StatisticalModelsof Appearance
for ComputerVision?

T.F. Cootesand C.J.Taylor
Imaging Scienceand Biomedical Engineering,
University of Manchester,
ManchesterM13 9PT, U.K.
email: t.cootes@man.ac.uk
http://www.isb e.man.ac.uk

March 8, 2004

1This is an ongoingdraft of a report describing our work on Activ e Shape Models and Activ e Appear-
ance Models. Hopefully it will be expandedto becomemore comprehensie, when | get the time. My
apologiesfor the missing and incomplete sectionsand the inconsistanciesin notation. TFC



Contents

1 Overview

2 Intro duction

3 Background

4 Statistical Shape Mo dels

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9

Suitable Landmarks . . . . . ..o
Aligning the Training Set . . . . . . . . . . . . . ..
Modelling Shape Variation . . . . . . . . . ... ... . ... .
Choiceof Numberof Modes . . . . . . . . . . . ... ... ...
Examplesof ShapeModels . . . . . . . . . .. ...
Generating Plausible Shapes. . . . . . . . . . . . .. ... .. .
4.6.1 Non-Linear Modelsfor PDF . . . . . . ... ... ... ... ........
Finding the NearestPlausibleShape . . . . . . . ... ... ... ... ......
Fitting a Modelto New Points . . . . . . . . . . . ... ... .. .. .......
Testing How Well the Model Generalises. . . . . . ... .. ... .. .......

4.10 Estimating p(shape . . . . . . . . . . . e
4.11 Relaxing Shape Models . . . . . . . . .. . . . . . .

4.11.1 Finite Elemert Models. . . . . . . . . . .. .. .. ... . e
4.11.2 Combining Statistical and FEM Modes . . . . .. ... ... ... ....
4.11.3 Combining Examples. . . . . . . . . ..
4.11.4 Examples . . . .. e e e e e
4.11.5 Relaxing Modelswith a Prior on Covariance . . . ... .. ........

5 Statistical Mo dels of App earance

51
5.2

5.3
54

Statistical Modelsof Texture . . . . . . ... ... . ... ... ... ... ...
Combined AppearanceModels . . . . .. .. .. .. ... .. .. oo
5.2.1 Choice of Shape ParameterWeights . . . . . . . .. .. ... ... ....
Example: Facial AppearanceModel . . . ... ... ... ... ... ... ...
Approximating aNewExample . . . . .. . ... ... ... ... .. ... .. ..

12
13
13
15
16
17
19
20
21
22
23
24
24
25
25
27
27
28



CONTENTS

6 Image Interpretation with Mo dels
6.1 OVEIVIEW . . . . .
6.2 Choiceof Fit Function . . . . . . . . . . . .. .. e
6.3 Optimising the Model Fit . . . . . . .. .. .. ... .. .. .. .. ... ...,

7 Activ e Shape Mo dels
7.1 Introduction . . . . . . L
7.2 Modelling Local Structure . . . . . . . . ...
7.3 Multi-Resolution Active ShapeModels . . . . . .. .. ... ... ... ......
7.4 Examplesof Seard . . . . . . . ...

8 Activ e App earance Mo dels
8.1 Introduction . . . . . . . . . . L
8.2 Overviewof AAM Searhy . . . . . . . . . . .o
8.3 Learning to Correct Model Parameters. . . . . . . .. ... .. ... .. .....
8.3.1 ResultsFor The FaceModel . . . . . . ... . ... ... ... .......
8.3.2 Perturbing The FaceModel . . . . .. ... ... ... ... ........
8.4 Iterative ModelRe nement . . .. . ... . .. . ... ... ...
8.4.1 Examplesof Active AppearanceModel Searhr . . . . ... ... ... ..
8.5 Experimental Results. . . . . . . . . . .
8.5.1 Examplesof Failure . .. .. ... .. .. .. .. . ... ... .. ...,
8.6 RelatedWork . . . . . . . . . e e

