial modes,a similar e®ectcan be
achieved simply by adding extra values to elements of the covariance matrix during the PCA.
This is equivalent to specifying a prior on the covariance matrix. The approach is to compute
the covariance matrix of the data, then either add a small amount to the diagonal, or to the
ij th elements which correspond to covariance betweenordinates of nearby points. Encouraging
higher covariance between nearby points will generate arti¯cial modes similar to the elastic
modes of vibration. The magnitude of the addition should be inversely proportional to the
number of samplesavailable. For instance, see[25] or work by Wang and Staib [125].



Chapter 5

Statistical Mo dels of App earance

To synthesisea complete image of an object or structure, we must model both its shape and
its texture (the pattern of intensity or colour acrossthe region of the object). Here we describe
how statistical models can be built to represent both shape variation, texture variation and the
correllations between them. Such models can be used to generatephoto-realistic (if necessary)
synthetic images.

The models are generated by combining a model of shape variation with a model of the
texture variations in a shape-normalisedframe. By `texture' we mean the pattern of intensities
or colours across an image patch. We require a training set of labelled images, where key
landmark points are marked on each example object. For instance, to build a face model we
require face imagesmarked with points at key positions to outline the main features (Figure
5.1).

Given such a set we can generatea statistical model of shape variation from the points (see
Chapter 4 for details). Given a mean shape, we can warp each training example into the mean
shape, to obtain a `shape-free' patch (Figure 5.1). We then build a statistical model of the
texture variation in this patch (essentially an eigen-facetype model [116]).

There will be correlations between the parameters of the shape model and those of the
texture model acrossthe training set. To take account of thesewe build a combined appearance
model which controls both shape and texture.

The following sectionsdescribe thesesteps in more detail.

5.1 Statistical Mo dels of Texture

To build a statistical model of the texture (intensity or colour over an image patch) we warp
each example image so that its control points match the mean shape (using a triangulation
algorithm - seeAppendix F). This removesspurious texture variation due to shape di®erences
which would occur if we simply performed eigenvector decomposition on the un-normalised face
patches (as in the eigen-faceapproach [116]). We then sample the intensity information from
the shape-normalised imageover the region coveredby the meanshape to form a texture vector,
gim . For example, Figure 5.1 shows a labelled face image, the model points and the face patch
normalised into the mean shape. The sampled patch contains little of the texture variation

29
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Set of Points

Shape Free Patch

Figure 5.1: Each training example in split into a set of points and a `shape-free' image patch

causedby the exaggeratedexpression- that is mostly taken account of by the shape.
To minimise the e®ectof global lighting variation, we normalise the example samplesby

applying a scaling, ®, and o®set,¯ ,

g = (gim ¡ ¯ 1)=® (5.1)

The valuesof ® and ¯ are chosento best match the vector to the normalisedmean. Let ¹g be
the mean of the normalised data, scaledand o®setso that the sum of elements is zero and the
variance of elements is unit y. The values of ® and ¯ required to normalise gim are then given
by

® = gim :¹g ; ¯ = (gim :1)=n (5.2)

where n is the number of elements in the vectors.
Of course, obtaining the mean of the normalised data is then a recursive process,as the

normalisation is de¯ned in terms of the mean. A stable solution can be found by using one of
the examplesas the ¯rst estimate of the mean, aligning the others to it (using 5.1 and 5.2),
re-estimating the mean and iterating.

By applying PCA to the normalised data we obtain a linear model:

g = ¹g + Pgbg (5.3)

where ¹g is the meannormalisedgrey-level vector, P g is a set of orthogonal modesof variation
and bg is a set of grey-level parameters.
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The texture in the image frame can be generatedfrom the texture parameters,bg, and the
normalisation parameters®, ¯ . For linearit y we represent thesein a vector u = (®¡ 1; ¯ )T (See
Appendix E). In this form the identit y transform is represented by the zerovector. The texture
in the image frame is then given by

gim = Tu ( ¹g + Pgbg) = (1 + u1)( ¹g + Pgbg) + u21 (5.4)

5.2 Com bined App earance Mo dels

The shape and texture of any example can thus be summarisedby the parameter vectors b s

and bg. Since there may be correlations between the shape and texture variations, we apply a
further PCA to the data as follows. For each examplewe generatethe concatenatedvector

b =

Ã
W sbs

bg

!

=

Ã
W sPT

s (x ¡ ¹x)
PT

g (g ¡ ¹g)

!

(5.5)

whereW s is a diagonalmatrix of weights for each shapeparameter, allowing for the di®erence
in units between the shape and grey models (seebelow). We apply a PCA on these vectors,
giving a further model

b = P cc (5.6)

where P c are the eigenvectors and c is a vector of appearance parameters controlling both
the shape and grey-levels of the model. Since the shape and grey-model parameters have zero
mean, c doestoo.

Note that the linear nature of the model allows us to expressthe shape and grey-levels
directly as functions of c

x = ¹x + P sW ¡ 1
s P csc ; g = ¹g + PgP cgc (5.7)

where

P c =

Ã
P cs

P cg

!

(5.8)

Or more, to summarize,as
x = ¹x + Qsc
g = ¹g + Qgc

(5.9)

where
Qs = P sW ¡ 1

s P cs

Qg = PgP cg
(5.10)

An example image can be synthesisedfor a given c by generating the shape-freegrey-level
image from the vector g and warping it using the control points described by x.
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5.2.1 Choice of Shape Parameter Weights

The elements of bs have units of distance, those of bg have units of intensity, so they cannot
be compareddirectly. BecauseP g has orthogonal columns, varying bg by one unit movesg by
one unit. To make bs and bg commensurate,we must estimate the e®ectof varying bs on the
sampleg. To do this we systematically displaceeach element of bs from its optimum value on
each training example,and samplethe image given the displacedshape. The RMS changein g
per unit change in shape parameter bs gives the weight ws to be applied to that parameter in
equation (5.5).

A simpler alternativ e is to set W s = r I where r 2 is the ratio of the total intensity variation
to the total shape variation (in the normalised frames). In practise the synthesis and search
algorithms are relatively insensitive to the choice of W s.

5.3 Example: Facial App earance Mo del

We usedthe method described above to build a model of facial appearance.We useda training
set of 400 imagesof faces,each labelled with 122 points around the main features (Figure 5.1).
From this we generateda shape model with 23 parameters, a shape-freegrey model with 114
parametersand a combined appearancemodel with only 80 parametersrequired to explain 98%
of the observed variation. The model usesabout 10,000pixel valuesto make up the facepatch.

Figures 5.2 and 5.3 show the e®ectsof varying the ¯rst two shape and grey-level model
parameters through § 3 standard deviations, as determined from the training set. The ¯rst
parametercorrespondsto the largesteigenvalueof the covariancematrix, which givesits variance
acrossthe training set. Figure 5.4 shows the e®ectof varying the ¯rst four appearancemodel
parameters,showing changesin identit y, poseand expression.

Figure 5.2: First two modesof shape
variation (§ 3 sd)

Figure 5.3: First two modesof grey-
level variation (§ 3 sd)

5.4 Appro ximating a New Example

Given a new image, labelled with a set of landmarks, we can generatean approximation with the
model. We follow the steps in the previous section to obtain b, combining the shape and grey-
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Figure 5.4: First four modesof appearancevariation (§ 3 sd)

level parameters which match the example. Since P c is orthogonal, the combined appearance
model parameters,c are given by

c = P T
c b (5.11)

The full reconstruction is then given by applying equations (5.7), inverting the grey-level
normalisation, applying the appropriate poseto the points and projecting the grey-level vector
into the image.

For example,Figure 5.5 shows a previously unseenimagealongsidethe model reconstruction
of the facepatch (overlaid on the original image).

Figure 5.5: Example of combined model representation (right) of a previously unseenfaceimage
(left)



Chapter 6

Image In terpretation with Mo dels

6.1 Overview

To interpret an image using a model, we must ¯nd the set of parameterswhich best match the
model to the image. This set of parametersde¯nes the shape, position and possibly appearance
of the target object in an image, and can be used for further processing, such as to make
measurements or to classify the object.

There areseveral approacheswhich could be taken to matching a model instanceto an image,
but all can be thought of asoptimising a cost function. For a set of model parameters,c, we can
generatean instance of the model projected into the image. We can compare this hypothesis
with the target image, to get a ¯t function F (c). The best set of parameters to interpret the
object in the image is then the set which optimises this measure. For instance, if F (c) is an
error measure,which tends to zero for a perfect match, we would like to chooseparameters,c,
which minimise the error measure.

Thus, in theory all we have to do is to choose a suitable ¯t function, and use a general
purposeoptimiser to ¯nd the minimum. The minimum is de¯ned only by the choiceof function,
the model and the image, and is independent of which optimisation method is used to ¯nd it.
However, in practice, care must be taken to choosea function which can be optimised rapidly
and robustly, and an optimisation method to match.

6.2 Choice of Fit Function

Ideally we would like to choosea ¯t function which represents the probabilit y that the model
parameters describe the target image object, P(cjI ) (where I represents the image). We then
choosethe parameterswhich maximise this probabilit y.

In the caseof the shape models described above, the parameterswe can vary are the shape
parameters, b, and the poseparameters X t ; Yt ; s; µ. For the appearancemodels they are the
appearancemodel parameters,c and the poseparameters.

The quality of ¯t of an appearancemodel canbeassessedby measuringthe di®erencebetween
the target imageand a synthetic imagegeneratedfrom the model. This is described in detail in
Chapter 8.

34
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The form of the ¯t measurefor the shape modelsalone is harder to determine. If we assume
that the shape model represents boundariesand strong edgesof the object, a useful measureis
the distancebetweena given model point and the neareststrong edgein the image(Figure 6.1).
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Figure 6.1: An error measure can be derived from the distance between model points and
strongest nearby edges.

If the model point positions are given in the vector X , and the nearestedgepoints to each
model point are X 0, then an error measureis

F (b; X t ; Yt ; s; µ) = jX 0¡ X j2 (6.1)

Alternativ ely, rather than looking for the best nearby edges,one can search for structure
nearby which is most similar to that occuring at the given model point in the training images
(seebelow).

It should be noted that this ¯t measurerelies upon the target points, X 0, begin the correct
points. If someare incorrect, due to clutter or failure of the edge/feature detectors, Equation
(6.1) will not be a true measureof the quality of ¯t.

An alternativ e approach is to samplethe imagearound the current model points, and deter-
mine how well the image samplesmatch models derived from the training set. This approach
was taken by Haslam et al [50].

6.3 Optimising the Mo del Fit

Given no initial knowledge of where the target object lies in an image, ¯nding the parameters
which optimise the ¯t is a a di±cult general optimisation problem. This can be tackled with
generalglobal optimisation techniques,such asGenetic Algorithms or Simulated Annealing [53].

If, however, we have an initial approximation to the correct solution (we know roughly where
the target object is in an image,dueto prior processing),wecanuselocal optimisation techniques
such asPowell's method or Simplex. A good overview of practical numeric optimisation is given
by Presset al [95].

However, we can take advantage of the form of the ¯t function to locate the optimum rapidly.
We derive two algorithms which amounts to directed search of the parameter space- the Activ e
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Shape Model and the Activ e AppearanceModel.
In the following chapters we describe the Activ e Shape Model (which matchesa shape model

to an image) and the Activ e AppearanceModel (which matches a full model of appearanceto
an image).



Chapter 7

Activ e Shape Mo dels

7.1 In tro duction

Given a rough starting approximation, an instance of a model can be ¯t to an image. By
choosing a set of shape parameters, bfor the model we de¯ne the shape of the object in an
object-centred co-ordinate frame. We can createan instanceX of the model in the image frame
by de¯ning the position, orientation and scale,using Equation 4.11.

An iterativ eapproach to improving the ¯t of the instance,X , to an imageproceedsasfollows:

1. Examine a region of the image around each point X i to ¯nd the best nearby match for
the point X 0

i

2. Update the parameters(X t ; Yt ; s; µ; b) to best ¯t the new found points X

3. Repeat until convergence.

In practise we look along pro¯les normal to the model boundary through each model point
(Figure 7.1). If we expect the model boundary to correspond to an edge,we can simply locate
the strongest edge(including orientation if known) along the pro¯le. The position of this gives
the new suggestedlocation for the model point.

In
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Distance along profile
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Figure 7.1: At each model point samplealong a pro¯le normal to the boundary
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However, model points are not always placed on the strongest edge in the locality - they
may represent a weaker secondaryedgeor someother image structure. The best approach is to
learn from the training set what to look for in the target image.

There are two broad approachesto this. The ¯rst is to build statistical models of the image
structure around the point and during search simply ¯nd the points which best match the
model. (One method of doing this is described below). The secondis to treat the problem
as a classi¯cation task. Here one can gather examplesof features at the correct location, and
examplesof featuresat nearby incorrect locations and build a two classclassi¯er. The classi¯er
can then be used to ¯nd the point which is most likely to be true position and least likely to
be background. This approach has been used by van Ginneken [118] to segment lung ¯elds in
chest radiographs.

In the following we will describe a simple method of modelling the structure which has been
found to be e®ective in many applications (though is not necessarilyoptimal). Essentially we
sample along the pro¯les normal to the boundaries in the training set, and build statistical
models of the grey-level structure.

7.2 Mo delling Lo cal Structure

Supposefor a given point we sample along a pro¯le k pixels either side of the model point in
the i th training image. We have 2k + 1 sampleswhich can be put in a vector gi . To reducethe
e®ectsof global intensity changeswe sample the derivative along the pro¯le, rather than the
absolute grey-level values. We then normalise the sample by dividing through by the sum of
absolute element values,

gi !
1

P
j jgij j

gi (7.1)

We repeat this for each training image, to get a set of normalised samplesf g i g for the given
model point. We assumethat these are distributed as a multiv ariate gaussian,and estimate
their mean ¹g and covariance Sg. This gives a statistical model for the grey-level pro¯le about
the point. This is repeated for every model point, giving one grey-level model for each point.

The quality of ¯t of a new sample,gs, to the model is given by

f (gs) = (gs ¡ ¹g)T S¡ 1
g (gs ¡ ¹g) (7.2)

This is the Mahalanobisdistanceof the samplefrom the model mean,and is linearly related to
the log of the probabilit y that gs is drawn from the distribution. Minimising f (gs) is equivalent
to maximising the probabilit y that gs comesfrom the distribution.

During search we sample a pro¯le m pixels either side of the current point ( m > k ). We
then test the quality of ¯t of the corresponding grey-level model at each of the 2(m ¡ k) + 1
possiblepositions along the sample(Figure 7.2) and choosethe one which givesthe best match
(lowest value of f (gs)).

This is repeated for every model point, giving a suggestednew position for each point. We
then apply one iteration of the algorithm given in (4.8) to update the current poseand shape
parameters to best match the model to the new points.
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Figure 7.2: Search along sampledpro¯le to ¯nd best ¯t of grey-level model

7.3 Multi-Resolution Activ e Shape Mo dels

To improve the e±ciency and robustnessof the algorithm, it is implement in a multi-resolution
framework. This involves ¯rst searching for the object in a coarse image, then re¯ning the
location in a seriesof ¯ner resolution images. This leadsto a faster algorithm, and one which is
lesslikely to get stuck on the wrong image structure.

For each training and test image, a gaussianimage pyramid is built [15]. The baseimage
(level 0) is the original image. The next image(level 1) is formed by smoothing the original then
subsampling to obtain an image with half the number of pixels in each dimension. Subsequent
levels are formed by further smoothing and sub-sampling(Figure 7.3).
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Figure 7.3: A gaussianimage pyramid is formed by repeated smoothing and sub-sampling

During training we build statistical models of the grey-levels along normal pro¯les through
each point, at each level of the gaussianpyramid. We usually usethe samenumber of pixels in
each pro¯le model, regardlessof level. Sincethe pixels at level L are 2L times the sizeof those
of the original image, the models at the coarserlevels represent more of the image (Figure 7.4).
Similarly, during search we needonly search a few pixels, (ns), either side of the current point
position at each level. At coarselevels this will allow quite large movements, and the model
should converge to a good solution. At the ¯ner resolution we need only modify this solution
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by small amounts.

Level 0

Level 1

Level 2

Figure 7.4: Statistical models of grey-level pro¯les represent the samenumber of pixels at each
level

When searching at a given resolution level, we needa method of determining when to change
to a ¯ner resolution, or to stop the search. This is done by recording the number of times that
the best found pixel along a search pro¯le is within the central 50% of the pro¯le (ie the best
point is within ns=2 pixels of the current point). When a su±cient number (eg ¸ 90%) of the
points are so found, the algorithm is declaredto have convergedat that resolution. The current
model is projected into the next image and run to convergenceagain. When convergenceis
reached on the ¯nest resolution, the search is stopped.

To summarise,the full MRASM search algorithm is as follows:

1. Set L = L max

2. While L ¸ 0

(a) Compute model point positions in image at level L .

(b) Search at ns points on pro¯le either side each current point

(c) Update poseand shape parameters to ¯t model to new points

(d) Return to (2a) unlessmore than pclose of the points are found close to the current
position, or Nmax iterations have beenapplied at this resolution.

(e) If L > 0 then L ! (L ¡ 1)

3. Final result is given by the parametersafter convergenceat level 0.

The model building processonly requires the choice of three parameters:

Mo del Parameters
n Number of model points
t Number of modesto use
k Number of pixels either side of point to represent in grey-model
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The number of points is dependent on the complexity of the object, and the accuracy with
which one wishesto represent any boundaries. The number of modes should be chosenthat a
su±cient amount of object variation can be captured (see4.9 above). The number of pixels to
model in each pixel will depend on the width of the boundary structure (however, using 3 pixels
either side has given good results for many applications).

The search algorithm has four parameters:

Search Parameters (Suggesteddefault)
L max Coarsestlevel of gaussianpyramid to search
ns Number of samplepoints either side of current point (2)
Nmax Maximum number of iterations allowed at each level (5)
pclose Proportion of points found within ns=2 of current pos. (0.9)

The levels of the gaussianpyramid to seach will depend on the size of the object in the
image.

7.4 Examples of Search

Figure 7.5 demonstratesusing the ASM to locate the features of a face. The model instance is
placed near the centre of the image and a coarseto ¯ne search performed. The search starts at
level 3 (1/8 the resolution in x and y compared to the original image). Large movements are
made in the ¯rst few iterations, getting the position and scaleroughly correct. As the search
progressesto ¯ner resolutionsmore subtle adjustments are made. The ¯nal convergence(after a
total of 18 iterations) givesa good match to the target image. In this caseat most 5 iterations
were allowed at each resolution, and the algorithm convergesin much lessthan a second(on a
200MHz PC).

Figure 7.6 demonstrateshow the ASM can fail if the starting position is too far from the
target. Since it is only searching along pro¯les around the current position, it cannot correct
for large displacements from the correct position. It will either diverge to in¯nit y, or converge
to an incorrect solution, doing its best to match the local image data. In the caseshown it has
beenable to locate half the face,but the other side is too far away.

Figure 7.7 demonstrates using the ASM of the cartilage to locate the structure in a new
image. In this casethe search starts at level 2, samplesat 2 points either side of the current
point and allows at most 5 iterations per level. A detailed description of the application of such
a model is given by Solloway et. al. in [107].
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Initial After 2 iterations

After 6 iterations After 18 iterations

Figure 7.5: Search using Activ e Shape Model of a face

Initial After 2 iterations After 20 Iterations

Figure 7.6: Search using Activ e Shape Model of a face,given a poor starting point. The ASM is
a local method, and may fail to locate an acceptableresult if initialised too far from the target
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Initial After 1 iteration

After 6 iterations After 14 iterations

Figure 7.7: Search using ASM of cartilage on an MR image of the knee



Chapter 8

Activ e App earance Mo dels

8.1 In tro duction

The Activ e Shape Model search algorithm allowed us to locate points on a new image, making
useof constraints of the shape models. One disadvantage is that it only usesshape constraints
(together with someinformation about the image structure near the landmarks), and doesnot
take advantage of all the available information - the texture acrossthe target object. This can
be modelled using an AppearanceModel 5. In this chapter we describe an algorithm which
allows us to ¯nd the parametersof such a model which generatesa synthetic image as closeas
possibleto a particular target image, assuminga reasonablestarting approximation.

8.2 Overview of AAM Search

We wish to treat interpretation as an optimisation problem in which we minimise the di®erence
betweena new image and one synthesisedby the appearancemodel. A di®erencevector ±I can
be de¯ned:

±I = I i ¡ I m (8.1)

where I i is the vector of grey-level values in the image, and I m , is the vector of grey-level
valuesfor the current model parameters.

To locate the bestmatch betweenmodel and image,wewish to minimise the magnitude of the
di®erencevector, ¢ = j±I j2, by varying the model parameters,c. Sincethe appearancemodels
can have many parameters, this appearsat ¯rst to be a di±cult high-dimensional optimisation
problem. We note, however, that each attempt to match the model to a new image is actually
a similar optimisation problem. We proposeto learn something about how to solve this classof
problems in advance. By providing a-priori knowledge of how to adjust the model parameters
during during image search, we arrive at an e±cient run-time algorithm. In particular, the
spatial pattern in ±I , encodes information about how the model parametersshould be changed
in order to achieve a better ¯t. In adopting this approach there are two parts to the problem:
learning the relationship between ±I and the error in the model parameters, ±c and using this
knowledgein an iterativ e algorithm for minimising ¢.

44
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8.3 Learning to Correct Mo del Parameters

The appearancemodel hasparameters,c, controlling the shape and texture (in the model frame)
according to

x = ¹x + Qsc
g = ¹g + Qgc

(8.2)

where ¹x is the meanshape, ¹g the meantexture in a meanshaped patch and Qs,Qg are matrices
describing the modesof variation derived from the training set.

A shape in the image frame, X , can be generated by applying a suitable transformation
to the points, x : X = St (x). Typically St will be a similarit y transformation described by
a scaling, s, an in-plane rotation, µ, and a translation (tx ; ty). For linearit y we represent the
scaling and rotation as (sx ; sy) where sx = (scosµ¡ 1), sy = ssinµ. The poseparameter vector
t = (sx ; sy ; tx ; ty)T is then zero for the identit y transformation and St + ±t (x) ¼ St (S±t (x)) (see
Appendix D).

The texture in the imageframe is generatedby applying a scalingand o®setto the intensities,
gim = Tu (g) = (u1 + 1)gim + u21, where u is the vector of transformation parameters,de¯ned
so that u = 0 is the identit y transformation and Tu+ ±u (g) ¼ Tu (T±u (g)) (seeAppendix E).

The appearancemodel parameters, c, and shape transformation parameters, t , de¯ne the
position of the model points in the image frame, X , which givesthe shape of the imagepatch to
be represented by the model. During matching we samplethe pixels in this region of the image,
gim , and project into the texture model frame, gs = T ¡ 1(gim ). The current model texture is
given by gm = ¹g + Qgc. The current di®erencebetween model and image (measured in the
normalized texture frame) is thus

r (p) = gs ¡ gm (8.3)

where p are the parametersof the model, pT = (cT jt T juT ).
A simple scalar measureof di®erenceis the sum of squaresof elements of r , E (p) = r T r .
A ¯rst order Taylor expansionof (8.3) gives

r (p + ±p) = r (p) +
@r
@p

±p (8.4)

Where the ij th element of matrix @r
@p is dr i

dpj
.

Supposeduring matching our current residual is r . We wish to choose±p so as to minimize
jr (p + ±p)j2. By equating (8.4) to zero we obtain the RMS solution,

±p = ¡ Rr (p) where R = ( @r
@p

T @r
@p )¡ 1 @r

@p
T (8.5)

In a standard optimization scheme it would be necessaryto recalculate @r
@p at every step, an

expensive operation. However, we assumethat since it is being computed in a normalized
referenceframe, it can be consideredapproximately ¯xed. We can thus estimate it once from
our training set. We estimate @r

@p by numeric di®erentiation, systematically displacing each
parameter from the known optimal value on typical imagesand computing an averageover the
training set. Residualsat displacements of di®ering magnitudes are measured(t ypically up to
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0.5 standard deviations of each parameter) and combined with a Gaussian kernel to smooth
them.

dr i

dpj
=

X

k

w(±cj k )( r i (p + ±cj k ) ¡ r i (p)) (8.6)

where w(x) is a suitably normalized gaussianweighting function.
We then precompute R and use it in all subsequent searcheswith the model.
Imagesusedin the calculation of @r

@p can either be examplesfrom the training set or synthetic
imagesgeneratedusing the appearancemodel itself. Where synthetic imagesare used,one can
either use a suitable (e.g. random) background, or can detect the areas of the model which
overlap the background and remove those samplesfrom the model building process.This latter
makes the ¯nal relationship more independent of the background. Where the background is
predictable (e.g. medical images), this is not necessary.

The best rangeof valuesof ±c, ±t and ±u to useduring training is determined experimentally .
Ideally we seekto model a relationship that holds over as large a range errors, ±g, as possible.
However, the real relationship is found to be linear only over a limited range of values. Our
experiments on the facemodel suggestthat the optimum perturbation was around 0.5 standard
deviations (over the training set) for each model parameter, about 10% in scale,the equivalent
of 3 pixels translation and about 10% in texture scaling.

8.3.1 Results For The Face Mo del

We applied the above algorithm to the facemodel described in section 5.3.
We can visualise the e®ectsof the perturbation as follows. If ai is the i th row of the matrix

R , the predicted changein the i th parameter, ±ci is given by

±ci = ai :±g (8.7)

and ai givesthe weight attached to di®erent areasof the sampledpatch when estimating the
displacement. Figure 8.1 shows the weights corresponding to changesin the poseparameters,
(sx ; sy ; tx ; ty). Bright areas are positive weights, dark areas negative. As one would expect,
the x and y displacement weights are similar to x and y derivative images. Similar results are
obtained for weights corresponding to the appearancemodel parameters

Figure 8.2 and 8.3 show the ¯rst and third modesand corresponding displacement weights.
The areaswhich exhibit the largest variations for the mode are assignedthe largest weights by
the training process.

Figure 8.1: Weights corresponding to changesin the poseparameters, (sx ; sy ; tx ; ty)
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Figure 8.2: First modeand displace-
ment weights

Figure 8.3: Third mode and dis-
placement weights

8.3.2 Perturbing The Face Mo del

To examinethe performanceof the prediction, we systematically displacedthe facemodel from
the true position on a set of 10 test images, and used the model to predict the displacement
given the samplederror vector. Figures 8.4 and 8.5 show the predicted translations against the
actual translations. There is a good linear relationship within about 4 pixels of zero. Although
this breaks down with larger displacements, as long as the prediction has the samesign as the
actual error, and does not over-predict too far, an iterativ e updating scheme should converge.
In this caseup to 20 pixel displacements in x and about 10 in y should be correctable.
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dy. Errorbars are 1 standard error

We can, however, extend this range by building a multi-resolution model of object appear-
ance. We generateGaussianpyramids for each of our training images,and generatean appear-
ancemodel for each level of the pyramid. Figure 8.6 shows the predictions of models displaced
in x at three resolutions. L0 is the basemodel, with about 10,000pixels. L1 has about 2,500
pixels and L2 about 600 pixels.

The linear region of the curve extends over a larger range at the coarserresolutions, but is
lessaccurate than at the ¯nest resolution. Similar results are obtained for variations in other
poseparametersand the model parameters.

Figure 8.7 shows the predicted displacements of sx and sy against the actual displacements.
Figure 8.8 shows the predicted displacements of the ¯rst two model parameters c1 and c2 (in
units of standard deviations) against the actual. In all casesthere is a central linear region,
suggestingan iterativ e algorithm will convergewhen closeenoughto the solution.
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Figure 8.6: Predicted dx vs actual dx for 3 levelsof a Multi-Resolution model. L0: 10000pixels,
L1: 2500pixels, L2: 600 pixels. Errorbars are 1 standard error

actual/scale

pr
ed

ic
tio

n/
sc

al
e

- 0.4 - 0.2 0 0.2 0.4

- 0.20

- 0.15

- 0.10

- 0.05

0

0.05

0.10

0.15

0.20

Sx

Sy

Figure 8.7: Predicted sx and sy vs actual

actual dc (sd)
pr

ed
ic

te
d 

dc
 (

sd
)

- 6 - 4 - 2 0 2 4 6

- 6

- 4

- 2

0

2

4

6

C1

C2

Figure 8.8: Predicted c1

and c2 vs actual

8.4 Iterativ e Mo del Re¯nemen t

Given a method for predicting the correction which needsto made in the model parameterswe
can construct an iterativ e method for solving our optimisation problem.

Given the current estimate of model parameters, c0, and the normalised image sample at
the current estimate, gs, one step of the iterativ e procedure is as follows:

² Evaluate the error vector ±g0 = gs ¡ gm

² Evaluate the current error E0 = j±g0j2

² Compute the predicted displacement, ±c = A ±g0

² Set k = 1

² Let c1 = c0 ¡ k±c

² Samplethe image at this new prediction, and calculate a new error vector, ±g1

² If j±g1j2 < E0 then accept the new estimate, c1,

² Otherwise try at k = 1:5, k = 0:5, k = 0:25 etc.
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This procedureis repeateduntil no improvement is madeto the error, j±gj2, and convergence
is declared.

We usea multi-resolution implementation, in which we iterate to convergenceat each level
before projecting the current solution to the next level of the model. This is more e±cient and
can convergeto the correct solution from further away than search at a single resolution.

8.4.1 Examples of Activ e App earance Mo del Search

We used the face AAM to search for facesin previously unseenimages. Figure 8.9 shows the
best ¯t of the model given the image points marked by hand for three faces. Figure 8.10 shows
framesfrom a AAM search for each face,each starting with the meanmodel displacedfrom the
true facecentre.

Figure 8.9: Reconstruction (left) and original (right) given original landmark points

Initial 2 its 8 its 14 its 20 its converged

Figure 8.10: Multi-Resolution search from displacedposition

As an example of applying the method to medical images,we built an AppearanceModel
of part of the knee as seenin a slice through an MR image. The model was trained on 30
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examples,each labelled with 42 landmark points. Figure 8.11 shows the e®ectof varying the
¯rst two appearancemodel parameters. Figure 8.12 shows the best ¯t of the model to a new
image, given hand marked landmark points. Figure 8.13 shows frames from an AAM search
from a displacedposition.

Figure 8.11: First two modes
of appearance variation of
kneemodel

Figure 8.12: Best ¯t of kneemodel to new
image given landmarks

Initial 2 its Converged(11 its)

Figure 8.13: Multi-Resolution search for knee

8.5 Exp erimen tal Results

To obtain a quantitativ e evaluation of the performanceof the algorithm we trained a model on
88 hand labelled face images,and tested it on a di®erent set of 100 labelled images. Each face
was about 200 pixels wide.

On each test image we systematically displaced the model from the true position by § 15
pixels in x and y, and changed its scale by § 10%. We then ran the multi-resolution search,
starting with the mean appearancemodel. 2700 searches were run in total, each taking an
average of 4.1 secondson a Sun Ultra. Of those 2700, 519 (19%) failed to converge to a
satisfactory result (the mean point position error was greater than 7.5 pixels per point). Of
those that did converge, the RMS error between the model centre and the target centre was
(0:8; 1:8) pixels. The s.d. of the model scaleerror was 6%. The mean magnitude of the ¯nal
imageerror vector in the normalisedframe relative to that of the best model ¯t given the marked
points, was 0.88 (sd: 0.1), suggestingthat the algorithm is locating a better result than that
provided by the marked points. Becauseit is explicitly minimising the error vector, it will
compromisethe shape if that leadsto an overall improvement of the grey-level ¯t.
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Figure 8.14 shows the mean intensity error per pixel (for an image using 256 grey-levels)
against the number of iterations, averaged over a set of searches at a single resolution. In
each casethe model was initially displacedby up to 15 pixels. The dotted line gives the mean
reconstruction error using the hand marked landmark points, suggestinga good result is obtained
by the search.

Figure 8.15 shows the proportion of 100 multi-resolution searcheswhich convergedcorrectly
given starting positions displaced from the true position by up to 50 pixels in x and y. The
model displays good results with up to 20 pixels (10% of the facewidth) displacement.
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8.5.1 Examples of Failure

Figure 8.16 shows two exampleswhere an AAM of structures in an MR brain slice has failed to
locate boundaries correctly on unseenimages. In both casesthe examplesshow more extreme
shape variation from the mean, and it is the outer boundaries that the model cannot locate.
This is becausethe model only samplesthe imageunder its current location. There is not always
enough information to drive the model outward to the correct outer boundary. One solution
is to model the whole of the visible structure (seebelow). Alternativ ely it may be possibleto
include explicit searching outside the current patch, for instance by searching along normals
to current boundaries as is done in the Activ e Shape Model. In practice, where time permits,
one can use multiple starting points and then select the best result (the one with the smallest
texture error).

Figure 8.16: Detail of examplesof search failure. The AAM does not always ¯nd the correct
outer boundariesof the ventricles (seetext).

8.6 Related Work

In recent years many model-basedapproaches to the interpretation of images of deformable
objects have been described. One motivation is to achieve robust performance by using the
model to constrain solutions to be valid examplesof the object modelled. A model alsoprovides
the basis for a broad range of applications by `explaining' the appearanceof a given image
in terms of a compact set of model parameters. These parameters are useful for higher level
interpretation of the scene. For instance, when analysing face images they may be used to
characterise the identit y, poseor expressionof a face. In order to interpret a new image, an
e±cient method of ¯nding the best match betweenimage and model is required.

Various approachesto modelling variabilit y have beendescribed. The most commongeneral
approach is to allow a protot ype to vary according to somephysical model. Bajcsy and Kovacic
[1] describea volumemodel (of the brain) that alsodeformselastically to generatenewexamples.
Christensenet al [19] describe a viscous°ow model of deformation which they alsoapply to the
brain, but is very computationally expensive. Park et al [91] and Pentland and Sclaro®[93] both
represent the outline or surfacesof protot ype objects using ¯nite element methods and describe
variabilit y in terms of vibrational modes. Such modes are not always the most appropriate
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description of deformation. Turk and Pentland [116]useprincipal component analysisto describe
faceimagesin terms of a set of basisfunctions, or `eigenfaces'.Though valid modesof variation
are learnt from a training set, and are more likely to be more appropriate than a `physical'
model, the eigenfaceis not robust to shape changes,and does not deal well with variabilit y in
poseand expression. However, the model can be matched to an image easily using correlation
basedmethods.

Poggioand co-workers[39] [61] synthesisenewviewsof an object from a set of exampleviews.
They ¯t the model to an unseenview by a stochastic optimisation procedure. This is slow, but
can be robust becauseof the quality of the synthesisedimages. Cootes et al [24] describe a 3D
model of the grey-level surface,allowing full synthesis of shape and appearance.However, they
do not suggesta plausible search algorithm to match the model to a new image. Nastar at al [89]
describe a related model of the 3D grey-level surface,combining physical and statistical modes
of variation. Though they describe a search algorithm, it requires a very good initialisation.
Ladesat al [73] model shape and somegrey level information using Gabor jets. However, they
do not imposestrong shape constraints and cannot easily synthesisea new instance.

In developing our new approach we have bene¯ted from insights provided by two earlier
papers. Covell [26] demonstrated that the parametersof an eigen-featuremodel can be usedto
drive shape model points to the correct place. The AAM described here is an extension of this
idea. Black and Yacoob [7] uselocal, hand crafted models of image°ow to track facial features,
but do not attempt to model the whole face. The AAM can be thought of as a generalisationof
this, in which the image di®erencepatterns corresponding to changesin each model parameter
are learnt and usedto modify a model estimate.

Fast model matching algorithms have beendeveloped in the tracking communit y. Gleicher
[43] describes a method of tracking objects by allowing a single template to deform under a
variety of transformations (a±ne, projective etc). He choosesthe parametersto minimize a sum
of squaresmeasureand essentially precomputesderivativesof the di®erencevector with respect
to the parametersof the transformation. Hagerand Belhumeur [47] describe a similar approach,
but include robust kernelsand models of illumination variation.

In a parallel development Sclaro®and Isidoro have demonstrated `Active Blobs' for tracking
[101]. The approach is broadly similar in that they use image di®erencesto drive tracking,
learning the relationship between image error and parameter o®set in an o®-line processing
stage. The main di®erenceis that Activ e Blobs are derived from a single example, whereas
Activ eAppearanceModelsusea training setof examples.The former usea singleexampleasthe
original model template, allowing deformations consistent with low energy mesh deformations
(derived using a Finite Element method). A simply polynomial model is usedto allow changes
in intensity acrossthe object. AAMs learn what are valid shape and intensity variations from
their training set.

Sclaro®and Isidoro suggestapplying a robust kernel to the image di®erences,an idea we
will use in later work. Also, sinceannotating the training set is the most time consumingpart
of building an AAM, the Activ e Blob approach may be useful for `bootstrapping' from the ¯rst
example.

La Cascia et. al.[71] describe a related approach to head tracking. They project the face
onto a cylinder (or more complex 3D face shape) and use the residual di®erencesbetween the
sampled data and the model texture (generated from the ¯rst frame of a sequence)to drive a
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tracking algorithm, with encouragingresults.
When the AAM convergesit will usually be closeto the optimal result, but may not achieve

the exact position. Stegmannand Fisker [40, 80, 112]hasshown that applying a generalpurpose
optimiser can improve the ¯nal match.



Chapter 9

Constrained AAM Search

9.1 In tro duction

The last chapter intro duceda fast method of matching appearancemodels to images,the AAM.
In many practical applications an AAM alone is insu±cient. A suitable initialisation is required
for the matching processand when unconstrained the AAM may not always converge to the
correct solution. The appearance model provides shape and texture information which are
combined to generatea model instance. A natural approach to initialisation and constraint is
to provide prior estimatesof the position of someof the shape points, either manually or using
automatic feature detectors. For instance, when matching a face model it is useful to have an
estimate of the positions of the eyes,which could either be provided by a user or located using
a suitable eye detector.

This chapter reformulates the original least squaresmatching of the AAM search algorithm
into a statistical framework. This allows the intro duction of prior probabilities on the model
parameters and the inclusion of prior constraints on point positions. The latter allows one or
more points to be pinned down to particular positions with a given variance. This framework
enablesthe AAM to be integrated with other feature location tools in a principled manner, as
long as those tools can provide an estimate of the error on their output.

In the following we describe the mathematics in detail, give examplesof using point con-
straints to help user guided image markup and give the results of quantitativ e experiments
studying the e®ectsof constraints on image matching.

9.2 Mo del Matc hing

Model matching can be treated as an optimisation process,minimising the di®erencebetween
the synthesizedmodel image and the target image. The appearancemodel parameters, c, and
shape transformation parameters,t , de¯ne the position of the model points in the image frame,
X , which givesthe shape of the imagepatch to be represented by the model. To test the quality
of the match with the current parameters, the pixels in the region of the image de¯ned by X
are sampledto obtain a texture vector, gim . Theseare projected into the texture model frame,
gs = T ¡ 1(gim ). The current model texture is given by gm = ¹g + Qgc. The current di®erence

55
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betweenmodel and image (measuredin the normalized texture frame) is thus

r (p) = gs ¡ gm (9.1)

where p is a vector containing the parametersof the model, pT = (cT jt T juT ).