9 Constrained AAM Search
9.1 Introduction . . . . . . . . . e
9.2 ModelMatching . . . . . . . . . . . e
9.2.1 BasicAAM Formulation . . . . . ... ... . ... o
9.2.2 MAP Formulation . . . ... .. .. .. ...
9.2.3 Including Priors on Point Positions . . . . . ... ... ... ........
9.2.4 Isotropic Point Errors . . . . . . . .. e e
9.3 EXperimernts. . . . . . . o e e e e e
9.3.1 Point Constraints . . . . . . . . . ...
9.3.2 Including Priors onthe Parameters. . . . . . ... ... ... .......
9.3.3 Varying NumberofPoints . . . . .. .. ... ... .. .. ... .. .. ..
9.4 SUMMArY . . . . . . e e e

10 Variations on the Basic AAM
10.1 Sub-samplingDuring Seard. . . . . . . . . ... e
10.2 Seard Using Shape Parameters. . . . . . . . . . . .. ... .. ... ...
10.3 Resultsof Experiments . . . . . . . . . . . . e
10.4 DiSCUSSION. . . . . . o i e e e e

11 Alternativ es and Extensions to AAMs
11.1 Direct AppearanceModels. . . . . . . . . . .
11.2 InverseCompositional AAMS . . . . . . . . . e



CONTENTS 3

12 Comparison between ASMs and AAMs 73
12. 1 EXperimentS . . . . . . o e e e e e 74
12.2 Texture Matching . . . . . . . . . . 75
12.3 DiSCUSSION. . . . . o o o e e e e 77

13 Automatic Landmark Placemen t 79
13.1 Automatic landmarkingin 2D . . . . . . . .. L 79
13.2 Automatic landmarkingin 3D . . . . . . . ... e 81

14 View-Based App earance Mo dels 83
141 Training Data . . . . . . . . . . . . e e 84
14.2 Predicting PoSe. . . . . . . . 85
14.3 Tracking through wideangles . . . . . . . . . . . .. ... ... ... ....... 86
14.4 Synthesizing Rotation . . . . . . . . . . . . 88
14.5 Coupled-View AppearanceModels . . . . . . . . .. .. ... .. .. .. ..., 89

14.5.1 Predicting New Views . . . . . . . . . . . . e 89
14.6 Coupled Model Matching . . . . . . . . . . . 90
14.7 DISCUSSION . . . . . . o o e e e 92
14.8 Related Work . . . . . . . . e 92

15 Applications and Extensions 94
15.1 Medical Applications . . . . . . . . . . . e e 94
152 Tracking . . . . . o . e e 96
153 EXIENSIONS. . . . . . o e 96

16 Discussion 98

A Applying a PCA when there are fewer samples than dimensions 101

B Aligning Two 2D Shapes 102
B.1 Similarity Case . . . . . . .. 102
B.2 Aftne Case . . . . . . . 103

C Aligning Shapes (1) 105
C.1 Translation (2D) . . . . . . . 105
C.2 Translation and Scaling(2D) . . . . . . . . . . . . ... 106
C.3 Similarity (2D) . . . . . . 106
C.4 Afne (2D) . . . . e 107

D Representing 2D Pose 108
D.1 Similarity TransformationCase . . . . . . . . . . . . .. . .. .. . ..., 108

E Representing Texture Transformations 109



CONTENTS

F Image Warping

F.1 Piece-wiseAtne . ... ...
F.2 Thin Plate Splines . . .. ..
F.3 OneDimension ... ... ..
F.4 Many Dimensions. . . . . ..

G Densit y Estimation
G.1 The Adaptiv e Kernel Method

G.2 Approximating the PDF from a Kernel Estimate . . . ... .. ... .......