9.2.1 Basic AAM Form ulation

The original formulation of Activ e AppearanceModels aimed to minimise a sum of squaresof
residualsmeasure,E1(p) = r T r . Supposethat during an iterativ e matching processthe current
residual was r . We wish to choosean update ±p so as to minimize E1(p + ±p). By applying a
¯rst order Taylor expansionto (8.3) we can show that ±p must satisfy

@r
@p

±p = ¡ r (9.2)

where the ij th element of matrix @r
@p is dr i

dpj
. Thus

±p = ¡ Rr (p) (9.3)

where

R 1 = (
@r
@p

T @r
@p

)¡ 1 @r
@p

T

(9.4)

In a standard optimization schemeit would be necessaryto recalculate @r
@p at every step, an

expensive operation. However, it is assumedthat since it is being computed in a normalized
referenceframe, it can be consideredapproximately ¯xed. It is thus estimated once from the
training set. @r

@p can be estimated by numeric di®erentiation, systematically displacing each
parameter from the known optimal value on typical imagesand computing an averageover the
training set. Residualsat displacements of di®ering magnitudes are measured(t ypically up to
0.5 standard deviations of each parameter) and combined with a Gaussian kernel to smooth
them. R and @r

@p are precomputed and usedin all subsequent searcheswith the model.

9.2.2 MAP Form ulation

Rather than simply minimising a sum of squaresmeasure,we can put the model matching in a
probabalistic framework. In a maximum a-posteriori (MAP) formulation we seekto maximise

p(modeljdata) / p(datajmodel)p(model) (9.5)

If we assumethat the residual errors can be treated as uniform gaussianwith variance ¾2
r , and

that the model parameters are gaussianwith diagonal covariance S2
p, then maximising (9.5) is

equivalent to minimising
E2(p) = ¾¡ 2

r r T r + pT (S¡ 1
p )p (9.6)

If we form the combined vector

y =

Ã
¾¡ 1

r r
S¡ 0:5

p p

!

(9.7)
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then E2 = y T y and

y(p + ±p) = y(p) +

Ã
¾¡ 1

r
@r
@p

S¡ 0:5
p

!

±p (9.8)

In this casethe optimal update step is the solution to the equation
Ã

¾¡ 1
r

@r
@p

S¡ 1
p

!

±p = ¡

Ã
¾¡ 1

r r (p)
S¡ 0:5

p p

!

(9.9)

which can be shown to have the form

±p = ¡ (R 2r + K 2p) (9.10)

whereR 2 and K 2 can be precomputedduring training. In this casethe update step consists
just of image sampling and matrix multiplication.

9.2.3 Including Priors on Poin t Positions

Supposewe have prior estimatesof the positions of somepoints in the imageframe, X 0, together
with their with covariancesSX . Unknown points will give zero values in appropriate positions
in X 0 and e®ectively in¯nite variance, leading to suitable zero values in the inversecovariance,
S¡ 1

X . Let d(p) = (X ¡ X 0) be a vector of the displacements of the current point positions from
those target points. A measureof quality of ¯t (related to the log-probabilit y) is then

E3(p) = ¾¡ 2
r r T r + pT (S¡ 1

p )p + dT S¡ 1
X d (9.11)

Following a similar approach to that above we obtain the update step as a solution to

A 1±p = ¡ a1 (9.12)

where
A 1 =

³
¾¡ 2

r
@r
@p

T @r
@p + S¡ 1

p + @d
@p

T
S¡ 1

X
@d
@p

´

a1 =
³
¾¡ 2

r
@r
@p

T
r (p) + S¡ 1

p p + @d
@p

T
S¡ 1

X d
´ (9.13)

When computing @d
@p one must take into account the global transformation as well as the shape

changes,the parameters of which have been folded into the vector p in the above to simplify
the notation. The positions of the model points in the image plane are given by

X = St ( ¹x + Qsc) (9.14)

where St (:) applies a global transformation with parameters t .
Therefore @d

@p = ( @d
@c j @d

@t ), where

@d
@c = @St (x )

@x Qs ; @d
@t = @St (x )

@t
(9.15)

These can be substituted into (9.12) and (9.13) to obtain the update steps. Note that in
this casea linear system of equations must be solved at each iteration. As an example, below
we describe the isotropic case.
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9.2.4 Isotropic Poin t Errors

Consider the special casein which the ¯xed points are assumedto have positional varianceequal
in each direction, thus the covariance, SX is diagonal. Supposethe shape transformation St (x)
is a similarit y transformation which scalesby s.

Let x0 = S¡ 1
t (X 0) and y = s(x ¡ x0). Then dT S¡ 1

X d = y T S¡ 1
X y .

If assumewe all parametersare equally likely, to simplify notation, then (9.11) becomes

E3(p) = ¾¡ 2
r r T r + y T S¡ 1

X y (9.16)

The update step is the solution to

A 3±p = ¡ a3 (9.17)

where

A 3 =
µ

¾¡ 2
r

@r
@p

T @r
@p + @y

@p
T

S¡ 1
X

@y
@p

¶

a3 =
µ

¾¡ 2
r

@r
@p

T
r (p) + @y

@p
T

S¡ 1
X y

¶ (9.18)

and @y
@p = ( @y

@c j @y
@t ), @y

@c = sQs.

@y
@t

= ¡ s
@(S¡ 1

t (X 0))
@t

¡ (x ¡ x0):(
sx

s
;
sy

s
; 0; 0) (9.19)

9.3 Exp erimen ts

To test the e®ectsof applying constraints to the AAM search, we performed a seriesof exper-
iments on images from the M2VTS face database [84]. We trained an AAM on 100 images
and tested it on another 100 images. 68 points were used to de¯ne the face shape, and 5000
grey-scalepixels used to represent the texture acrossthe face patch. The separation between
the eyes is about 100 pixels. The model used56 appearanceparameters.

9.3.1 Poin t Constrain ts

To test the e®ectof constraining points, we assumedthat the position of the eye centres was
known to a given variance. We then displaced the model from the correct position by up to
10 pixels (5% of face width) in x and y and ran a constrained search. Nine searches were
performed on each of the 100 unseentest images. Measurements were made of the boundary
error (the RMS separation in pixels between the model points and hand-marked boundaries)
and the RMS texture error in grey level units (the imageshave grey-valuesin the range[0,255]).
The eye centres were assumedknown to various accuracies,de¯ned in terms of a variance on
their position.

Figure 9.1 shows the e®ecton the boundary error of varying the variance estimate. Figure
9.2 shows the e®ecton texture error. The results suggest that there is an optimal value of
error standard deviation of about 7 pixels. Pinning down the eye points too harshly reducesthe
abilit y of the model to match accurately elsewhere.
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Figure 9.1: E®ecton boundary error of varying variance on two eye centres
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Figure 9.2: E®ecton texture error of varying variance on two eye centres

To test the e®ectof errors on the positions of the ¯xed points, we repeated the above exper-
iment, but randomly perturb ed the ¯xed points with isotropic gaussiannoise. This simulates
inaccuraciesin the output of feature detectors that might be used to ¯nd the points. Figure
9.3 shows the boundary error for di®erent noisevariances. The known noisevariance was used
as the constraining variance on the points. This shows that for small errors on the ¯xed points
the search gives better results. However as the positional errors increasethe ¯xed points are
e®ectively ignored (a large variancegivesa small weight), and the boundary error getsno worse.

9.3.2 Including Priors on the Parameters

We repeated the above experiment, but added a term giving a gaussianprior on the model
parameters, c - equation (9.11). Figures 9.4, 9.5 show the results. There is an improvement in
the positional error, but the texture error becomesworse.

Figure 9.6 shows the distribution of boundary errors at search convergencewhen matching
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Figure 9.3: Boundary error vs eye centre variance

is performed with/without priors on the parameters and with/without ¯xing the eye points.
Figure 9.7 shows the equivalent texture errors. Again, the most noticable e®ectis that including
a prior on the parameterssigni¯cantly increasesthe texture error, though there is little change
to the boundary error. Adding the prior biasesthe match toward the mean. Small changesin
point positions (eg away from edges)can intro duce large changesin texture errors, so the image
evidencetends to resist point movement towards the mean. However, there is lessof a gradient
for small changesin parameters which a®ect texture, so they tend to move toward the mean
more readily.
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Figure 9.4: Boundary error vs varying eyecentre variance,using a prior on the model parameters

9.3.3 Varying Num ber of Poin ts

The experiment was repeated once more, this time varying the number of point constraints.
Figure 9.8 shows the boundary error as a function of the number constrained points. The eye
centres were ¯xed ¯rst, then the mouth, the chin and the sidesof the face. There is a gradual
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Figure 9.5: Texture error vs varying eye centre variance, using a prior on the model parameters
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Figure 9.6: Distribution of boundary errors given constraints on points and parameters

improvement as more points are added. Figure 9.9 shows the texture error. This improves at
¯rst, as the model is lesslikely to fail to converge to the correct result with more constraints.
However, when more points are addedthe texture error beginsto increaseslightly , asthe texture
match becomescompromisedin order to satisfy the point constraints.

9.4 Summary

We have reformulated the AAM matching algorithm in a statistical framework, allowing it to
be combined with user input and other tools in a principled manner. This is very useful for real
applications where several di®erent algorithms maybe required to obtain robust initialisation
and matching.

Providing constraints on somepoints can improve the reliabilit y and accuracyof the model
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Figure 9.7: Distribution of texture errors given constraints on points and parameters

matching. Adding a prior to the model parameters can improve the mean boundary position
error, but at the expenseof a signi¯cant degradation of the overall texture match.

The abilit y to pin down points interactively is useful for interactive model matching. The
appearance models require labelled training sets, which are usually generated manually. A
`bootstrap' approach canbeusedin which the current model is usedto help mark up new images,
which are then added to the model. The interactive search makes this processsigni¯cantly
quicker and easier.

We anticipate that this framework will allow the AAMs to be usedmore e®ectively in prac-
tical applications.
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Figure 9.8: Boundary error vs Number of points constrained
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Chapter 10

Variations on the Basic AAM

In this chapter we describe modi¯cations to the basic AAM algorithm aimed at improving
the speed and robustnessof search. Since someregions of the model may change little when
parametersare varied, we needonly sample the image in regionswhere signi¯cant changesare
expected. This should reducethe cost of each iteration.

The original formulation manipulates the combined shape and grey-level parametersdirectly.
An alternativ e approach is to useimage residualsto drive the shape parameters,computing the
grey-level parameters directly from the image given the current shape. This approach may be
useful when there are few shape modesand many grey-level modes.

10.1 Sub-sampling During Search

In the original formulation, during search we sample all the points in the model to obtain gs,
with which we predict the changeto the model parameters. There may be 10000or more such
pixels, but fewer than 100 parameters. There is thus considerableredundancy, and it may be
possibleto obtain good results by sampling at only a sub-setof the modelled pixels. This could
signi¯cantly reducethe computational cost of the algorithm.

The changein the i th parameter, ±ci , is given by

±ci = A i ±g (10.1)

Where A i is the i th row of A .
The elements of A i indicate the signi¯cance of the corresponding pixel in the calculation

of the change in the parameter. To choose the most useful subset for a given parameter, we
simply sort the elements by absolute value and select the largest. However, the pixels which
best predict changesto one parameter may not be useful for any other parameter.

To select a useful subset for all parameters we compute the best u% of elements for each
parameter, then generatethe union of such sets. If u is small enough,the union will be lessthan
all the elements.

Given such a subset,we perform a new multi-v ariate regression,to compute the relationship,
A 0 betweenthe changesin the subsetof samples,±g0, and the changesin parameters

±c = A 0±g0 (10.2)
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Search can proceedas described above, but using only a subsetof all the pixels.

10.2 Search Using Shape Parameters

The original formulation manipulates the parameters,c. An alternativ e approach is to useimage
residuals to drive the shape parameters,bs, computing the grey-level parameters,bg, and thus
c, directly from the image given the current shape. This approach may be useful when there
are few shape modesand many grey-level modes.

The update equation in this casehas the form

±bs = B ±g (10.3)

where in this case±g is given by the di®erencebetweenthe current imagesamplegs and the
best ¯t of the grey-level model to it, gm ,

±g = gs ¡ gm

= gs ¡ ( ¹g + Pgbg)
(10.4)

where bg = PT
g (gs ¡ ¹g).

During a training phase we use regressionto learn the relationship, B , between ±b s and
±g (as given in (10.4)). Sinceany ±g is orthogonal to the columns of P g, the update equation
simpli¯es to

±bs = B (gs ¡ ¹g)
= Bg s ¡ bof f set

(10.5)

Thus one approach to ¯tting a model to an image is simply to keep track of the poseand
shape parameters, bs. The grey-level parameters can be computed directly from the sample
at the current shape. The constraints of the combined appearancemodel can be applied by
computing c using (5.5), applying constraints then recomputing the shape parameters. As in
the original formulation, the magnitude of the residual j±gj can be usedto test for convergence.

In caseswhere there are signi¯cantly fewer modes of shape variation than combined ap-
pearancemodes, this approach may be faster. However, since it is only indirectly driving the
parameterscontrolling the full appearance,c, it may not perform as well as the original formu-
lation.

Note that we could test for convergenceby monitoring changesin the shape parameters,or
simply apply a ¯xed number of iterations at each resolution. In this casewe do not needto use
the grey-level model at all during search. We would just do a single match to the grey-levels
sampledfrom the ¯nal shape. This may give a signi¯cantly faster algorithm.

10.3 Results of Exp erimen ts

To comparethe variations on the algorithm described above, an appearancemodel was trained
on a set of 300 labelled faces. This set contains several images of each of 40 people, with a
variety of di®erent expressions.Each image was hand annotated with 122 landmark points on
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the key features. From this data wasbuilt a shape model with 36 parameters,a grey-level model
of 10000pixels with 223 parametersand a combined appearancemodel with 93 parameters.

Three versionsof the AAM weretrained for thesemodels. One with the original formulation,
a secondusing a sub-setof 25% of the pixels to drive the parametersc, and a third trained to
drive the shape parameters,bs, alone.

A test set of 100unseennew images(of the sameset of peoplebut with di®erent expressions)
was used to compare the performanceof the algorithms. On each image the optimal posewas
found from hand annotated landmarks. The model was displaced by (+15, 0 ,-15) pixels in x
and y, the remaining parameters were set to zero and a multi-resolution search performed (9
tests per image, 900 in all).

Two search regimeswere used. In the ¯rst a maximum of 5 iterations were allowed at each
resolution level. Each iteration tested the model at c ! c ¡ k±c for k = 1:0; 0:51; : : : ; 0:54,
accepting the ¯rst that gave an improved result or declaring convergenceif none did.

The secondregime forced the update c ! c ¡ ±c without testing whether it was better or
not, applying 5 stepsat each resolution level.

The quality of ¯t was recordedin two ways;

² The RMS grey-level error per pixel in the normalised frame,
q

j±v j2=npixel s

² The mean distance error per model point

For example, the result of the ¯rst search shown in Figure 8.10 above gives an RMS grey
error of 0.46 per pixel and a mean distance error of 3.7 pixels.

Somesearcheswill fail to convergeto near the correct result. This is detectedby a threshold
on the mean distance error per model point. Those that have a mean error of > 7:5 pixels were
consideredto have failed to converge.

Table 10.1 summarises the results. The ¯nal errors recorded were averaged over those
searches which converged successfully.. The top row corresponds to the original formulation
of the AAM. It was the slowest, but on averagegave the fewest failures and the smallest grey-
level error. Forcing the iterations decreasedthe quality of the results, but wasabout 25%faster.

Sub-sampling considerably speeded up the search (taking only 30% of the time for full
sampling) but was much lesslikely to convergecorrectly, and gave a poorer overall result.

Driving the shape parametersduring search was faster still, but again lead to more failures
than the original AAM. However, it did lead to more accurate location of the target points when
the search convergedcorrectly. This was at the expenseof increasingthe error in the grey-level
match.

The best ¯t of the AppearanceModel to the images given the labels gave a mean RMS
grey error of 0.37 per pixel over the test set, suggestingthe AAM was getting closeto the best
possibleresult most of the time.

Table 10.2 shows the results of a similar experiment in which the models were started from
the best estimate of the correct pose,but with other model parameters initialised to zero. This
shows a much reducedfailure rate, but con¯rms the conclusionsdrawn from the ¯rst experiment.
The search could fail even given the correct initial posebecausesomeof the imagescontain quite
exaggeratedexpressionsand head movements, a long way from the mean. Thesewere di±cult
to match to, even under the best conditions.
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Driv en Sub-sample Iterations Failure Final Errors Mean
Params Max. Forced Rate Point Grey Time

§ 0:05 § 0:005 (ms)
c 100% 5 1 4.1% 4.2 0.45 3270
c 100% 5 5 4.6% 4.4 0.46 2490
c 25% 5 1 13.9% 4.6 0.60 920
c 25% 5 5 22.9% 4.8 0.63 630
bs 100% 5 1 11.4% 4.0 0.85 560
bs 100% 5 5 11.9% 4.1 0.86 490

Table 10.1: Comparison betweenAAM algorithms given displacedcentres (SeeText)

Driv en Sub-sample Iterations Failure Final Errors
Params Max. Forced Rate Point Grey

§ 0:1 § 0:01
c 100% 5 1 3% 4.2 0.46
c 100% 5 5 4% 4.4 0.47
c 25% 5 1 10% 4.6 0.60
c 25% 5 5 10% 4.6 0.60
bs 100% 5 1 6% 4.0 0.84
bs 100% 5 5 6% 4.1 0.87

Table 10.2: Comparison betweenAAM algorithms, given correct initial pose. (SeeText)
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10.4 Discussion

We have described several modi¯cations that can be made to the Activ e AppearanceModel
algorithm. Sub-sampling and driving the shape parameters during search both lead to faster
convergence,but were more prone to failure. The shape basedmethod was able to locate the
points slightly more accurately than the original formulation. Testing for improvement and
convergenceat each iteration slowed the search down, but lead to better ¯nal results.

It may be possibleto usecombinations of theseapproaches to achieve good results quickly,
for instance using the shape basedsearch in the early stages,then polishing with the original
AAM. Further work will include developing strategies for reducing the numbers of convergence
failures and extending the models to usecolour or multisp ectral images.

Though only demonstratedfor facemodels, the algorithm haswide applicabilit y, for instance
in matching modelsof structures in MR images[22]. The AAM algorithms, being able to match
10000pixel, 100 parameter models to new images in a few secondsor less, are powerful new
tools for image interpretation.



Chapter 11

Alternativ es and Extensions to
AAMs

There have been several suggestedimprovements to the basic AAM approach proposedin the
literature. Here we describe someof the more interesting.

11.1 Direct App earance Mo dels

Hou et. al.[60] claim that the relationship between the texture and the shape components
for facesis many to one, ie that one shape can contain many textures but that no texture is
associated with more than one shape. They claim that one can thus predict the shape directly
from the texture, which leadsto a faster and more reliable search algorithm.

One can simply use regressionon the training set examplesto predict the shape from the
texture,

bs = R t ¡ sb t (11.1)

The search algorithm then becomesthe following (simpli¯ed slightly for clarit y);

1. Assumean initial poset and parametersbs, b t , u

2. Samplefrom image under current model and compute normalised texture g

3. Compute texture parametersbtex and normalisation u to best match g

4. Update shape using bs = R t ¡ sb t

5. Update poseusing t = t ¡ R t ±g

One can of coursebe conservative and only apply the update if it leads to an improvement
in match, as in the original algorithm.

The processingin each iteration is dominated by the image sampling and the computation
of the texture and poseparameter updates- this step will thus be faster than the original AAM,
assumingone usesfewer texture modesthan appearancemodes.
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Experiments on faces[60] suggestsigni¯cant improvements in search performance(both in
accuracyand convergencerates) can be achieved using the method.

In general is not true that the texture to shape is many to one. A trivial counter-example
is that of a white rectangle on a black background. The shape can vary but the texture is ¯xed
- in this casethe relationship is one to many, and one can make no estimate of the shape from
the texture. There are various real world medical examplesin which the texture variation of the
internal parts of the object is e®ectively just noiseand thus is of no usein predicting the shape.

11.2 In verse Comp ositional AAMs

Baker and Matthews [100] show how the AAM algorithm can be consideredas one of a set of
imagealignment algorithms which can be classi¯ed by how updatesare madeand in what frame
one performs a minimisation during each iteration.

Updates to parameterscan be either

Additiv e b ! b + ±b, or

Comp ositional b is chosenso that Tb (x) ! Tb (T±b(x))

(In the AAM formulation in the previous chapter, the update to the pose is e®ectively
compositional, but that to the appearanceparameters is additiv e).

The compositional approach is more general than the additiv e approach. In the caseof
AAMs, it can be shown that the additiv e approach can give completely wrong updatesin certain
situations (seebelow for an example).

The issueof in what frame onedoesthe minimisation requiresa bit of notation. To simplify
this, in the following x indexesa model template, rather than represents a shape vector, and y
indexesa target image.

Assuming for the moment that we have a ¯xed model texture template, M (x), and a warping
function x ! W (x; p) (parameterised by p). If the target image is I (x), then in the usual
formulation we are attempting to minimise

X

x
[I (W (x; p)) ¡ M (x)]2 (11.2)

Assuming an iterativ e approach, at each step we have to compute a change in parameters,
±p to improve the match. This involves a minimisation over the parameters of this change to
choosethe optimal ±p. Baker and Matthews describe four casesas follows

Additiv e Choose±p to minimise
P

x [I (W (x; p + ±p)) ¡ M (x)]2

Comp ositional Choose±p to minimise
P

x [I (W (W (x; ±p); p)) ¡ M (x)]2

In verse Additiv e Choose±p to minimise
P

y

¯
¯
¯@W ¡ 1

@y

¯
¯
¯ [I (y ) ¡ M (W ¡ 1(y ; p + ±p))]2

In verse Comp ositional Choose±p to minimise
P

x [I (W (x; p)) ¡ M (W (x; ±p))] 2
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The original formulation of the AAMs is additiv e, but makesthe assumption that there is an
approximately constant relationship betweenthe error image and the parameter updates. This
assumption is not always satisfactory.

What Baker and Matthews show is that the InverseCompositional update schemeleads to
an algorithm which requires only linear updates (so is as e±cient as the AAM), but which is a
true gradient descent algorithm. They demonstratefaster convergenceto more accurateanswers
when using their algorithm when comparedto the original AAM formulation.

The update step in the InverseCompositional casecan be shown to be

±p = ¡
X

x
H ¡ 1

·
r M

@W
@p

¸ T

[I (W (x; p)) ¡ M (x)] (11.3)

where

H =
X

x

·
r M

@W
@p

¸ T ·
r M

@W
@p

¸
(11.4)

and the Jacobian @W
@p is evaluated at (x ; 0).

Note that in this casethe update step is independent of p and is basically a multiplication
with a matrix which can be assumedconstant with a clear consience.

Unfortunately, applying the parameter update in the caseof a triangulated mesh, as one
might usein an appearancemodel, is non-trivial, though a reasonablē rst order approximation
is possible.

What doesnot seemto be practical is to update the combined appearancemodel parameters,
c. We have to treat the shape and texture as independent to get the advantagesof the inverse
compositional approach.

We proceedas follows.

² Given current parametersp = (bT
s ; t T )T samplefrom image and normalise to obtain g

² Compute update ±p = R (g ¡ ¹g)

² Update parametersso that Tp (:) ! Tp (T±p (:))

² Iterate to taste

Note that we construct R from samplesprojected into the null spaceof the texture model
(as for the shape-basedAAM in Chapter 10). Of course,we usethe compositional approach to
constructing the update matrix.

The simplest update matrix R can be estimated as the pseudo-inverseof a matrix A which
is a projection of the Jacobian into the null spaceof the texture model. Thus R = A T (A T A )¡ 1

where the i th column of A is estimated as follows

² For each training example ¯nd best shape and posep

² For the current parameter i create several small displacements ±pj

² Construct the displacedparameters, p0 such that Tp 0(:) = Tp (T±p j (:)) (where ±p j is zero
except for the i th element, which is ±pj
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² Sample image at this displacedposition and normalise to obtain gs

² Project out the component in the texture subspace,±g0
j = (gs ¡ ¹g) ¡ P gpg where bg =

PT
g (gs ¡ ¹g)

² Construct the i th column of the matrix A from a suitably weighted sumof ai = 1P
wj

P
wj ±g0

j =±pj

where wj = exp(¡ 0:5±p2
j =¾2

i ) (¾2
i is the variance of the displacements of the parameter).

² Set R = A T (A T A )¡ 1



Chapter 12

Comparison between ASMs and
AAMs

Given an appearancemodel of an object, we can match it to an image using either the Activ e
Shape Model algorithm, or the Activ e AppearanceModel algorithm. The ASM will ¯nd point
locations only. Given these,it is easyto ¯nd the texture model parameterswhich best represent
the texture at thesepoints, and then the best ¯tting appearancemodel parameters.

The ASM matches the model points to a new image using an iterativ e technique which
is a variant on the Expectation Maximisation algorithm. A search is made around the current
position of each point to ¯nd a point nearby which best matchesa model of the texture expected
at the landmark. The parameters of the shape model controlling the point positions are then
updated to move the model points closer to the points found in the image.

The AAM manipulates a full model of appearance,which represents both shape variation
and the texture of the region covered by the model. This can be usedto generatefull synthetic
imagesof modelled objects. The AAM usesthe di®erencebetweenthe current synthesisedimage
and the target image to update its parameters.

There are three key di®erencesbetweenthe two algorithms:

1. The ASM only usesmodels of the image texture in small regions about each landmark
point, whereasthe AAM usesa model of the appearanceof the whole of the region (usually
inside a convex hull around the points).

2. The ASM searches around the current position, typically along pro¯les normal to the
boundary, whereasthe AAM only samplesthe image under the current position.

3. The ASM essentially seeksto minimise the distance betweenmodel points and the corre-
sponding points found in the image, whereasthe AAM seeksto minimise the di®erence
betweenthe synthesizedmodel image and the target image.

This chapter describes results of experiments testing the performance of both ASMs and
AAMs on two data sets,oneof faces,the other of structures in MR brain sections. Measurements
are made of their convergenceproperties, their accuracy in locating landmark points, their
capture range and the time required to locate a target structure.
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12.1 Exp erimen ts

Two data setswere usedfor the comparison:

² 400 face images,each marked with 133 points

² 72 slices of MR images of brains, each marked up with 133 points around sub-cortical
structures

For the faces,models were trained on 200 then tested on the remaining 200. For the brains
leave-one-brain-out experiments were performed.

The Appearancemodel was built to represent 5000 pixels in both cases. Multi-resolution
search was used, using 3 levels with resolutions of 25%, 50% and 100% of the original image
in each dimension. At most 10 iterations were run at each resolution. The ASM used pro¯le
models11 pixels long (5 either side of the point) at each resolution, and searched 3 pixels either
side. The performance of the algorithms can depend on the choice of parameters - we have
chosenvalueswhich have beenfound to work well on a variety of applications.

Capture range

The model instance was systematically displaced from the known best position by up to § 100
pixels in x, then a search was performed to attempt to locate the target points. Figure 12.1
shows the RMS error in the position of the centre of gravit y given the di®erent starting positions
for both ASMs and AAMs.
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Figure 12.1: Relative capture range of ASM and AAMs

Thus the AAM has a slightly larger capture range for the face, but the ASM has a much
larger capture range than the AAM for the brain structures. Of course,the results will depend
on the resolutions used, the sizeof the models usedand the search length of the ASM pro¯les.

Poin t location accuracy

One each test image we displacedthe model instance from the true position by § 10 in x and y
(for the face) and § 5 in x and y (for the brain), 9 displacements in total, then ran the search
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starting with the mean shape. On completion the results were compared with hand labelled
points. Figure 12.2 shows frequency histograms for the resulting point-to-b oundary errors(the
distance from the found points to the associated boundary on the marked images). The ASM
gives more accurate results than the AAM for the brain data, and comparable results for the
facedata.
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Figure 12.2: Histograms of point-boundary errors after search from displacedpositions

Table 12.1summarisesthe RMS point-to-p oint error, the RMS point-to-b oundary error, the
meantime per search and the proportion of convergencefailures. Failure wasdeclaredwhen the
RMS Point-Point error is greater than 10 pixels. The searches were performed on a 450MHz
PentiumI I PC running Linux.

Data Model Time/search Pt-Pt Error Pt-Crv Error Failures
Face ASM 190ms 4.8 2.2 1.0%

AAM 640ms 4.0 2.1 1.6%

Brain ASM 220ms 2.2 1.1 0%
AAM 320ms 2.3 1.1 0%

Table 12.1: Comparison of performanceof ASM and AAM algorithms on face and brain data
(SeeText)

Thus the ASM runs signi¯cantly faster for both models, and locates the points more accu-
rately than the AAM.

12.2 Texture Matc hing

The AAM explicitly generatesa texture image which it seeksto match to the target image.
After search we can thus measure the resulting RMS texture error. The ASM only locates
points positions. However, given the points found by the ASM we can ¯nd the best ¯t of the
texture model to the image, then record the residual. Figure 12.3 shows frequency histograms
for the resulting RMS texture errors per pixel. The images have a contrast range of about
[0,255]. The AAM producesa signi¯cantly better performancethan the ASM on the facedata,
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which is in part to be expected, since it is explicitly attempting to minimise the texture error.
However, the ASM producesa better result on the brain data. This is causedby a combination
of experimental set up and the additional constraints imposedby the appearancemodel.
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Figure 12.3: Histograms of RMS texture errors after search from displacedpositions

Figure 12.4comparesthe distribution of texture errors found after search with thoseobtained
when the model is ¯t to the (hand marked) target points in the image(the `Best Fit' line). This
demonstratesthat the AAM is able to achieve results much closer to the best ¯t results than
the ASM (becauseit is more explicitly minimising texture errors). The di®erencebetween the
best ¯t lines for the ASM and AAM has two causes;

² For the ASM experiments, though a leave-1-out approach was usedfor training the shape
models and grey pro¯le models, a single texture model trained on all the exampleswas
usedfor the texture error evaluation. This could ¯t more accurately to the data than the
model usedby the AAM, trained in a leave-1-out regime.

² The AAM ¯ts an appearancemodel which couplesshape and texture explicitly - the ASM
treats them asindependent. For the relatively small training setsusedthis overconstrained
the model, leading to poorer results.

The latter point is demonstrated in Figure 12.5, which shows the distribution of texture
errors when ¯tting models to the training data. One line shows the errors when ¯tting a 50
mode texture model to the image (with shape de¯ned by a 50 mode shape model ¯t to the
labelled points). The secondshows the best ¯t of a full 50 mode appearancemodel to the data.
The additional constraints of the latter mean that for a given number of modes it is lessable
to ¯t to the data than independent shape and texture models, becausethe training set is not
large enough to properly explore the variations. For a su±ciently large training set we would
expect to be able to properly model the correlation between shape and texture, and thus be
able to generatean appearancemodel which performed almost aswell asa independent models,
each with the same number of modes. Of course, if the total number of modes of the shape
and texture model were constrained to that of the appearancemodel, the latter would perform
much better.
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Figure 12.4: Histograms of RMS texture errors after search from displacedpositions
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Figure 12.5: Comparison betweentexture model best ¯t and appearancemodel best ¯t

12.3 Discussion

Activ e Shape Models search around the current location, along pro¯les, so one would expect
them to have a larger capture range than the AAM which only examines the image directly
under its current area. This is clearly demonstrated in the results on the brain data set.

ASMs only use data around the model points, and do not take advantage of all the grey-
level information available acrossan object as the AAM does. Thus they may be lessreliable.
However, the model points tend to be placesof interest (boundariesor corners) where there is
the most information. One could train an AAM to only search using information in areasnear
strong boundaries- this would require lessimagesampling during search soa potentially quicker
algorithm. A more formal approach is to learn from the training set which pixels are most useful
for search - this wasexplored in [23]. The resulting search is faster, but tends to be lessreliable.

One advantage of the AAM is that one can build a convincing model with a relatively small
number of landmarks. Any extra shape variation is expressedin additional modesof the texture
model. The ASM needspoints around boundariesso as to de¯ne suitable directions for search.
Becauseof the considerablework required to get reliable image labelling, the fewer landmarks
required, the better.

The AAM algorithm relies on ¯nding a linear relationship between model parameter dis-
placements and the induced texture error vector. However, we could augment the error vector
with other measurements to give the algorithm more information. In particular one method
of combining the ASM and AAM would be to search along pro¯les at each model point and
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augment the texture error vector with the distance along each pro¯le of the best match. Like
the texture error, this should be driven to zero for a good match. This approach will be the
subject of further investigation.

To conclude,we ¯nd that the ASM is faster and achievesmoreaccuratefeature point location
than the AAM. However, as it explicitly minimises texture errors the AAM givesa better match
to the image texture.



Chapter 13

Automatic Landmark Placemen t

The most time consumingand scienti¯cally unsatisfactory part of building shape models is the
labelling of the training images. Manually placing hundreds (in 2D) or thousands (in 3D) of
points on every image is both tedious and error prone. To reduce the burden, semi-automatic
systemshavebeendeveloped. In thesea model is built from the current set of examples(possibly
with extra arti¯cial modes included in the early stages)and used to search the current image.
The user can edit the result where necessary, then add the exampleto the training set. Though
this can considerably reduce the time and e®ort required, labelling large sets of imagesis still
di±cult. It is particularly hard to place landmarks in 3D images,becauseof the di±culties of
visualisation.

Ideally a fully automated system would be developed, in which the computer is presented
with a set of training imagesand automatically placesthe landmarks to generatea model which
is in somesenseoptimal. This is a di±cult task, not least becauseit is not clear how to de¯ne
what is optimal.

13.1 Automatic landmarking in 2D

Approaches to automatic landmark placement in 2D have assumedthat contours (either pixel-
lated or continuous, usually closed) have already been segmented from the training sets. The
aim is to place points so as to build a model which best cptures the shape variation, but which
has minimal representation error.

Scott and Longuett-Higgins [103] produce an elegant approach to the correspondenceprob-
lem. They extract salient features from the images, such as corners and edgesand use these
to calculate a proximit y matrix. This Gaussian-weighted matrix measuresthe distance between
each feature. A singular value decomposition (SVD) is performed on the matrix to establish
a correspondencemeasurefor the features. This e®ectively ¯nds the minimum least-squared
distance between each feature. This approach, however, is unable to cope with rotations of
more than 15 degreesand is generally unstable.

Shapiro and Brady [104] extend Scott?s approach to overcomethese shortcomings by con-
sidering intra-image featuresas well as inter-image features. As this method usesan unordered
pointset, its extension to 3-d is problematic becausethe points can losetheir ordering. Sclaro®
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and Pentland [102] derive a method for non-rigid correspondencebetweena pair of closed,pix-
elated boundaries. They use the same method as Shapiro and Brady to build a proximit y
matrix. This is used to build a ¯nite element model that describes the vibrational modes of
the two pointsets. Corresponding points are found by comparing the modesof the two shapes.
Although this method works well on certain shapes,Hill and Taylor [57] found that the method
becomesunstable when the two shapes are similar. It is also unable to deal with loops in the
boundary so points are liable to be re-ordered.

Hill et. al.described a method of non-rigid correspondencein 2D between a pair of closed,
pixellated boundaries [56, 57, 58]. The method is based on generating sparsepolygonal ap-
proximations for each shape; no curvature estimation for either boundary was required. The
landmarks were further improved by an iterativ e re¯nement step. Results were presented which
demonstrate the abilit y of this algorithm to provide accurate, non-rigid correspondences.This
pair-wise corresponder was usedwithin a framework for automatic landmark generation which
demonstrated that landmarks similar to those identi¯ed manually were produced by this ap-
proach.

Baumberg and Hogg [2] describe a system which generateslandmarks automatically for
outlines of walking people. The outlines are represented as pixellated boundaries extracted
automatically from a sequenceof imagesusing motion analysis. Landmarks are generatedon an
individual basisfor each boundary by computing the principal axis of the boundary, identifying
a referencepixel on the boundary at which the principal axis intersects the boundary and
generating a number of equally spacedpoints from the referencepoint with respect to the path
length of the boundary. While this processis satisfactory for silhouettes of pedestrians, it is
unlikely that it will be generally successful.The authors went on to describe how the position of
the landmarks can be iterativ ely updated in order to generateimproved shape modelsgenerated
from the landmarks [3].

Benayoun et. al.[5], Kambhamettu and Goldgof [63] all usecurvature information to select
landmark points. It is not, however, clear that corresponding points will always lie on regions
that have the samecurvature. Also, sincethesemethods only considerpairwise correspondences,
they may not ¯nd the best global solution.

Kotche®and Taylor [68] useddirect optimisation to placelandmarks on setsof closedcurves.
They de¯ne a mathematical expressionwhich measuresthe compactnessand the speci¯cit y of a
model. This givesa measurewhich is a function of the landmark positions on the training set of
curves. A geneticalgorithm is usedto adjust the point positions so as to optimise this measure.
Their representation is, however, problematic and doesnot guarantee a di®eomorphicmapping.
They correct the problem when it arisesby reordering correspondences,which is workable for
2D shapesbut doesnot extend to 3D. Although someof the results produced by their method
are better than hand-generatedmodels, the algorithm did not always converge.

Bookstein [9] describesan algorithm for landmarking setsof continuouscontours represented
aspolygons. Points are allowed to slide along contours soasto minimise a bending energyterm.

Rangarajan et al [97, 96] describe a method of point matching which simultaneously deter-
minesa set of matchesand the similarit y transform parametersrequired to register two contours
de¯ned by densepoint sets. The method is robust against point featureson onecontour that do
not appear on the other. An optimisation method similar to simulated annealingis usedto solve
the problem to produce a matrix of correspondences.The construction of the correspondence
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matrix cannot guarantee the production of a legal set of correspondences.
Walker et. al.[122, 123] salient features to generate correspondences,either by tracking

though a sequence,or by locating plausible pairwise matches and re¯ning using an EM like
algorithm to ¯nd the best global matchesacrossa training set.

Younes[128] describesan algorithm for matching 2D curves.
Davies et. al.[28, 27] describe a method of building shape models so as to minimise an

information measure- the idea being to chooselandmarks soas to be able to represent the data
as e±ciently as possible.

More recently region basedapproacheshave beendeveloped. For instance, De la Torre [72]
represents a faceas a set of ¯xed shape regionswhich can move independently . The appearance
of each is represented using an eigenmodel, and an optimisation is performed to locate the
regionson the training sequencesoas to minimise a measurerelated to the total varianceof the
model. This tends to match regionsrather than points, but is an automatic method of building
a °exible appearancemodel.

Jonesand Poggio [62] describe an alternativ e model of appearancethey term a `Morphable
Model'. An optical °ow basedalgorithm is usedto match the model onto new images,and can
be used in a `boot-strapping' mode in which the model is matched to new exampleswhich can
then be added to the training set [121].

Belongie et. al.[4] describe an iterativ e algorithm for matching pairs of point sets. They
de¯ne a `shape context' which is a model of the region around each point, and then optimise
an objective function which measuresthe di®erencein shape context and relative position of
corresponding points, allowing for shape deformation with a thin plate spline. They show
impressive recognition results on various databaseswith this technique.

Duta, Jain and Dubuisson-Jolly [90] describe a systemfor automatically building models by
clustering examples,discarding outliers and registering similar shapes.

13.2 Automatic landmarking in 3D

The work on landmarking in 3D has mainly assumeda training set of closed3D surfaceshas
already been segmented from the training images. As in 2D, the aim is to place landmarks
acrossthe set so as to give an `optimal' model.