G.3 The Modi ed EM Algorithm

H Implemen tation

110
110
111
112
113

114
114
115
115

116



Chapter 1

Ov erview

The ultimate goal of machine vision is imageunderstanding - the ability not only to recoverimage
structure but alsoto know what it represens. By de nition, this involvesthe use of models
which describe and label the expected structure of the world. Over the past decade, model-
basedvision has beenapplied successfullyto imagesof man-madeobjects. It has proved much
more ditcult to develop model-basedapproacesto the interpretation of images of complex
and variable structures such asfacesor the internal organsof the human body (as visualisedin
medical images). In such casesit haseven beenproblematic to recover image structure reliably,
without a model to organisethe often noisy and incomplete image evidence. The key problem
is that of variability. To be useful, a model needsto be speci c - that is, to be capable of
represerting only ‘legal' examplesof the modelled object(s). It has proved ditcult to achieve
this whilst allowing for natural variability. Recent developmerts have overcomethis problem;
it hasbeenshawn that speci ¢ patterns of variabilit y inshape and grey-level appearancecan be
captured by statistical modelsthat can be useddirectly in image interpretation.

This documernt describes methods of building models of shape and appearance, and how
such models can be usedto interpret images.



Chapter 2

Intro duction

The majorit y of tasksto which machine vision might usefully be applied are'hard’. The examples
we usein this work are from medical image interpretation and facerecognition, though the same
considerationsapply to many other domains. The most obvious reasonfor the degreeof ditcult y
is that most non-trivial applications involve the needfor an automated systemto 'understand'
the images with which it is presened - that is, to recover image structure and know what
it means. This necessarilyinvolves the use of models which describe and label the expected
structure of the world. Real applications are also typically characterised by the needto deal
with complex and variable structure - facesare a good example - and with imagesthat provide
noisy and possibly incomplete evidence- medical imagesare a good example, where it is often
impossibleto interpret a given image without prior knowledge of anatomy.

Model-basedmethods o®er potential solutions to all these ditculties. Prior knowledge of
the problem can, in principle, be usedto resolwe the potential confusion causedby structural
complexity, provide tolerance to noisy or missing data, and provide a means of labelling the
recovered structures. We would like to apply knowledge of the expected shapes of structures,
their spatial relationships, and their grey-level appearanceto restrict our automated system
to 'plausible’ interpretations. Of particular interest are generative models - that is, models
suzciently completethat they are ableto generaterealistic imagesof target objects. An example
would be a face model capableof generating convincing imagesof any individual, changing their
expressionand soon. Using such a model, imageinterpretation canbe formulated asa matching
problem: given an image to interpret, structures can be located and labelled by adjusting the
model's parametersin such a way that it generatesan 'imagined image' which is as similar as
possibleto the real thing.

Becausereal applications often involve dealingwith classesf objects which are not identical -
for examplefaces- we needto dealwith variabilit y. This leadsnhaturally to the idea of deformable
models- modelswhich maintain the essetial characteristics of the classof objects they represen,
but which can deformto 't a range of examples. There are two main characteristics we would
like such modelsto possess.First, they should be general - that is, they should be capable of
generatingany plausible example of the classthey represen. Second,and crucially, they should
be speci ¢ - that is, they should only be capable of generating 'legal' examples- because as we
noted earlier, the whole point of using a model-basedapproad is to limit the attention of our
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systemto plausible interpretations. In order to obtain speci ¢ models of variable objects, we
needto acquire knowledge of how they vary.

Model-based methods make use of a prior model of what is expected in the image, and
typically attempt to nd the best match of the model to the data in a new image. Having
matched the model, one can then make measuremets or test whether the target is actually
preser.

This approad is a "top-down' strategy, and di®erssigni cantly from “bottom-up' or “data-
driven' methods. In the latter the image data is examined at a low level, looking for local
structures sudh as edgesor regions, which are assenbled into groupsin an attempt to identify
objects of interest. Without a global model of what to expect, this approad is dizcult and
prone to failure.

A wide variety of model basedapproadeshave beenexplored (seethe review below). This
work will concenrate on a statistical approad, in which a model is built from analysing the
appearanceof a set of labelled examples. Where structures vary in shape or texture, it is possible
to learn what are plausible variations and what are not. A new image can be interpretted by
‘nding the best plausible match of the model to the image data. The advantages of such a
method are that

2 It is widely applicable. The samealgorithm can be applied to many di®erert problems,
merely by preseriing di®erert training examples.