Fleute and Laval¶ee [41] use an framework of initially matching each training example to a
single template, building a mean from these matched examples,and then iterativ ely matching
each exampleto the current meanand repeating until convergence.Matching is performedusing
the multi-resolution registration method of Szeliskiand Laval¶ee[113]. This method deformsthe
volume of spaceembedding the surfacerather than deforming the surfaceitself. Kelemen et al
[66] parameterisethe surfacesof each of their shape examplesusing the method of BrechbÄuhler
et al [13]. Correspondencemay then be establishedbetweensurfacesbut relies upon the choice
of a parametric origin on each surface mapping and registration of the coordinate systemsof
thesemappings by the computation of a rotation.

Brett et. al.[14] ¯nd correspondenceson pairs of triangular meshes.A binary tree of corre-
spondedshapescan be generatedfrom a training set. Landmarks placedon the `mean' shape at
the root of the tree can be propogatedto the leaves(the original training set). Theselandmarks
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are then usedto build 3D shape models.
Caunceand Taylor [17] describe building 3D statistical models of the cortical sulci. Points

are automatically located on the sulcal ¯ssures and correspondedusing variants on the Iterativ e
ClosestPoint algorithm. The landmarks areprogressively improvedby adding in morestructural
and con¯gural information. The ¯nal resulting landmarks are consistent with other anatomical
studies.

Wang et. al.[124] usescurvature information to select landmark points. It is not, however,
clear that corresponding points will always lie on regions that have the samecurvature. Also,
since thesemethods only considerpairwise correspondences,they may not ¯nd the best global
solution.

Dickens et. al.[31] describe a method of semi-automatically placing landmarks on objects
with an approximately cylindrical shape. Essentially the top and bottom of the object de¯ne
the extent, and a symmetry plane de¯nes the zero point for a cylindrical co-ordinate system.
The method is demonstrated on mango data and on an approximately cylindrical organ in MR
data.

The method gives an approximate correspondence,which is su±cient to build a statistical
but doesnot attempt to determine a correspondencethat is in somesenseoptimal.

Li and Reinhardt [76] describe a 3D landmarking de¯ned by marking the boundary in each
slice of an image, equally placing landmarks around each and then shu²ing the landmarks
around (varying a single parameter de¯ning the starting point) so as to minimise a measure
comparing curvature on the target curve with that on a template. The equal spacing of the
points will lead to potentially poor correspondenceson somepoints of interest.

Meier and Fisher [83] usea harmonic parameterisation of objects and warps and ¯nd corre-
spondencesby minimising errors in structural correspondence(point-point, line-line type mea-
sures).

Davies et. al.[29, 30] have extendedtheir approach to build modelsof surfacesby minimising
an information type measure,allowing points to move acrossthe surfacesunder the in°uence of
di®eomorphictransformations.



Chapter 14

View-Based App earance Mo dels

The appearanceof an object in a 2D imagecanchangedramatically asthe viewing anglechanges.
To deal e®ectively with real world scenesmodels must be developed which can represent this
variabilit y. For instance, the majorit y of work on face tracking and recognition assumesnear
fronto-parallel views, and tends to break down when presented with large rotations or pro¯le
views. Three general approaches have been used to deal with this; a) use a full 3D model
[120,42, 94], b) intro ducenon-linearities into a 2D model [59, 99, 110]and c) usea set of models
to represent appearancefrom di®erent view-points [86, 69, 126].

In this chapter weexplorethe last approach, usingstatistical modelsof shapeand appearance
to represent the variations in appearance from a particular view-point and the correlations
betweenmodels of di®erent view-points.

The appearancemodels are trained on example images labelled with sets of landmarks to
de¯ne the correspondencesbetween images. The face model examplesin Chapter 5 show that
a linear model is su±cient to simulate considerablechanges in viewpoint, as long as all the
modelled features (the landmarks) remained visible. A model trained on near fronto-parallel
face images can cope with pose variations of up to 45o either side. For much larger angle
displacements, somefeatures becomeoccluded, and the assumptionsof the model break down.

We demonstrate that to deal with full 180o rotation (from left pro¯le to right pro¯le), we
needonly 5 models, roughly centred on viewpoints at -90o,-45o,0o,45o,90o (where 0o corresponds
to fronto-parallel). The pairs of models at § 90o (full pro¯le) and § 45o(half pro¯le) are simply
re°ections of each other, so there are only 3 distinct models. We can use these models for
estimating headpose,for tracking facesthrough wide changesin orientation and for synthesizing
new views of a subject given a single view.

Each model is trained on labelled imagesof a variety of peoplewith a range of orientations
chosen so none of the features for that model become occluded. The di®erent models use
di®erent setsof features (seeFigure 14.2). Each exampleview can then be approximated using
the appropriate appearance model with a vector of parameters, c. We assumethat as the
orientation changes,the parameters,c, trace out an approximately elliptical path. We can learn
the relationship betweenc and headorientation, allowing us to both estimate the orientation of
any head and to be able to synthesizea faceat any orientation.

By using the Activ e AppearanceModel algorithm we can match any of the individual models
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to a new image rapidly. If we know in advance the approximate pose,we can easily select the
most suitable model. If we do not know, we can search with each of the ¯v e models and
choosethe one which achieves the best match. Once a model is selectedand matched, we can
estimate the head pose, and thus track the face, switching to a new model if the head pose
varies signi¯cantly . There are clearly correlations between the parameters of one view model
and those of a di®erent view model. In order to learn these, we need images taken from two
views simultaneously. For our experiments we achieved this using a judiciously placed mirror,
giving a frontal and a pro¯le view (Figure 14.1).

Figure 14.1: Using a mirror we capture frontal and pro¯le appearancesimultaneously

By annotating such imagesand matching frontal and pro¯le models, we obtain correspond-
ing sets of parameters. These can be analyzed to produce a joint model which controls both
frontal and pro¯le appearance.Such a joint model can be usedto synthesizenew views given a
single view. Though this can perhaps be done most e®ectively with a full 3D model [120], we
demonstrate that good results can be achieved just with a set of 2D models. The joint model
can alsobe usedto constrain an Activ e AppearanceModel search [36, 22], allowing simultaneous
matching of frontal and pro¯le models to pairs of images.

14.1 Training Data

To explore the abilit y of the apperancemodels to represent the face from a range of angles,we
gathered a training set consisting of sequencesof individuals rotating their headsthrough 180o,
from full pro¯le to full pro¯le. Figure 14.2 shows typical examples,together with the landmark
points placed on each example. The sets were divided up into 5 groups (left pro¯le, left half
pro¯le, frontal, right half pro¯le and right pro¯le). Ambiguous exampleswere assignedto both
groups, so that they could be used to learn the relationships between nearby views, allowing
smooth transition betweenthem (seebelow).

We trained three distinct models on data similar to that shown in Figure 14.2. The pro¯le
model was trained on 234 landmarked images taken of 15 individuals from di®erent orienta-
tions. The half-pro¯le model was trained on 82 images,and the frontal model on 294 images.
Re°ections of the imageswere usedto enlargethe training set.

Figure 14.3 shows the e®ectsof varying the ¯rst two appearancemodel parameters, c1, c2,
of models trained on a set of face images,labelled as shown in Figure 14.2. Thesechangeboth
the shape and the texture component of the synthesisedimage.



14.2. PREDICTING POSE 85

Pro¯le Half Pro¯le Frontal

Figure 14.2: Examples from the training sets for the models

c1 varies § 2 s.d.s c2 varies § 2 s.d.s

Figure 14.3: First two modesof the facemodels (top to bottom: pro¯le, half-pro¯le and frontal)

14.2 Predicting Pose

We assumethat the model parametersare related to the viewing angle, µ, approximately as

c = c0 + cx cos(µ) + cy sin(µ) (14.1)

where c0, cx and cy are vectors estimated from training data (seebelow).
(Here we consideronly rotation about a vertical axis - head turning. Nodding can be dealt

with in a similar way.)
This is an accurate representation of the relationship betweenthe shape, x, and orientation

angleunder an a±ne projection (the landmarks trace circlesin 3D which are projected to ellipses
in 2D), but our experiments suggestit is also an acceptableapproximation for the appearance
model parameters,c.

We estimate the head orientation in each of our training examples,µi , accurate to about
§ 10o. For each such image we ¯nd the best ¯tting model parameters, ci . We then perform
regressionbetweenf ci g and the vectors f (1; cos(µi ); sin(µi ))0g to learn c0,cx and cy .
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Figure 14.4 shows reconstructions in which the orientation, µ, is varied in Equation 14.1.

-105o -80o -60o

-60o -40o -20o

-45o 0 +45o

Figure 14.4: Rotation modesof three facemodels

Given a new examplewith parametersc, we can estimate its orientation as follows. Let R ¡ 1
c

be the left pseudo-inverseof the matrix (cx jcy) (thus R ¡ 1
c (cx jcy) = I 2).

Let

(xa; ya)0 = R ¡ 1
c (c ¡ c0) (14.2)

then the best estimate of the orientation is tan¡ 1(ya=xa).
Figure 14.5 shows the predicted orientations vs the actual orientations for the training sets

for each of the models. It demonstratesthat equation 14.1 is an acceptablemodel of parameter
variation under rotation.

14.3 Tracking through wide angles

We can use the set of models to track faces through wide angle changes(full left pro¯le to
full right pro¯le). We use a simple scheme in which we keep an estimate of the current head
orientation and useit to choosewhich model should be usedto match to the next image.

To track a facethrough a sequencewe locate it in the ¯rst frame using a global search scheme
similar to that described in [33]. This involves placing a model instance centred on each point
on a grid acrossthe image, then running a few iterations of the AAM algorithm. Poor ¯ts are
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Figure 14.5: Prediction vs actual angle acrosstraining set

Model Angle Range
Left Pro¯le -110o - -60o

Left Half-Pro¯le -60o - -40o

Frontal -40o - 40o

Right Half-Pro¯le 40o - 60o

Right Pro¯le 60o - 110o

Table 14.1: Valid angle rangesfor each model

discardedand good onesretained for more iterations. This is repeated for each model, and the
best ¯tting model is usedto estimate the position and orientation of the head.

We then project the current best model instance into the next frame and run a multi-
resolution seach with the AAM. We estimate the headorientation from the results of the search,
as described above. We then use the orientation to choose the most appropriate model with
which to continue. Each model is valid over a particular range of angles,determined from its
training set (seeTable 14.1). If the orientation suggestschanging to a new model, we estimate
the parametersof the new model from those of the current best ¯t. We then perform an AAM
search to match the new model more accurately. This processis repeated for each subsequent
frame, switching to new models as the angle estimate dictates.

When switching to a new model we must estimate the image pose(position, within image
orientation and scale) and model parameters of the new example from those of the old. We
assumelinear relationships which can be determined from the training sets for each model, as
long asthere are someimages(with intermediate headorientations) which belongto the training
sets for both models.

Figure 14.10shows the results of using the models to track the face in a new test sequence
(in this casea previously unseensequenceof a person who is in the training set). The model
reconstruction is shown superimposedon frames from the sequence.The methods appears to
track well, and is able to reconstruct a convincing simulation of the sequence.

We used this system to track 15 new sequencesof the people in the training set. Each
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sequencecontained between 20 and 30 frames. Figure 14.6 shows the estimate of the angle
from tracking against the actual angle. In all but one casethe tracking succeeded,and a good
estimate of the angle is obtained. In one casethe models lost track and were unable to recover.

The systemcurrently works o®-line,loading sequencesfrom disk. On a 450MHz Pentium I I I
it runs at about 3 frames per second,though so far little work has beendone to optimise this.
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Figure 14.6: Comparison of angle derived from AAM tracking with actual angle (15 sequences)

14.4 Synthesizing Rotation

Given a singleview of a new person,we can ¯nd the best model match and determine their head
orientation. We can then use the best model to synthesize new views at any orientation that
can be represented by the model. If the best matching parametersare c, we useEquation 14.2
to estimate the angle, µ. Let r be the residual vector not explained by the rotation model, ie

r = c ¡ (c0 + cx cos(µ) + cy sin(µ)) (14.3)

To reconstruct at a new angle, ®, we simply usethe parameters

c(®) = c0 + cx cos(®) + cy sin(®) + r (14.4)

For instance, Figure 14.7 shows ¯tting a model to a roughly frontal image and rotating
it. The top example usesa new view of someonein the training set. The lower example is a
previously unseenpersonfrom the Surrey facedatabase[84].

This only allows us to vary the angle in the range de¯ned by the current view model. To
generatesigni¯cantly di®erent views we must learn the relationship betweenparametersfor one
view model and another.
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Original Best Fit (-10o) Rotated to -25o Rotated to +25o

Original Best Fit (-2o) Rotated to -25o Rotated to +25o

Figure 14.7: By ¯tting a model we can estimate the orientation, then synthesizenew views

14.5 Coupled-View App earance Mo dels

Given enough pairs of images taken from di®erent view points, we can build a model of the
relationship betweenthe model parametersin oneview and those in another. Ideally the images
shouldbetakensimultaneously, allowing correllations betweenchangesin expressionto be learnt.
We have achieved this using a singlevideo cameraand a mirror (seeFigure 14.1). A loosermodel
can be built from images taken at di®erent times, assuming a similar expression (t ypically
neutral) is adopted in both.

Let r ij be the residual model parameters for the object in the i th image in view j , formed
from the best ¯tting parametersby removing the contribution from the angle model (Equation
14.3). We form the combined parameter vectorsj i = (r T

i1; r T
i2)T . We can then perform a principal

component analysison the set of f j i g to obtain the main modesof variation of a combined model,

j = ¹j + Pb (14.5)

Figure 14.8 shows the e®ectof varying the ¯rst four of the parameterscontrolling such a model
representing both frontal and pro¯le face appearance. The modes mix changesin identit y and
changesin expression. For instance mode 3 appears to demonstrate the relationship between
frontal and pro¯le views during a smile.

14.5.1 Predicting New Views

We can usethe joint model to generatedi®erent viewsof a subject. We ¯nd the joint parameters
which generatea frontal view best matching the current target, then usethe model to generate
the corresponding pro¯le view. Figures 14.9(a,b) show the actual pro¯le and pro¯le predicted
from a new view of someonein the training set. In this casethe model is able to estimate the
expression(a half smile). Becausewe only have a limited set of imagesin which we have non-
neutral expressions,the joint model built with them is not good at generalisingto new people.
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Mode 1 (b1 varies § 2s.d.s) Mode 2 (b2 varies § 2s.d.s)

Mode 3 (b3 varies § 2s.d.s) Mode 4 (b4 varies § 2s.d.s)

Figure 14.8: Modesof joint model, controlling frontal and pro¯le appearance

To deal with this, we built a second joint model, trained on about 100 frontal and pro¯le
imagestaken from the Surrey XM2VTS facedatabase[84]. Thesehave neutral expressions,but
the image pairs are not taken simultaneously, and the head orientation can vary signi¯cantly .
However, the rotation e®ectscan be removed using the approach described above, and the model
can be used to predict unseenviews of neutral expressions.Figures 14.9(c,d) show the actual
pro¯le and pro¯le predicted from a new person(the frontal imageis shown in Figure 14.7). With
a large enough training set we would be able to deal with both expressionchangesand a wide
variety of people.

a) Actual pro¯le b) Predicted pro¯le c) Actual pro¯le d) Predicted pro¯le

Figure 14.9: The joint model can be used to predict appearanceacrossviews (seeFig 14.7 for
frontal view from which the predictions are made)

14.6 Coupled Mo del Matc hing

Given two di®erent views of a target, and corresponding models, we can exploit the correlations
to improve the robustnessof matching algorithms. One approach would be to modify the Activ e
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Frontal Model Pro¯le Model
Measure Coupled Independent Coupled Independent

RMS Point Error 4:8 § 0:5 5:1 § 0:5 3:3 § 0:15 3:8 § 0:3
(pixels)

RMS Texture Error 7:9 § 0:25 7:9 § 0:25 8:3 § 0:25 8:8 § 0:4
(grey-levels)

Table 14.2: Comparison betweencoupled search and independent search

AppearanceModel search algorithm to drive the parameters,b, of the joint model, together with
the current estimatesof pose,texture transformation and 3D orientation parameters. However,
the approach we have implemented is to train two independent AAMs (one for the frontal model,
one for the pro¯le), and to run the search in parallel, constraining the parameterswith the joint
model at each step. In particular, each iteration of the matching algorithm proceedsas follows:

² Perform one iteration of the AAM on the frontal model, and one on the pro¯le model, to update
the current estimate of c1, c2 and the associated poseand texture transformation parameters.

² Estimate the relative head orientation with the frontal and pro¯le models, µ1, µ2

² Use Equation 14.3 to estimate the residuals r 1, r 2

² Form the combined vector j = (r T
1 ; r T

2 )T

² Compute the best joint parameters,b = P T (j ¡ ¹j ) and apply limits to taste.

² Compute the revised residualsusing (r 0T
1 ; r 0T

2 )T = ¹j + Pb

² Use Equation 14.1 to add the e®ectof head orientation back in

Note that this approach makes no assumptionsabout the exact relative viewing angles. If
appropriate we can learn the relationship between µ1 and µ2 (µ1 = µ2 + const). This could be
usedas a further constraint. Similarly the relative positions and scalescould be learnt.

To explorewhether theseconstraints actually improverobustness,weperformedthe following
experiment. We manually labelled 50 images(not in the original training set), then performed
multi-resolution search, starting with the mean model parameters in the correct pose. We ran
the experiment twice, onceusing the joint model constraints described above, oncewithout any
constraints (treating the two models as completely independent).

Table 14.2summarisesthe results. After each search we measurethe RMS distancebetween
found points and hand labelled points, and the RMS error per pixel between the model recon-
struction and the image (the intensity valuesare in the range [0,255]). The results demonstrate
that in this casethe useof the constraints between imagesimproved the performance,but not
by a great deal. We would expect that adding stronger constraints, such as that between the
anglesµ1,µ2, and the relative scalesand positions, would lead to further improvements.
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14.7 Discussion

This chapter demonstratesthat a small number of view-basedstatistical models of appearance
can represent the face from a wide range of viewing angles. Although we have concentrated on
rotation about a vertical axis, rotation about a horizontal axis (nodding) could easilybe included
(and probably wouldn't require any extra models for modest rotations). We have shown that
the models can be used to track facesthrough wide angle changes,and that they can be used
to predict appearancefrom new viewpoints given a single image of a person.

14.8 Related Work

Statistical models of shape and texture have been widely used for recognition, tracking and
synthesis [62, 74, 36, 116], but have tended to only be usedwith near fronto-parallel images.

Moghaddam and Pentland [87] describe using view-basedeigenfacemodels to represent a
wide variety of viewpoints. Our work is similar to this, but by including shape variation (rather
than the rigid eigen-patches), we require fewer models and can obtain better reconstructions
with fewer model modes. Kruger [69] and Wiskott et. al.[126] used°exible graphsof Gabor Jets
of frontal, half-pro¯le and full pro¯le views for face recognition and poseestimation. Maurer
and von der Malsburg [79] demonstrated tracking headsthrough wide anglesby tracking graphs
whosenodesare facial features,located with Gabor jets. The systemis e®ective for tracking, but
is not able to synthesizethe appearanceof the facebeing tracked. Muraseand Nayar [59] showed
that the projections of multiple views of a rigid object into an eigenspacefall on a 2D manifold
in that space.By modelling this manifold they could recogniseobjects from arbitrary views. A
similar approach has beentaken by Gong et. al.[105, 70] who usenon-linear representations of
the projections into an eigen-facespacefor tracking and poseestimation, and by Graham and
Allinson [45] who useit for recognition from unfamiliar viewpoints.

Romdhani et. al.[99] have extended the Activ e Shape Model to deal with full 180o rotation
of a face using a non-linear model. However, the non-linearities mean the method is slow to
match to a new image. They have also extended the AAM [110] using a kernel PCA. A non-
linear 2D shape model is combined with a non-linear texture model on a 3D texture template.
The approach is promising, but considerably more complex than using a small set of linear 2D
models.

Vetter [119,120]hasdemonstratedhow a 3D statistical model of faceshape and texture can
be usedto generatenew views given a single view. The model can be matched to a new image
from moreor lessany viewpoint usinga generaloptimization scheme,though this is slow. Similar
work hasbeendescribed by Fua and Miccio [42] and Pighin et. al.[94]. By explicitly taking into
account the 3D nature of the problem, this approach is likely to yield better reconstructions
than the purely 2D method described below. However, the view basedmodelswe proposecould
be usedto drive the parametersof the 3D head model, speedingup matching times.

La Casciaet. al.[71] describe a related approach to headtracking. They project the faceonto
a cylinder (or more complex3D faceshape) and usethe residual di®erencesbetweenthe sampled
data and the model texture (generated from the ¯rst frame of a sequence)to drive a tracking
algorithm, with encouragingresults. The model is tuned to the individual by iinitialization in
the ¯rst frame, and doesnot explicitly track expressionchanges,as the approach here is able to.
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Figure 14.10: Reconstruction of tracked facessuperimposedon sequences



Chapter 15

Applications and Extensions

The ASM and AAMs have been widely used, and numerous extensionshave been suggested.
Here I cover a few that have cometo my attention. This is by no meansa complete list - there
are now so many applications that I'v e lost track. If you are reading this and know of anything
I'v e missed,pleaselet me know - I don't have the time to keepthis asup to date, or ascomplete,
as I would like.

15.1 Medical Applications

Nikou et. al.describe a statistical model of the skull, scalp and various brain surfaces. The
model usesthe modes of vibration of an elastic spherical mesh to match to sets of examples.
The parameters are then put through a PCA to build a model. (Note that this is identical to
a PDM, though without taking care over the correspondence). By matching part of the model
to the skull and scalp, constraints can then be placed on the position of other brain structures,
making it easierto locate them. They demonstrate using the model to register MR to SPECT
images.

van Ginneken [118]describesusing Activ e Shapve Modelsfor interpretting chest radiographs.
He demonstatesthat various improvements on the original method (such as using k-Nearest
Neighbour classi¯ers during the pro¯le model search) give more accurate results.

Hamarneh[49, 48] hasinvestigatedthe extensionof ASMs to Spatio-Temporaral Shapes,and
has deviseda new algorithm for deforming the ST-shape model to better ¯t the imagesequence
data.

Mitc hell et. al.[85] describe building a 2D+time Appearancemodel of the time varying
appearanceof the heart in complete cardiac MR sequences.

The model essentially represents the texture of a set of 2D patches, one for each time step
of the cycle. The modes therefore capture the shape, texture and time-varying changesacross
the training set.

The AAM is suitably modi¯ed to match such a model to sequencedata, with encouraging
results. It shows a good capture range, making it robust to initial position, and is accurate in
its ¯nal result.

Bosch et. al.[10] describe building a 2D+time Appearancemodel and using it to segment
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parts of the heart boundary in echocardiogram sequences.The model (the sameas that used
above) essentially represents the texture of a set of 2D patches, one for each time step of the
cycle. The modes therefore capture the shape, texture and time-varying changesacross the
training set.

The paper describes an elegant method of dealing with the strongly non-gaussiannature
of the noise in ultrasound images. Essentially the cumulativ e intensity histogram is computed
for each patch (after applying a simple linear transform to the intensities to get them into the
range [0,1]). This is then compared to the histogram one would obtain from a true gaussian
distribution with the sames.d. A lookup table is created which maps the intensities so that
the normalised intensities then have an approximately gaussiandistribution. The lookup is
computed once during training, basedon the distributions of all the training examples. It is
stored, and usedto normalise each image patch, both during training, and during AAM search.

This distribution correction approach is shown to have a dramatic e®ect on the quality
of matching, with successfulconvergenceon a test set rising from 73% (for the simple linear
normalisation) to 97% for the non-linear method.

Li and Reinhardt [76] describe a 3D landmarking de¯ned by marking the boundary in each
slice of an image, equally placing landmarks around each and then shu²ing the landmarks
around (varying a single parameter de¯ning the starting point) so as to minimise a measure
comparing curvature on the target curve with that on a template. The equal spacing of the
points will lead to potentially poor correspondenceson somepoints of interest.

Given a set of objects so labelled, a triangulated meshis createdan a 3D ASM can be built.
The statistical models of image structure at each point (along pro¯les normal to the surface)
include a term measuring local image curvature (if I remember correctly) which is claimed to
reducethe ambiguit y in matching.

Once the ASM convergesits ¯nal state is usedas the starting point for a deformable mesh
which can be further re¯ned in a snake like way, including adding extra nodes to give a more
detailed match to image data.

Results were shown on vertebra in volumetric chest HRCT images(check this).
Lorenz et. al.[20] describe how the free vibrational modes of a 3D triangulated mesh can

be used as a model of shape variabilit y when only a single example is available. It is similar
in principle to earlier work by Cootes and Taylor, and by Wand and Staib. They show the
representation error when using a shape model to approximate a set of shapesagainst number
of modesused. The statistical model givesthe best representation, but vibrational mode models
built from a singleexamplecanachievereasonableapproximations without excessively increasing
the number of modesrequired. A model built from the mean was signi¯cantly better than one
built from oneof the training examples,but of coursein practise if onehas the meanonewould
usethe statistical model.

Bernard and Pernus [6] addressthe problem of locating a set of landmarks on AP radiographs
of the pelvis which are usedto assessthe stresseson the hip joints. Three statistical appearance
modelsare built, on of each hip joint, oneof the pelvis itself. To match a cost function is de¯ned
which penalisesshape and texture variation from the model mean, and which encouragesthe
centre of each hip joint to correspond to the centre of the circle de¯ned by the socket - a sensible
constraint. The modelsare matched using simulated annealingand leave-oneout tests of match
performanceare given.



15.2. TRA CKING 96

Yao et. al.[127] describe building a statistical model representing the shape and density of
bony anatomy in CT images. The shape is represented using a tetrahedral mesh. The density is
approximated using smooth Bernstein spline polynomials expressedin barycentric co-ordinates
on each tetrahedron of the mesh. This approach leads to a good representation and is fairly
compact. The demonstrate convincing reconstructions. The aim is to build an anatomical atlas
representing bone density.

Thodberg and Rosholm [115] have used the Activ e Shape Model in a commercial medical
device for bone densitometry and shown it to be both accurate and reliable. Thodberg [52]
describes using AAMs for interpretting hand radiographs, demonstrating that the AAM is an
e±cient and accurate method of solving a variety of tasks. He describeshow the bone measure-
ments can be usedas biometrics to verify patient identit y.

Pekar et. al.[92] use a mesh representation of surfaces, together with a statistical shape
model, to segment vertebrae in CT images. After a global match using the shape model, lo-
cal adaptation is performed, minimising an energy term which combines image matching and
internal model smoothnessand vertex distribution.

The appearancemodel relies on the existenceof correspondencebetween structures in dif-
ferent images, and thus on a consistent topology acrossexamples. For some structures (for
example, the sulci), this does not hold true. An alternativ e approach for sulci is described by
Caunceand Taylor [16, 17].

15.2 Tracking

Baumberg and Hogg [2] usea modi¯ed ASM to track peoplewalking.
Romdhani et. al.[99] have extended the Activ e Shape Model to deal with full 180o rotation

of a face using a non-linear model. However, the non-linearities mean the method is slow to
match to a new image. They have also extended the AAM [110] using a kernel PCA. A non-
linear 2D shape model is combined with a non-linear texture model on a 3D texture template.
The approach is promising, but considerably more complex than using a small set of linear 2D
models.

Bowden et. al.[11, 12] has used3D statistical shape models to estimate 3D poseand motion
from 2D images.

La Cascia et. al.[71] describe `Active Blobs' for tracking, which are in many ways similar
to AAMs, though they use a FEM model of deformation of a single protot ype rather than a
statistical model.

Edwards et. al.have usedASMs and AAMs to model and track faces[35, 37, 34].

15.3 Extensions

Rogersand Graham [98] have shown how to build statistical shape models from training sets
with missing data. This allows a feature to be present in only a subset of the training data
and overcomesone problem with the original formulation. An extra parameter is added which
allows the feature to be present/absent, and the statistical analysis is done in such a way as to
avoid biasing the estimatesof the variance of the features which are present.
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Non-linear extensionsof shape and appearancemodelsusing kernel basedmethods have been
presented by Romdhani et. al.[99, 110] and Twining and Taylor [117], amongst others.

When the AAM convergesit will usually be closeto the optimal result, but may not achieve
the exact position. Stegmannand Fisker [40, 80, 112]hasshown that applying a generalpurpose
optimiser can improve the ¯nal match.



Chapter 16

Discussion

Activ e Shape Models allow rapid location of the boundary of objects with similar shapes to
those in a training set, assumingwe know roughly where the object is in the image. They are
particularly useful for:

² Objects with well de¯ned shape (eg bones,organs, facesetc)

² Caseswhere we wish to classify objects by shape/appearance

² Caseswhere a representativ e set of examplesis available

² Caseswhere we have a good guessas to where the target is in the image

However, they are not necessarilyappropriate for

² Objects with widely varying shapes(eg amorphousthings, trees, long wiggly worms etc)

² Problems involving counting large numbers of small things

² Problems in which position/size/orien tation of targets is not known approximately (or
cannot be easily estimated).

In addition, it should be noted that the accuracy to which they can locate a boundary is
constrained by the model. The model can only deform in ways observed in the training set.
If the object in an image exhibits a particular type of deformation not present in the training
set, the model will not ¯t to it. This is true of ¯ne deformations as well as coarseones. For
instance, the model will usually constrain boundaries to be smooth, if only smooth examples
have been seen. Thus if a boundary in an image is rough, the model will remain smooth, and
will not necessarily¯t well. However, using enoughtraining examplescan usually overcomethis
problem.

One of the main drawbacks of the approach is the amount of labelled training examples
required to build a good model. These can be very time consuming to generate. However,
a `bootstrap' approach can be adopted. We ¯rst annotate a single representativ e image with
landmarks, and build a model from this. This will have a ¯xed shape, but will be allowed to
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scale, rotate and translate. We then use the ASM algorithm to match the model to a new
image, and edit the points which do not ¯t well. We can then build a model from the two
labelled exampleswe have, and useit to locate the points in the third. This processis repeated,
incrementally building a model, until the ASM ¯nds new examplessu±ciently accurately every
time, so needsno more training.

Both the shape models and the search algorithms can be extended to 3D. The landmark
points become3D points, the shape vectors become3n dimensional for n points. Although
the statistical machinery is identical, a 3D alignment algorithm must be used (see [54]). Of
course, annotating 3D images with landmarks is di±cult, and more points are required than
for a 2D object. In addition, the de¯nition of surfacesand 3D topology is more complex than
that required for 2D boundaries. However, 3D models which represent shape deformation can
be successfullyusedto locate structures in 3D datasetssuch as MR images(for instance [55]).

The ASM/AAMs arewell suited to tracking objects through imagesequences.In the simplest
form the full ASM/AAM search can be applied to the ¯rst imageto locate the target. Assuming
the object doesnot move by large amounts betweenframes,the shape for oneframe can be used
as the starting point for the search in the next, and only a few iterations will be required to lock
on. More advanced techniques would involve applying a Kalman ¯lter to predict the motion
[2][38].

To summarise,by training statistical models of shape and appearancefrom setsof labelled
exampleswe can represent both the mean shape and appearanceof a classof objects and the
common modes of variation. To locate similar objects in new images we can use the Activ e
Shape Model or Activ e AppearanceModel algorithms which, given a reasonablestarting point,
can match the model to the image very quickly.
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App endix A

Applying a PCA when there are
fewer samples than dimensions

Supposewe wish to apply a PCA to s n-D vectors, x i , where s < n. The covariance matrix
is n £ n, which may be very large. However, we can calculate its eigenvectors and eigenvalues
from a smaller s £ s matrix derived from the data. Becausethe time taken for an eigenvector
decomposition goesas the cube of the sizeof the matrix, this can give considerablesavings.

Subract the mean from each data vector and put them into the matrix D

D = ((x1 ¡ ¹x)j : : : j(xs ¡ ¹x)) (A.1)

The covariance matrix can be written

S =
1
s

DD T (A.2)

Let T be the s £ s matrix

T =
1
s

D T D (A.3)

Let ei be the s eigenvectors of T with corresponding eigenvalues¸ i , sorted into descending
order. It can be shown that the s vectors De i are all eigenvectors of S with corresponding
eigenvalues¸ i , and that all remaining eigenvectors of S have zero eigenvalues. Note that De i is
not necessarilyof unit length so may require normalising.
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App endix B

Aligning Tw o 2D Shapes

Given two 2D shapes,x and x0, we wish to ¯nd the parametersof the transformation T(:) which,
when applied to x, best aligns it with x0. We will de¯ne `best' as that which minimises the sum
of squaresdistance. Thus we must choosethe parametersso as to minimise

E = jT(x) ¡ x0j2 (B.1)

Below we give the solution for the similarit y and the a±ne cases.
To simplify the notation, we de¯ne the following sums

Sx = 1
n

P
x i Sy = 1

n
P

yi

Sx0 = 1
n

P
x0

i Sy0 = 1
n

P
y0

i
Sxx = 1

n
P

x2
i Syy = 1

n
P

y2
i

Sxy = 1
n

P
x i yi

Sxx 0 = 1
n

P
x i x0

i Syy0 = 1
n

P
yi y0

i
Sxy 0 = 1

n
P

x i y0
i Syx0 = 1

n
P

yi x0
i

(B.2)

B.1 Similarit y Case

Supposewe have two shapes,x and x 0, centred on the origin (x:1 = x0:1 = 0). We wish to scale
and rotate x by (s;µ) so as to minimise jsAx ¡ x 0j, where A performs a rotation of a shape x
by µ. Let

a = (x:x0)=jx j2 (B.3)

b =

Ã nX

i =1

(x i y0
i ¡ yi x0

i )

!

=jx j2 (B.4)

Then s2 = a2 + b2 and µ = tan¡ 1(b=a). If the shapesdo not have C.o.G.s on the origin, the
optimal translation is chosento match their C.o.G.s, the scaling and rotation chosenas above.

Pro of
The two dimensional Similarit y transformation is

T

Ã
x
y

!

=

Ã
a ¡ b
b a

! Ã
x
y

!

+

Ã
tx

ty

!

(B.5)
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We wish to ¯nd the parameters(a;b;tx ; ty) of T(:) which best aligns x with x0, ie minimises

E(a;b;tx ; ty) = jT(x) ¡ x0)j2

=
P n

i=1 (axi ¡ byi + tx ¡ x0
i )

2 + (bxi + ayi + ty ¡ y0
i )

2 (B.6)

Di®erentiating w.r.t. each parameter and equating to zero gives

a(Sxx + Syy) + txSx + tySy = Sxx 0 + Syy0

b(Sxx + Syy) + tySx ¡ txSy = Sxy 0 ¡ Syx0

aSx ¡ bSy + tx = Sx0

bSx + aSy + ty = Sy0

(B.7)

To simplify things (and without loss of generality), assumex is ¯rst translated so that its
centre of gravit y is on the origin. Thus Sx = Sy = 0, and we obtain

tx = Sx0 ty = Sy0 (B.8)

and

a = (Sxx 0 + Syy0)=(Sxx + Syy) = x:x0=jx j2

b = (Sxy 0 ¡ Syx0)=(Sxx + Syy) = (Sxy 0 ¡ Syx0)=jx j2
(B.9)

If the original x wasnot centred on the origin, then the initial translation to the origin must
be taken into account in the ¯nal solution.

B.2 A±ne Case

The two dimensional a±ne transformation is

T

Ã
x
y

!

=

Ã
a b
c d

! Ã
x
y

!

+

Ã
tx

ty

!

(B.10)

We wish to ¯nd the parameters (a;b;c;d; tx ; ty) of T(:) which best aligns x with x0, ie
minimises

E(a;b;c;d; tx ; ty) = jT(x) ¡ x0)j2

=
P n

i=1 (axi + byi + tx ¡ x0
i )

2 + (cxi + dyi + ty ¡ y0
i )

2 (B.11)

Di®erentiating w.r.t. each parameter and equating to zero gives

aSxx + bSxy + txSx = Sxx 0 cSxx + dSxy + tySx = Sxy 0

aSxy + bSyy + txSy = Syx0 cSxy + dSyy + tySy = Syy0

aSx + bSy + tx = Sx0 cSx + dSy + ty = Sy0

(B.12)

where the S¤ are as de¯ned above.
To simplify things (and without loss of generality), assumex is ¯rst translated so that its

centre of gravit y is on the origin. Thus Sx = Sy = 0, and we obtain
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tx = Sx0 ty = Sy0 (B.13)

Substituting into B.12 and rearranging gives
Ã

a b
c d

! Ã
Sxx Sxy

Sxy Syy

!

=

Ã
Sxx 0 Syx0

Sxy 0 Syy0

!

(B.14)

Thus
Ã

a b
c d

!

=
1
¢

Ã
Sxx 0 Syx0

Sxy 0 Syy0

! Ã
Syy ¡ Sxy

¡ Sxy Sxx

!

(B.15)

where ¢ = Sxx Syy ¡ S2
xy .

If the original x wasnot centred on the origin, then the initial translation to the origin must
be taken into account in the ¯nal solution.



App endix C

Aligning Shapes (I I)

Here we present solutions to the problem of ¯nding the optimal parametersto align two shapes
so as to minimise a weighted sum-of-squaresmeasureof point di®erence.

Throughout we assumetwo sets of n points, x i and x0
i . We assumea transformation, x 0 =

Tt (x) with parameters t . We seekto choosethe parameters, t , so as to minimise

E =
nX

i =1

(x0
i ¡ Tt (x i ))T W i (x0

i ¡ Tt (x i )) (C.1)

The solutions are obtained by equating @E
@t = 0 (detailed derivation is left to the interested

reader).

C.1 Translation (2D)

If pure translation is allowed,

Tt (x) = x +

Ã
tx

ty

!

(C.2)

and t = (tx ; ty)T .
In this casethe parameters(tx ; ty) are given by the solution to the linear equation

Ã nX

i =1

Wi

! Ã
tx

ty

!

=

Ã nX

i =1

Wi (x0
i ¡ x i )

!

(C.3)

For the special casewith isotropic weights, in which W i = wi I , the solution is given by

t =

Ã nX

i =1

Wi

! ¡ 1 Ã nX

i =1

wi (x0
i ¡ x i )

!

(C.4)

For the unweighted casethe solution is simply the di®erencebetweenthe means,

t = ¹x0¡ ¹x (C.5)
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C.2 Translation and Scaling (2D)

If translation and scaling are allowed,

Tt (x) = sx +

Ã
tx

ty

!

(C.6)

and t = (s; tx ; ty)T .
In this casethe parameters(tx ; ty) are given by the solution to the linear equation
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where
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P
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(C.8)

In the unweighted casethis simpli¯es to the solution of
0
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where
Sxx =

P
x2

i Syy =
P

y2
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P
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i
(C.10)

C.3 Similarit y (2D)

If translation, scaling and rotation are allowed,

Tt (x) =

Ã
a ¡ b
b a

!

x +

Ã
tx

ty

!

(C.11)

and t = (a;b;tx ; ty)T .
In this casethe parameters(a;b;tx ; ty) are given by the solution to the linear equation
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where
SxJ W J x =

P
xT

i JT W i Jx i SW J x =
P

W i Jx i

SxJ W x0 =
P

xT
i JT W i x0

i SW J x0 =
P

W i Jx 0
i

(C.13)
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and

J =

Ã
0 ¡ 1
1 0

!

(C.14)

In the unweighted casethis simpli¯es to the solution of
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1
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(C.15)

C.4 A±ne (2D)

If a 2D a±ne transformation is allowed,

Tt (x) =

Ã
a b
c d

!

x +

Ã
tx

ty

!