2 Expert knowledgecanbe captured in the systemin the annotation of the training examples.

2 The models give a compact represertation of allowable variation, but are speci ¢ enough
not to allow arbitrary variation di®eren from that seenin the training set.

2 The system needmake few prior assumptionsabout the nature of the objects being mod-
elled, other than what it learnsfrom the training set. (For instance, there are no boundary
smoothnessparametersto be set.)

The models described below require a userto be able to mark “landmark’ points on ead of
a set of training imagesin such a way that ead landmark represerns a distinguishable point
presert on every exampleimage. For instance, when building a model of the appearanceof an
eye in a faceimage, good landmarks would be the cornersof the eye, asthesewould be easyto
identify and mark in ead image. This constrains the sorts of applications to which the method
can be applied - it requiresthat the topology of the object cannot changeand that the object is
not soamorphousthat no distinct landmarks can be applied. Unfortunately this rules out such
things as cells or simple organismswhich exhibit large changesin shape.

This report is in two main parts. The rst describes building statistical models of shape
and appearance. The seconddescribes how these models can be usedto interpret new images.
This involves minimising a cost function de ning how well a particular instance of a model
describes the evidencein the image. Two approadces are described. The rst, Active Shape
Models, manipulates a shape model to describe the location of structures in a target image. The
second,Active AppearanceModels (AAMs), manipulate a model cabable of synthesising new
imagesof the object of interest. The AAM algorithm seeksto nd the model parameterswhich



generatea synthetic image as closeas possibleto the target image. In ead casethe parameters
of the best tting model instance can be usedfor further processing,such as for measuremen
or classi cation.



Chapter 3

Background

There is now a considerableliterature on using deformable modelsto interpret images. Below |
mertion only a few of the relevant works. (One day | may get the time to extend this review to
be more comprehensie).

The simplest model of an object is to useatypical exampleasa “goldenimage'. A correlation
method can be usedto match (or register) the goldenimage to a new image. If structures in
the golden image have been labelled, this match then gives the approximate position of the
structures in the new image. For instance, one can determine the approximate locations of
many structures in an MR image of a brain by registering a standard image, wherethe standard
image has been suitably annotated by human experts. However, the variability of both shape
and texture of most targets limits the precision of this method.

One approad to represering the variations obsened in an imageis to “hand-craft' a model
to solve the particular problem currently addressed. For instance Yuille et al [129] build up a
model of a human eye using combinations of parameterisedcircles and arcs. Though this can
be e®ectie it is complicated, and a completely new solution is required for every application.

Staib and Duncan [111] represen the shapes of objects in medical images using fourier
descriptorsof closedcurves. The choiceof coetcients a®ectsthe curve complexity. Placing limits
on ead coexcient constrainsthe shape somewhatbut not in a systematic way. It can be showvn
that such fourier models can be made directly equivalent to the statistical models described
below, but are not as general. For instance, they cannot easily represen open boundaries.

Kass et al [65] intro duced Activ e Contour Models (or “snakes') which are energy minimising
curves. In the original formulation the energy has an internal term which aims to impose
smoothness on the curve, and an external term which encouragesmovemert toward image
features. They are particularly useful for locating the outline of general amorphous objects.
Howewer, since no model (other than smoothness)is imposed,they are not optimal for locating
objects which have a known shape.

Alternativ e statistical approaces are described by Grenander et al [46] and Mardia et al
[78]. These are, however, ditcult to usein automated image interpretation. Goodall [44]
and Bookstein [8] use statistical techniquesfor morphometric analysis, but do not addressthe
problem of automated interpretation. Kirby and Sirovich [67] describe statistical modelling of
grey-level appearance(particularly for faceimages)but do not addressshape variabilit y.

9
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A more comprehensie survey of deformable models usedin medical image analysisis given
in [81].