(C.16)

and t = (a;b;c;d; tx ; ty)T .
The anisotropic weights caseis just big, but not complicated. I'll write it down one day.
In the unweighted casethe parametersare given by the solution to the linear equation
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App endix D

Represen ting 2D Pose

D.1 Similarit y Transformation Case

For 2D shapeswe usually allow translation (tx ; ty), rotation, µ and scaling,s. To retain linearit y
we represent the pose using t = (sx ; sy ; tx ; ty)T where sx = (scosµ ¡ 1), sy = ssinµ. In
homogeneousco-ordinates, this corresponds to the transformation matrix

T t =

0

B
@

1 + sx ¡ sy tx

sy 1 + sx ty

0 0 1

1

C
A (D.1)

For the AAM we must represent small changesin poseusing a vector, ±t . This is to allow us
to predict small posechangesusing a linear regressionmodel of the form ±t = Rg . For linearit y
the zero vector should indicate no change,and the posechangeshould be approximately linear
in the vector parameters. This is satis¯ed by the above parameterisation.

The AAM algorithm requiresus to ¯nd the poseparameterst 0of the transformation obtained
by ¯rst applying the small changegiven by ±t , then the posetransform given by t . Thus, ¯nd
t 0 so that Tt 0(x) = Tt (T±t (x)).

If we write ±t = (±sx ; ±sy ; ±tx ; ±ty)T , it can be shown that

1 + s0
x = (1 + ±sx )(1 + sx ) ¡ ±sysy

s0
y = ±t2(1 + sx ) + (1 + ±sx )sy

t0
x = (1 + sx )±tx ¡ sy±ty + tx

t0
y = (1 + sx )±ty + sy±tx + ty

(D.2)

Note that for small changes,T±t 1 (T±t 2 (x)) ¼ T(±t 1+ ±t 2 ) (x), which is required for the AAM
predictions of posechangeto be consistent.
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App endix E

Represen ting Texture
Transformations

We allow scaling,®, and o®sets,̄ , of the texture vectorsg. To retain linearit y we represent the
transformation parametersusing the vector u = (u1; u2)T = (®¡ 1; ¯ )T . Thus

Tu (g) = (1 + u1)g + u21 (E.1)

As for the pose,the AAM algorithm requiresus to ¯nd the parametersu0 such that Tu 0(g) =
Tu (T±u (g)). It is simple to show that

1 + u0
1 = (1 + u1)(1 + ±u1)

u0
2 = (1 + u1)±u2 + u2

(E.2)

Thus for small changes,T±u 1 (T±u 2 (g)) ¼ T(±u 1+ ±u 2 ) (g), which is required for the AAM pre-
dictions of posechangeto be consistent.

109



App endix F

Image Warping

Supposewe wish to warp an image I , so that a set of n control points f x i g are mapped to new
positions, f x0

i g. We require a continuous vector valued mapping function, f , such that

f (x i ) = x0
i 8 i = 1: : : n (F.1)

Given such a function, we can project each pixel of image I into a new image i 0. In practice,
in order to avoid holesand interpolation problems, it is better to ¯nd the reversemap, f ', taking
x0

i into x i . For each pixel in the target warped image, i0 we can determine where it camefrom
in i and ¯ll it in. In general f 0 6= f ¡ 1, but is a good enoughapproximation.

Below we will considertwo forms of f , piece-wisea±ne and the thin plate spline interpolator.
Note that we can often break down f into a sum,

f (x) =
nX

i =1

f i (x)x0
i (F.2)

Where the n continuous scalar valued functions f i each satisfy

f i (x j ) =
1 if i = j
0 i 6= j

(F.3)

This ensuresf (x i ) = x0
i .

F.1 Piece-wise A±ne

The simplest warping function is to assumeeach f i is linear in a local region and zeroeverywhere
else.

For instance, in the one dimensional case(in which each x is a point on a line), supposethe
control points are arranged in ascendingorder (x i < x i +1 ).

We would like to arrange that f will map a point x which is halfway betweenx i and x i +1 to
a point halfway betweenx0

i and x0
i+1 . This is achieved by setting
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f i (x) =
(x ¡ x i )=(x i +1 ¡ x i ) if x 2 [x i ; x i +1 ] and i < n
(x ¡ x i )=(x i ¡ x i ¡ 1) if x 2 [x i ¡ 1; x i ] and i > 1

0 otherwise
(F.4)

We can only sensibly warp in the region betweenthe control points, [x1; xn ].
In two dimensions,we can usea triangulation (eg Delauney) to partition the convex hull of

the control points into a set of triangles. To the points within each triangle we can apply the
a±ne transformation which uniquely maps the cornersof the triangle to their new positions in
i0.

Supposex1, x2 and x3 are three cornersof such a triangle. Any internal point can be written

x = x1 + ¯ (x2 ¡ x1) + ° (x3 ¡ x1)
= ®x1 + ¯ x2 + ° x3

(F.5)

where ® = 1¡ (¯ + ° ) and so ®+ ¯ + ° = 1. For x to be inside the triangle, 0 · ®; ¯ ; ° · 1.
Under the a±ne transformation, this point simply maps to

x0 = f (x) = ®x0
1 + ¯ x0

2 + ° x0
3 (F.6)

To generatea warped image we take each pixel, x 0 in I 0, decidewhich triangle it belongsto,
compute the coe±cients ®; ¯ ; ° giving its relative position in the triangle and use them to ¯nd
the equivalent point in the original image, I . We samplefrom this point and copy the value into
pixel x0 in I 0.

Note that although this givesa continuous deformation, it is not smooth. Straight lines can
be kinked acrossboundariesbetweentriangles (seeFigure F.1).

1 2

3

1 2

3

44

Figure F.1: Using piece-wisea±ne warping can lead to kinks in straight lines

F.2 Thin Plate Splines

Thin Plate Splineswere popularised by Bookstein for statistical shape analysis and are widely
used in computer graphics. They lead to smooth deformations, and have the added advantage
over piee-wisea±ne that they are not constrained to the convex hull of the control points.
However, they are more expensive to calculate.
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F.3 One Dimension

First consider the one dimensional case. Let U(r ) = ( r
¾)2log( r

¾), where ¾ is a scaling value
de¯ning the sti®nessof the spline.

The 1D thin plate spline is then

f 1(x) =
nX

i =1

wi U(jx ¡ x i j) + a0 + a1x (F.7)

The weights wi ,a0; a1 are chosento satisfy the constraints f (x i ) = x0
i 8i .

If we de¯ne the vector function

u1(x) = (U(jx ¡ x1j); U(jx ¡ x2j; : : : ; U(jx ¡ xn j); 1; x)T (F.8)

and put the weights into a vector w 1 = (w1; : : : ; wn ; a0; a1)
then (F.7) becomes

f 1(x) = w T
1 u1(x) (F.9)

By plugging each pair of corresponding control points into (F.7) we get n linear equations
of the form

x0
j =

nX

i =1

wi U(jx j ¡ x i j) + a0 + a1x j (F.10)

Let Ui j = Uj i = U(jx i ¡ x j j). Let Ui i = 0. Let K be the n £ n matrix whoseelements are
f Ui j g.

Let

Q1 =

0

B
B
B
B
@

1 x1

1 x2
...

...
1 xn

1

C
C
C
C
A

(F.11)

L 1 =

Ã
K Q1

QT
1 02

!

(F.12)

where (0)2 is a 2 £ 2 zero matrix.
Let X 0

1 = (x0
1; x0

2; : : : ; x0
n ; 0; 0)T . Then the weights for the spline(F.7) w 1 = (w1; : : : ; wn ; a0; a1)

are given by the solution to the linear equation

L 1w = X 0
1 (F.13)
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F.4 Man y Dimensions

The extension to the d-dimensional caseis straight forward.
If we de¯ne the vector function

ud(x) = (U(jx ¡ x1j); : : : ; U(jx ¡ xn j); 1jxT )T (F.14)

then the d-dimensional thin plate spline is given by

f (x) = W ud(x) (F.15)

where W is a d £ (n + d + 1) matrix of weights.
To chooseweights to satisfy the constraints, construct the matrices

Qd =

0

B
B
B
B
@

1 xT
1

1 xT
2

...
...

1 xT
n

1

C
C
C
C
A

(F.16)

L d =

Ã
K Qd

QT
d 0d+1

!

(F.17)

where 0d+1 is a (d + 1) £ (d + 1) zero matrix, and K is a n £ n matrix whoseij th element is
U(jx i ¡ x j j).

Then construct the n + d + 1 £ d matrix X 0
d from the positions of the control points in the

warped image,

X 0
d =

0

B
B
B
B
B
B
B
@

x0
1
...

x0
n

0d
...0d

1

C
C
C
C
C
C
C
A

(F.18)

The matrix of weights is given by the solution to the linear equation

L T
d W T

d = X 0
d (F.19)

Note that care must be taken in the choice of ¾to avoid ill conditioned equations.



App endix G

Densit y Estimation

The kernel method of density estimation [106] gives an estimate of the p.d.f. from which N
samples,x i , have beendrawn as

p(x) =
NX

i =1

1
N hd K (

x ¡ x i

h
) (G.1)

where K (t ) de¯nes the shape of the kernel to be placed at each point, h is a smoothing
parameter de¯ning the width of each kernel and d is the dimension of the data. In general, the
larger the number of samples,the smaller the width of the kernelat each point. Weusea gaussian
kernel with a covariance matrix equal to that of the original data set, S, ie K (t ) = G(t : 0; S).
The optimal smoothing parameter, h, can be determined by cross-validation [106].

G.1 The Adaptiv e Kernel Metho d

The adaptive kernel method generalisesthe kernel method by allowing the scaleof the kernels
to be di®erent at di®erent points. Essentially , broader kernels are used in areasof low density
where few observations are expected. The simplest approach is as follows:

1. Construct a pilot estimate p0(x) using (G.1).

2. De¯ne local bandwidth factors ¸ i = (p0(x i )=g)¡ 1
2 , where g is the geometric mean of the

p0(x i )

3. De¯ne the adaptive kernel estimate to be

p(x) =
1
N

NX

i =1

(h¸ i )¡ dK (
x ¡ x i

h¸ i
) (G.2)
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G.2 Appro ximating the PDF from a Kernel Estimate

The kernel method can give a good estimate of the distribution. However, becauseit is con-
structed from a large number of kernels, it can be too expensive to use the estimate in an
application. We wish to ¯nd a simpler approximation which will allow p(x) to be calculated
quickly.

We will usea weighted mixture of m gaussiansto approximate the distribution derived from
the kernel method.

pmix (x) =
mX

j =1

wj G(x : ¹ j ; Sj ) (G.3)

Such a mixture can approximate any distribution up to arbitrary accuracy, assumingsu±-
cient components are used. The hope is that a small number of components will give a `good
enough' estimate. The Expectation Maximisation (EM) algorithm [82] is the standard method
of ¯tting such a mixture to a set of data. However, if we were to use as many components as
samples(m = N ), the optimal ¯t of the standard EM algorithm is to have a delta function
at each sample point. This is unsatisfactory. We assumethat the kernel estimate, pk (x) is
in somesensean optimal estimate, designedto best generalisethe given data. We would like
pmix (x) ! pk (x) as m ! N .

A good approximation to this can be achieved by modifying the M-step in the EM algorithm
to take into account the covariance about each data point suggestedby the kernel estimate (see
(G.3) below).

The number of gaussiansused in the mixture should be chosen so as to achieve a given
approximation error betweenpk (x) and pmix (x).

G.3 The Mo di¯ed EM Algorithm

To ¯t a mixture of m gaussiansto N samplesx i , assuminga covariance of T i at each sample,
we iterate on the following 2 steps:

E-step Compute the contribution of the i th sampleto the j th gaussian

pij =
wj G(x i : ¹ j ; Sj )

P m
j =1 wj G(x i : ¹ j ; Sj )

(G.4)

M-step Compute the parametersof the gaussians,

wj = 1
N

P
i pij ; ¹ j = 1

N wj

P
i pij x i (G.5)

Sj =
1

N wj

X

i

pij [(x i ¡ ¹ j )(x i ¡ ¹ j )T + T i ] (G.6)

Strictly we ought to modify the E-step to take T i into account aswell, but in our experience
just changing the M-step givessatisfactory results.



App endix H

Implemen tation

Though the core mathematics of the models described above are relatively simple, a great deal
of machinery is required to actually implement a °exible system. This could easily be done by
a competent programmer.

However, implementations of the software are already available.
The simplest way to experiment is to obtain the MatLab package implementing the Activ e

Shape Models,available from Visual Automation Ltd. This providesan application which allows
usersto annotate training images,to build modelsand to usethosemodelsto search new images.
In addition the packageallows limited programming via a MatLab interface.

A C++ software library , co-written by the author, is also available from Visual Automation
Ltd. This allows new applications incorporating the ASMs to be written.

Seehttp://www.wiau.man.ac.uk/val.htm for details of both of the above.
The author's research group has adopted VXL ( http://www.robots.ox.ac.uk/-vxl or

http://sourceforge.net/projects/vxl ) as its standard C++ computer vision library , and
has contributed extensively to the freely available code. As of writing, the AAM and ASM
libraries are not publicly available (due to commercial constraints), but this may change in
time.

In practice the algorithms work well on low-end PC (200 Mhz). Search will usually take less
than a secondfor models containing up to a few hundred points.

Details of other implementations will be posted on
http://www.isbe.man.ac.uk

116



Bibliograph y

[1] Bajcsy and A. Kovacic. Multiresolution elasticmatching. Computer Graphicsand ImageProcessing,
46:1{21, 1989.

[2] A. Baumberg and D. Hogg. Learning °exible models from image sequences.In J.-O. Eklundh,
editor, 3nd European Conference on Computer Vision, volume 1, pages299{308. Springer-Verlag,
Berlin, 1994.

[3] A. Baumberg and D. Hogg. An adaptive eigenshape model. In D. Pycock, editor, 6th British
Machine Vison Conference, pages87{96. BMVA Press,Sept. 1995.

[4] S. Belongie,J. Malik, and C. Fuh. Matching shapes. In 8th International Conference on Computer
Vision, volume 1, pages454{463. IEEE Computer Society Press,July 2001.

[5] A. Benayoun, N. Ayache, and I. Cohen. Human face recognition: From views to models - from
models to views. In International Conference on Pattern Recognition, pages225{243, 1994.

[6] R. Bernard and F. Pernus. Statistical approach to anatomical landmark extraction in ap radio-
graphs. In SPIE Medical Imaging, Feb. 2001.

[7] M. J. Black and Y. Yacoob. Recognizingfacial expressionsunder rigid and non-rigid facial motions.
In 1st International Workshop on Automatic Face and Gesture Recognition 1995, pages12{17,
Zurich, 1995.

[8] F. L. Bookstein. Principal warps: Thin-plate splinesand the decomposition of deformations. IEEE
Transactions on Pattern Analysis and Machine Intel ligence, 11(6):567{585,1989.

[9] F. L. Bookstein. Landmark methods for forms without landmarks: morphometrics of group di®er-
encesin outline shape. Medical Image Analysis, 1(3):225{244, 1997.

[10] H. Bosch, S.C.Mitchell, P.F.Boudewijn, P.F.Leieveldt, F.Nijland, O. Kamp, M. Sonka, and
J. Reiber. Activ e appearance-motionmodels for endocardial contour detection in time sequences
of echocardiograms. In SPIE Medical Imaging, Feb. 2001.

[11] R. Bowden, T. Michell, and M. Sarhadi. Reconstructing 3d poseand motion from a single camera
view. In P. Lewis and M. Nixon, editors, 9th British Machine Vison Conference, volume 2, pages
904{013, Southampton, UK, Sept. 1998.BMVA Press.

[12] R. Bowden, T. Mitc hell, and M.Sarhadi. Non-linear statistical models for the 3d reconstruction of
human poseand motion from monocular imagesequences.Imageand Vision Computing, 18(9):729{
737, 2000.

[13] C. BrechbÄuhler, G. Gerig, and O. KÄubler. Parameterisation of closedsurfacesfor 3-D shape de-
scription. Computer Vision, Graphics and Image Processing, 61:154{170,1995.

117



BIBLIOGRAPHY 118

[14] A. D. Brett and C. J. Taylor. A framework for automated landmark generation for automated 3D
statistical model construction. In 16th Conference on Information Processingin Medical Imaging,
pages376{381, Visegr¶ad, Hungary, June 1999.

[15] P. Burt. The pyramid as a structure for e±cient computation. In A.Rosenfeld, editor, Multi-
Resolution Image Processingand Analysis, pages6{37. Springer-Verlag, Berlin, 1984.

[16] A. Caunce and C. J. Taylor. 3d point distribution models of the cortical sulci. In A. F. Clark,
editor, 8th British Machine Vison Conference, pages550{559,University of Essex,UK, Sept. 1997.
BMVA Press.

[17] A. Caunceand C. J. Taylor. Using local geometry to build 3d sulcal models. In 16th Conference
on Information Processingin Medical Imaging, pages196{209, 1999.

[18] G. Christensen. Consistent linear-elastic transformations for image matching. In 16th Conference
on Information Processingin Medical Imaging, pages224{237, Visegr¶ad, Hungary, June 1999.

[19] G. E. Christensen, R. D. Rabbitt, M. I. Miller, S. C. Joshi, U. Grenander, T. A. Coogan, and
D. C. V. Essen.Topologicalpropertiesof smooth anatomic maps.In 14th Conference on Information
Processingin Medical Imaging, France, pages101{112. Kluwer Academic Publishers, 1995.

[20] C.Lorenz, M. Kaus, V. Pekar, and J. Weese. E±cien t representation of shape variabilit y using
surfacebasedfree vibration modes. In SPIE Medical Imaging, Feb. 2001.

[21] D. L. Collins, A. Zijdenbos, W. F. C. Baare, and A. C. Evans. Animal+insect: Improved cortical
structure segmentation. In 16th Conference on Information Processingin Medical Imaging, pages
210{223, Visegr¶ad, Hungary, June 1999.

[22] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Activ e appearancemodels. In H.Burkhardt and
B. Neumann, editors, 5th European Conference on Computer Vision, volume 2, pages484{498.
Springer, Berlin, 1998.

[23] T. F. Cootes, G. J. Edwards, and C. J. Taylor. A comparative evaluation of active appearance
model algorithms. In P. Lewis and M. Nixon, editors, 9th British Machine Vison Conference,
volume 2, pages680{689, Southampton, UK, Sept. 1998.BMVA Press.

[24] T. F. Cootes and C. J. Taylor. Modelling object appearance using the grey-level surface. In
E. Hancock, editor, 5th British Machine Vison Conference, pages479{488, York, England, Sept.
1994.BMVA Press.

[25] T. F. Cootes and C. J. Taylor. Data driven re¯nement of active shape model search. In 7th British
Machine Vison Conference, pages383{392, Edinburgh, UK, 1996.

[26] M. Covell. Eigen-points: Control-p oint location using principal component analysis. In 2nd Inter-
national Conference on Automatic Face and Gesture Recognition 1997, pages122{127, Killington,
USA, 1996.

[27] R. Davies, T. Cootes, and C. Taylor. A minimum description length approach to statistical shape
modelling. In 17th Conference on Information Processingin Medical Imaging, pages50{63, 2001.

[28] R. Davies, T. Cootes, C. Twining, and C. Taylor. An information theoretic approach to statistical
shape modelling. In T. Cootes and C. Taylor, editors, 12th British Machine Vison Conference,
pages3{11, 2001.

[29] R. Davies, C.Twining, T. Cootes, and C. Taylor. A minimum description length approach to
statistical shape modelling. IEEE Transactions on Medical Imaging, 21:525{537,2002.



BIBLIOGRAPHY 119

[30] R. Davies, C.Twining, T. Cootes,J. Waterton, and C. Taylor. 3D ststistical shape modelsusing di-
rect optimisation of description length. In 7th European Conference on Computer Vision, volume 3,
pages3{20. Springer, 2002.

[31] M. Dickens,H. Sari-Sarraf, and S. Gleason.A streamlined volumetric landmark placement method
for building three dimensional active shape models. In SPIE Medical Imaging, Feb. 2001.

[32] I. Dryden and K. V. Mardia. The Statistical Analysis of Shape. Wiley, London, 1998.

[33] G. Edwards, T. F. Cootes, and C. J. Taylor. Advances in active appearance models. In 7th

International Conference on Computer Vision, pages137{142, 1999.

[34] G. Edwards, T. F. Cootes, and C. J. Taylor. Improving identi¯cation performance by integrat-
ing evidencefrom sequences.In IEEE Conference on Computer Vision and Pattern Recognition,
volume 1, pages486{491, 1999.

[35] G. Edwards, A. Lanitis, C. Taylor, and T. Cootes. Statistical models of face images- improving
speci¯cit y. Image and Vision Computing, 16:203{211,1998.

[36] G. Edwards, C. J. Taylor, and T. F. Cootes. Interpreting face images using active appearance
models. In 3r d International Conference on Automatic Face and Gesture Recognition 1998, pages
300{305, Japan, 1998.

[37] G. Edwards, C. J. Taylor, and T. F. Cootes.Learning to identify and track facesin imagesequences.
In 3r d International Conference on Automatic Face and Gesture Recognition 1998, pages260{265,
Japan, 1998.

[38] G. J. Edwards, C. J. Taylor, and T. F. Cootes. Learning to identify and track faces in image
sequences.In 8th British Machine Vison Conference, pages130{139, Colchester, UK, 1997.

[39] T. Ezzat and T. Poggio. Facial analysis and synthesis using image-basedmodels. In 2nd Inter-
national Conference on Automatic Face and Gesture Recognition 1997, pages116{121, Killington,
Vermont, 1996.

[40] R. Fisker. Making Deformable Template Models Operational. PhD thesis, Informatics and Mathe-
matical Modelling, Technical University of Denmark, 2000.

[41] M. Fleute and S. Lavallee. Building a complete surface model from sparsedata using statistical
shape models: Application to computer assistedkneesurgery. In MICCAI , pages878{887, 1998.

[42] P. Fua and C. Miccio. From regular images to animated heads: A least squaresapproach. In
H.Burkhardt and B. Neumann, editors, 5th European Conference on Computer Vision, volume 1,
pages188{202. Springer, Berlin, 1998.

[43] M. Gleicher. Projective registration with di®erencedecomposition. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 1997.

[44] C. Goodall. Procrustesmethods in the statistical analysisof shape. Journal of the Royal Statistical
Society B, 53(2):285{339,1991.

[45] D. Graham and N. Allinson. Facerecognition from unfamiliar views: Subspacemethods and pose
dependency. In 3r d International Conference on Automatic Face and Gesture Recognition 1998,
pages348{353, Japan, 1998.

[46] U. Grenander and M. Miller. Representations of knowledge in complex systems. Journal of the
Royal Statistical Society B, 56:249{603,1993.



BIBLIOGRAPHY 120

[47] G. Hager and P. Belhumeur. E±cien t region tracking with parametric models of geometry and
illumination. IEEE Transactions on Pattern Analysis and Machine Intel ligence, 20(10):1025{39,
1998.

[48] G. Hamarneh and T. Gustavsson. Deformable spatio-temporal shape models: Extending asm to
2d+time. In T. Cootesand C. Taylor, editors, 12th British Machine Vison Conference, pages13{22,
2001.

[49] G. Harmarneh. Deformablespatio-temporal shapemodeling. Master's thesis,Department of Signals
and Systems,Chalmers University of Technology, Sweden,1999.

[50] J. Haslam, C. J. Taylor, and T. F. Cootes. A probabalistic ¯tness measurefor deformabletemplate
models. In E. Hancock, editor, 5th British Machine Vison Conference, pages33{42, York, England,
Sept. 1994.BMVA Press,She±eld.

[51] T. Heap and D. Hogg. Automated pivot location for the cartesian-polar hybrid point distribution
model. In R. Fisher and E. Trucco, editors, 7th British Machine Vison Conference, pages97{106,
Edinburgh, UK, Sept. 1996.BMVA Press.

[52] H.H.Thodberg. Hands-on experiencewith active appearancemodels. In SPIE Medical Imaging,
Feb. 2002.

[53] A. Hill, T. F. Cootes, and C. J. Taylor. A generic system for image interpretation using °exible
templates. In D. Hoggand R. Boyle, editors, 3r d British Machine Vision Conference, pages276{285.
Springer-Verlag, London, Sept. 1992.

[54] A. Hill, T. F. Cootes,and C. J. Taylor. Activ e shape modelsand the shape approximation problem.
Image and Vision Computing, 14(8):601{607,Aug. 1996.

[55] A. Hill, T. F. Cootes, C. J. Taylor, and K. Lindley. Medical image interpretation: A generic
approach using deformable templates. Journal of Medical Informatics , 19(1):47{59, 1994.

[56] A. Hill and C. J. Taylor. Automatic landmark generation for point distribution models. In E. Han-
cock, editor, 5th British Machine Vison Conference, pages429{438. BMVA Press,Sept. 1994.

[57] A. Hill and C. J. Taylor. A method of non-rigid correspondencefor automatic landmark identi¯-
cation. In 7th British Machine Vison Conference, pages323{332. BMVA Press,Sept. 1996.

[58] A. Hill and C. J. Taylor. Automatic landmark identi¯cation using a new method of non-rigid
correspondence.In 15th Conference on Information Processingin Medical Imaging, pages483{488,
1997.

[59] H.Murase and S. Nayar. Learning and recognition of 3d objects from appearance. International
Journal of Computer Vision, pages5{25, Jan. 1995.

[60] X. Hou, S. Li, H. Zhang, and Q. Cheng. Direct appearancemodels. In Computer Vision and
Pattern Recognition Conference 2001, volume 1, pages828{833, 2001.

[61] M. J. Jonesand T. Poggio. Multidimensional morphable models. In 6th International Conference
on Computer Vision, pages683{688, 1998.

[62] M. J. Jonesand T. Poggio. Multidimensional morphable models : A framework for representing
and matching object classes.International Journal of Computer Vision, 2(29):107{131,1998.

[63] C. Kambhamettu and D. Goldgof. Point correspondencerecovery in non-rigid motion. In IEEE
Conference on Computer Vision and Pattern Recognition, pages222{227, 1992.

[64] P. Karaolani, G. D. Sullivan, K. D. Baker, and M. J. Baines.A ¯nite element method for deformable
models. In 5th Alvey Vison Conference, Reading, England, pages73{78, 1989.



BIBLIOGRAPHY 121

[65] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Activ e contour models. In 1st International
Conference on Computer Vision, pages259{268, London, June 1987.

[66] A. Kelemen,G. Sz¶ekely, and G. Guido Gerig. Three-dimensionalModel-basedSegmentation. Tech-
nical Report 178, Image ScienceLab, ETH ZÄurich, 1997.

[67] M. Kirb y and L. Sirovich. Application of the Karhumen-Loeve procedure for the characterization
of human faces. IEEE Transactions on Pattern Analysis and Machine Intel ligence, 12(1):103{108,
1990.

[68] A. C. W. Kotche® and C. J. Taylor. Automatic construction of eigenshape models by direct
optimisation. Medical Image Analysis, 2(4):303{314, 1998.

[69] N. Kruger. An algorithm for the learning of weights in discrimination functions using a priori
constraints. IEEE Transactions on Pattern Analysis and Machine Intel ligence, 19(7):764{768,
1997.

[70] J. Kwong and S. Gong. Learning support vector machines for a multi-view facemodel. In T. Prid-
more and D. Elliman, editors, 10th British Machine Vison Conference, volume 2, pages503{512,
Nottingham, UK, Sept. 1999.BMVA Press.

[71] M. La Cascia,S. Sclaro®,and V. Athitsos. Fast, reliable head tracking under varying illumination:
An approach basedon registration of texture mapped 3d models. IEEE Transactions on Pattern
Analysis and Machine Intel ligence, 22(4):322{336,2000.

[72] F. D. la Torre. Automatic learning of appearance face models. In Recognition, Analysis and
Tracking of Faces and Gestures in Realtime Systems, pages32{39, 2001.

[73] M. Lades, J. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburt, R. Wurtz, and W. Konen.
Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on
Computers, 42:300{311,1993.

[74] A. Lanitis, C. J. Taylor, and T. F. Cootes.Automatic interpretation and coding of faceimagesusing
°exible models. IEEE Transactions on Pattern Analysis and Machine Intel ligence, 19(7):743{756,
1997.

[75] H. Lester, S. A. Arridge, K. M. Jansons,L. Lemieux, J. V. Hajnal, and A. Oatridge. Non-linear reg-
istration with the variable viscosity °uid algorithm. In 16th Conference on Information Processing
in Medical Imaging, pages238{251, Visegr¶ad, Hungary, June 1999.

[76] B. Li and J. Reinhardt. Automatic generation of 3-d object shape models and their application to
tomographic image segmentation. In SPIE Medical Imaging, Feb. 2001.

[77] J. B. A. Maintz and M. A. Viergever. A survey of medical image registration. Medical Image
Analysis, 2(1):1{36, 1998.

[78] K. V. Mardia, J. T. Kent, and A. N. Walder. Statistical shape models in image analysis. In
E. Keramidas, editor, Computer Science and Statistics: 23r d INTERF ACE Symposium, pages550{
557. Interface Foundation, Fairfax Station, 1991.

[79] T. Maurer and C. von der Malsburg. Tracking and learning graphs and poseon image sequences
of faces. In 2nd International Conference on Automatic Face and Gesture Recognition 1997, pages
176{181, Los Alamitos, California, Oct. 1996. IEEE Computer Society Press.

[80] M.B.Stegmann. Activ e appearancemodels: Theory, extensionsand cases.Master's thesis, Infor-
matics and Mathematical Modelling, Technical University of Denmark, 2000.



BIBLIOGRAPHY 122

[81] T. McInerney and D. Terzopoulos. Deformablemodels in medical imageanalysis: a survey. Medical
Image Analysis, 1(2):91{108, 1996.

[82] G. McLachlan and K.E.Basford. Mixtur e Models: Inference and Applications to Clustering. Dekker,
New York, 1988.

[83] D. Meier and E. Fisher. Parameter spacewarping: Shape-basedcorrespondencebetweenmorpho-
logically di®erent objects. IEEE Trans. Medical Image, 21:31{47, 2002.

[84] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre. XM2VTSdb: The extended m2vts
database. In Proc. 2nd Conf. on Audio and Video-based Biometric Personal Veri¯c ation. Springer
Verlag, 1999.

[85] S.Mitc hell, P. Boudewijn, P.F.Lelievedt, R. van der Geest,H. Bosch, J. Reiber, and M. Sonka. Time
continuoussegmentation of cardiac mr imagesequencesusing active appearancemotion models. In
SPIE Medical Imaging, Feb. 2001.

[86] B. Moghaddam and A. Pentland. Facerecognition using view-basedand modular eigenspaces.In
SPIE, volume 2277,pages12{21, 1994.

[87] B. Moghaddam and A. Pentland. Probabilistic visual learning for object recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intel ligence, 19(7):696{710,1997.

[88] C. Nastar and N. Ayache. Non-rigid motion analysisin medical images:a physically basedapproach.
In 13th Conference on Information Processingin Medical Imaging, Flagsta®,Arizona, USA, pages
17{32. Springer-Verlag, 1993.

[89] C. Nastar, B. Moghaddam, and A. Pentland. Generalizedimage matching: Statistical learning of
physically-baseddeformations. In 4th European Conference on Computer Vision, volume 1, pages
589{598, Cambridge, UK, 1996.

[90] N.Duta, A. Jain, and M. Dubuisson-Jolly. Automatic construction of 2d shape models. IEEE
Transactions on Pattern Analysis and Machine Intel ligence, 23(5):433{446,2001.

[91] J. Park, D. Mataxas, A. Young, and L. Axel. Deformable models with parameter functions for
cardiac motion analysis from tagged mri data. IEEE Transactions on Medical Imaging, 15:278{
289, 1996.

[92] V. Pekar, M. Kaus, C. Lorenz, S.Lobregt, R. Truyen, and J. Weese.Shape model basedadaptation
of 3-d deformablemeshesfor segmentation of medical images.In SPIE Medical Imaging, Feb. 2001.

[93] A. P. Pentland and S.Sclaro®.Closed-formsolutions for physically basedmodelling and recognition.
IEEE Transactions on Pattern Analysis and Machine Intel ligence, 13(7):715{729,1991.

[94] F. Pighin, R. Szeliski, and D. Salesin. Resynthesizing facial animation through 3d model-based
tracking. In 7th International Conference on Computer Vision, pages143{150, 1999.

[95] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C (2nd Edition) .
Cambridge University Press,1992.

[96] A. Rangagajan, H. Chui, and F. L. Bookstein. The softassignprocrustes matching algorithm. In
15th Conference on Information Processingin Medical Imaging, pages29{42, 1997.

[97] A. Rangarajan, E. Mjolsness,S. Pappu, L. Davachi, P. S. Goldman-Rakic, and J. S. Duncan. A
robust point matching algorithm for autoradiograph alignment. In Visualisation in Biomedical
Computing, pages277{286, 1996.



BIBLIOGRAPHY 123

[98] M. Rogersand J. Graham. Structured point distribution models: Modelling intermitten tly present
features. In T. Cootesand C. Taylor, editors, 12th British Machine Vison Conference, pages33{42,
2001.

[99] S. Romdhani, S. Gong, and A. Psarrou. A multi-view non-linear active shape model using kernel
PCA. In T. Pridmore and D. Elliman, editors, 10th British Machine Vison Conference, volume 2,
pages483{492, Nottingham, UK, Sept. 1999.BMVA Press.

[100] S.Baker and I.Matthews. Equivalenceand e±ciency of image alignment algorithms. In Computer
Vision and Pattern Recognition Conference 2001, volume 1, pages1090{1097,2001.

[101] S. Sclaro®and J. Isidoro. Activ e blobs. In 6th International Conference on Computer Vision, pages
1146{53, 1998.

[102] S. Sclaro®and A. P. Pentland. Modal matching for correspondenceand recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intel ligence, 17(6):545{561,1995.

[103] G. L. Scott and H. C. Longuet-Higgins. An algorithm for associating the features of two images.
????, 244:21{26,1991.

[104] L. S. Shapiro and J. M. Brady. A modal approach to feature-basedcorrespondence.In P. Mowforth,
editor, 2nd British Machine Vison Conference, pages78{85. Springer-Verlag, Sept. 1991.

[105] J. Sherrah, S. Gong, and E. Ong. Understanding pose discrimination in similarit y space. In
T. Pridmore and D. Elliman, editors, 10th British Machine Vison Conference, volume 2, pages
523{532, Nottingham, UK, Sept. 1999.BMVA Press.

[106] B. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London,
1986.

[107] S. Solloway, C. Hutchinson, J. Waterton, and C. J. Taylor. Quanti¯cation of articular cartilage
from MR images using active shape models. In B. Buxton and R. Cipolla, editors, 4th Euro-
pean Conference on Computer Vision, volume 2, pages400{411, Cambridge, England, April 1996.
Springer-Verlag.

[108] P. Sozou, T. F. Cootes, C. J. Taylor, and E. DiMauro. Non-linear point distribution modelling
using a multi-la yer perceptron. In D. Pycock, editor, 6th British Machine Vison Conference, pages
107{116, Birmingham, England, Sept. 1995.BMVA Press.

[109] P. Sozou, T. F. Cootes, C. J. Taylor, and E. D. Mauro. A non-linear generalisation of point
distribution models using polynomial regression. Image and Vision Computing, 13(5):451{457,
June 1995.

[110] S.Romdhani, A.Psarrou, and S. Gong. On utilising template and feature-basedcorrespondencein
multi-view appearancemodels. In 6th European Conference on Computer Vision, volume 1, pages
799{813. Springer, 2000.

[111] L. H. Staib and J. S. Duncan. Boundary ¯nding with parametrically deformable models. IEEE
Transactions on Pattern Analysis and Machine Intel ligence, 14(11):1061{1075,1992.

[112] M. B. Stegmann,R. Fisker, and B. K. Ersb¿ll. Extending and applying activeappearancemodelsfor
automated, high precision segmentation in di®erent image modalities. In Scandinavian Conference
on Image Analysis, pages90{97, 2001.

[113] G. Szeliski and S. Laval¶ee. Matching 3-D anatomical surface with non-rigid deformations using
octree-splines. International Journal of Computer Vision, 18(2):171{186,1996.



BIBLIOGRAPHY 124

[114] J. P. Thirion. Image matching as a di®usionprocess:an analogy with maxwell's demons. Medical
Image Analysis, 2(3):243{260, 1998.

[115] H. Thodberg and A. Rosholm. Application of the active shape model in a commercial medical
device for bone densitometry. In T. Cootes and C. Taylor, editors, 12th British Machine Vison
Conference, pages43{52, 2001.

[116] M. Turk and A. Pentland. Eigenfacesfor recognition. Journal of Cognitive Neuroscience, 3(1):71{
86, 1991.

[117] C. Twining and C.J.Taylor. Kernel principal component analysisand the construction of non-linear
active shape models. In T. Cootes and C. Taylor, editors, 12th British Machine Vison Conference,
pages23{32, 2001.

[118] B. van Ginneken. Computer-Aided Diagnosis in ChestRadiography. PhD thesis,University Medical
Centre Utrecht, the Netherlands, 2001.

[119] T. Vetter. Learning novel views to a single face image. In 2nd International Conference on Auto-
matic Face and Gesture Recognition 1997, pages22{27, Los Alamitos, California, Oct. 1996.IEEE
Computer Society Press.

[120] T. Vetter and V. Blanz. Estimating coloured3d facemodels from single images: an examplebased
approach. In H.Burkhardt and B. Neumann,editors, 5th European Conference on Computer Vision,
volume 2, pages499{513. Springer, Berlin, 1998.

[121] T. Vetter, M. Jones,and T. Poggio. A bootstrapping algorithm for learning linear modelsof object
classes.In Computer Vision and Pattern Recognition Conference 1997, pages40{46, 1997.

[122] K. N. Walker, T. F. Cootes, , and C. J. Taylor. Automatically building appearancemodels from
imagesequencesusingsalient features.In T. Pridmore and D. Elliman, editors, 10th British Machine
Vison Conference, volume 2, pages463{562, Nottingham, UK, Sept. 1999.BMVA Press.

[123] K. N. Walker, T. F. Cootes, and C. J. Taylor. Automatically building appearancemodels. In
4th International Conference on Automatic Face and Gesture Recognition 2000, pages271{276,
Grenoble,France, 2000.

[124] Y. Wang, B. S. Peterson,and L. H. Staib. Shape-based3d surfacecorrespondenceusing geodesics
and local geometry. In IEEE Conference on Computer Vision and Pattern Recognition, pages
644{651, 2000.

[125] Y. Wang and L. H. Staib. Elastic model basednon-rigid registration incorporating statistical shape
information. In MICCAI , pages1162{1173,1998.

[126] L. Wiskott, J. Fellous, N. Kruger, and C. der Malsburg. Face recognition by elastic bunch graph
matching. IEEE Transactionson Pattern Analysis and Machine Intel ligence, 19(7):775{779,1997.

[127] J. Yao and R. Taylor. Construction and simpli¯cation of bone density models. In SPIE Medical
Imaging, Feb. 2001.

[128] L. Younes.Optimal matching betweenshapesvia elastic deformations. Image and Vision Comput-
ing, 17:381{389,1999.

[129] A. L. Yuille, D. S. Cohen, and P. Hallinan. Feature extraction from facesusing deformable tem-
plates. International Journal of Computer Vision, 8(2):99{112, 1992.