Various approacesto modelling variability have been described. The most common is to
allow a prototype to vary according to some physical model. Bajcsy and Kovacic [1] describe
a volume model (of the brain) that deforms elastically to generatenew examples. Christensen
et. al.[19, 18] describe a viscous°ow model of deformation which they also apply to the brain,
but is very computationally expensive. Park et. al.[9]] and Pertland and Sclaro®[93] both
represett the outlines or surfacesof prototype objects using nite elemer methods and describe
variability in terms of vibrational modesthough there is no guarartee that this is appropriate.
Turk and Pentland [116] use principal componert analysisto describe the intensity patterns in
faceimagesin terms of a set of basisfunctions, or “eigenfaces'.Though valid modesof variation
are learnt from a training set, and are more likely to be more appropriate than a “physical’
model, the represettation is not robust to shape changes,and doesnot deal well with variabilit y
in poseand expression. Eigenfacescan, however, be matched to imageseasily using correlation
basedmethods.

Poggio and co-workers [39] [62] synthesize new views of an object from a set of example
views. They t the model to an unseenview by a stochastic optimization procedure. This
is slow, but can be robust becauseof the quality of the synthesized images. Cootes et al [24]
describe a 3D model of the grey-lewel surface, allowing full synthesis of shape and appearance.
Howevwer, they do not suggesta plausible seard algorithm to match the model to a new image.
Nastar et. al.[89] describe a related model of the 3D grey-lewel surface,combining physical and
statistical modesof variation. Though they describe a seard algorithm, it requiresa very good
initialization. Ladeset. al.[73] model shape and somegrey level information using an elastic
meshand Gabor jets. Howewer, they do not imposestrong shape constraints and cannot easily
synthesizea new instance.

In the "eld of medical imageinterpretation there is considerableinterest in non-linear image
registration. Typically this involves nding adense®ow eld which mapsoneimageonto another
soasto optimize a suitable measureof di®erencgeg sum of squareserror or mutual information).
This can be treated as interpretation through synthesis, where the synthesizedimage is simply
a deformed version of one of the rst image. Examples of such algorithms are reviewed in [77],
and include the work of Christensen[19, 18], Collins et. al.[21], Thirion [114] and Lester et.
al.[75] amongst others.

In deweloping our new approach we have bene ted from insights provided by two earlier
papers. Covell [26] demonstrated that the parametersof an eigen-featuremodel can be usedto
drive shape model points to the correct place. The AAM described here is an extension of this
idea. Black and Yacoob [7] uselocal, hand-crafted models of image °ow to track facial features,
but do not attempt to model the whole face. The AAM can be thought of asa generalization of
this, in which the image di®erencepatterns corresponding to changesin ead model parameter
are learnt and usedto modify a model estimate.

In a parallel developmernt Sclaro®and Isidoro have demonstrated "Activ e Blobs' for tracking
[101]. The approad is broadly similar in that they use image di®erencesto drive tracking,
learning the relationship between image error and parameter o®setin an o®-line processing
stage. The main di®erenceis that Active Blobs are derived from a single example, whereas
Activ e App earanceModelsuseatraining setof examples. The former usea singleexampleasthe
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original model template, allowing deformations consistert with low energy mesh deformations
(derived using a Finite Elemert method). A simply polynomial model is usedto allow changes

in intensity acrossthe object. AAMs learn what are valid shape and intensity variations from
their training set.



Chapter 4

Statistical Shape Mo dels

Here we describe the statistical models of shape which will be usedto represen objects in
images. The shape of an object is represened by a set of n points, which may be in any
dimension. Commonly the points are in two or three dimensions. Shape is usually de ned as
that quality of a con guration of points which is invariant under sometransformation. In two
or three dimensionswe usually considerthe Similarity transformation (translation, rotation and
scaling). The shape of an object is not changedwhen it is moved, rotated or scaled.

Recent advancesin the statistics of shape allow formal statistical techniquesto be applied
to setsof shapes, making possibleanalysis of shape di®erencesand changes[32)].

Our aim is to derive models which allow us to both analyse new shapes, and to synthesise
shapessimilar to thosein atraining set. The training settypically comesfrom hand annotation
of a set of training images, though automatic landmarking systemsare being developed (see
below). By analysing the variations in shape over the training set, a model is built which can
mimic this variation.

Much of the following will describe building models of shape in an arbitrary d-dimensional
space,under a similarity transform T, (where p are the parametersof the transformation). Most
exampleswill be given for two dimensional shapes under the Similarity transformation (with
parameters of translation, scaling and orientation), astheseare the easiestto represen on the
page,and probably the most widely studied.

Note howewver that the dimensionsneednot always be in space,they can equally be time or
intensity in an image. For instance

3D Shapes can either be composedof points in 3D space,or could be points in 2D with atime
dimension (for instancein an image sequence)

2D Shapes caneither be composedof points in 2D space,or one spaceand onetime dimension

1D Shapes can either be composedof points along a line, or, asis usedbelow, intensity values
sampledat particular positions in an image.

There an numerousother possibilities. In ead casea suitable transformation must be de ned
(eg Similarity for 2D or global scaling and o®setfor 1D).

12



4.1. SUITABLE LANDMARKS 13

4.1 Suitable Landmarks

Good choices for landmarks are points which can be consisterily located from one image to
another. The simplest method for generating a training set is for a human expert to annotate
ead of a seriesof imageswith a set of corresponding points. In practice this can be very
time consuming, and automatic and semi- automatic methods are being developed to aid this
annotation.

In two dimensionspoints could be placedat clear cornersof object boundaries, T' junctions
between boundaries or easily located biological landmarks. Howevwer, there are rarely enough
of such points to give more than a sparsedesription of the shape of the target object. This
list would be augmerted with points along boundarieswhich are arrangedto be equally spaced
betweenwell de ned landmark points (Figure 4.1).

High Curvature

\

~~ Equally spaced
__—intermediate points

\ Object Boundary

“T' Junction

Figure 4.1: Good landmarks are points of high curvature or junctions. Intermediate points can
be usedto de ne boundary more precisely

If a shape is described n points in d dimensionswe represen the shape by a nd elemen
vector formed by concatenating the elemeris of the individual point position vectors.

For instance, in a 2-D image we can represett the n landmark points, f(x;;yi)g, for a single
example asthe 2n elemen vector, x, where

X = (xl;:::;xn;yl;:::;yn)T 4.1)

Given s training examples,we generates sud vectorsx;. Before we can perform statistical
analysison thesevectorsit is important that the shapesrepresentied are in the sameco-ordinate
frame. We wish to remove variation which could be attributable to the allowed global transfor-
mation, T.

4.2 Aligning the Training Set

There is considerableliterature on methods of aligning shapesinto a common co-ordinate frame,
the most popular approac being ProcrustesAna,ysis [44]. This aligns ead shape sothat the
sum of distancesof ead shapeto the mean(D = = jxij %j2) is minimised. It is poorly de ned
unlessconstraints are placedon the alignmernt of the mean (for instance, ensuringit is certred on
the origin, has unit scaleand some xed but arbitrary orientation). Though analytic solutions
exist to the alignment of a set, a simple iterativ e approad is as follows:
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. Translate eadh example sothat its certre of gravity is at the origin.

. Chooseone exampleas an initial estimate of the mean shape and scalesothat jXj = 1.
. Recordthe rst estimate as X to de ne the default referenceframe.

. Align all the shapeswith the current estimate of the mean shape.

. Re-estimate mean from aligned shapes.

o o AW N P

. Apply constraints on the current estimate of the mean by aligning it with %o and scaling
sothat jkj = 1.

7. If not corverged,return to 4.

(Convergenceis declaredif the estimate of the meandoesnot changesigni cantly after an
iteration)

The operations allowed during the alignment will a®ectthe shape of the nal distribution.
For two and three dimensional shapesa commonapproacd is to certre ead shape on the origin,
scaleead sothat jxj = 1 and then choosethe orientation for ead which minimises D. The
scaling constraint meansthat the aligned shapesx lie on a hypersphere,which can introduce
signi cant non-linearities if large shape changesoccur. For instance, Figure 4.2(a) shows the
cornersof a set of rectangleswith varying aspect ratio (a linear change), aligned in this fashion.
The scaleconstraint ensuresall the cornerslie on a circle about the origin. A linear changein
the aspect ratio introducesa non-linear variation in the point positions. If we can arrange that
the points lie closerto a straight line, it simpli es the description of the distribution usedlater
in the analysis.

An alternative approad is to allow both scaling and orientation to vary when minimising
D. SupposeTs;(x) scalesthe shape, x, by s and rotates it by L.

To align two 2D shapes,x; and x»,, ead certred on the origin (x1:1 = X»:1 = 0), we choose
ascale,s, and rotation, Y, soasto minimise jTs (X1) i X2j2, the sum of squaredistancesbetween
points on shape x» and those on the scaledand rotated version of shape x;. Appendix B gives
the optimal solution.

If this approad is usedto align the setof rectangles,Figure 4.2(b), their cornerslie on circles
o®setfrom the origin. This intro duceseven greater non-linearity than the rst approac.

A third approad is to transform ead shape into the tangent space to the mean so as to
minimise D. The tangent spaceto x; is the hyperplane of vectorsnormal to x;, passingthrough
Xt. ie All the vectors x sud that (Xxij X)Xt = 0, or x:x¢y = 1if jx¢j = 1. Figure 4.2(c)
demonstratesthat for the rectanglesthis leadsto the corners varying along a straight lines,
orthogonal to the lines from the origin to the corners of the mean shape (a square). This
presenesthe linear nature of the shape variation. The simplest way to achieve this is to align
the shapeswith the mean, allowing scaling and rotation, then project into the tangernt spaceby
scalingx by 1=(x:%).

Di®erert approacesto alignment can produce di®eren distributions of the aligned shapes.
We wish to keepthe distribution compact and keep any non-linearities to a minimum, so use
the tangent spaceapproad in the following.
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a) All unit scale
b) Mean unit scale
¢) Tangent space

A

[EI=g€l

Figure 4.2: Aligning rectangleswith varying aspect ration. a) All shapessetto unit scale,b)
Scaleand angle free, ¢) Align into tangent space

4.3 Mo delling Shape Variation

Supposenow we have s sets of points x; which are aligned into a common co-ordinate frame.
These vectors form a distribution in the nd dimensional spacein which they live. If we can
model this distribution, we can generatenew examples,similar to thosein the original training
set, and we can examine new shapesto decidewhether they are plausible examples.

In particular we seeka parameterised model of the form x = M (b), where bis a vector of
parametersof the model. Such a model can be usedto generatenew vectors, x. If we can model
the distribution of parameters, p(b we can limit them so that the generatedx's are similar to
thosein the training set. Similarly it should be possibleto estimate p(x) using the model.

To simplify the problem, we rst wish to reducethe dimensionality of the data from nd to
something more manageable. An e®ective approad is to apply Principal Component Analysis
(PCA) to the data. The data form a cloud of points in the nd-D space. PCA computesthe
main axesof this cloud, allowing one to approximate any of the original points using a model
with fewer than nd parameters. The approad is as follows.

1. Compute the mean of the data,

1
k= - i 4.2
s Xij 4.2)

x3
S= ——  (Xii )Xii %7 (4.3)
I~z

3. Compute the eigervectors, A, and corresponding eigernvalues , ; of S (sorted sothat _; ,
.i+1). When there are fewer samplesthan dimensionsin the vectors, there are quick
methods of computing these eigervectors - seeAppendix A.
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If © contains the t eigervectors corresponding to the largest eigervalues, then we can then
approximate any of the training set, X using

X YaX + ©b (4.4)

where © = (AjjAyj:::jA) and b is a t dimensional vector given by

b=0T(x| %) (4.5)

The vector b de nes a set of parametersof a deformable model. By varying the elemerts of
b we can vary the shape, xusing Equation 4.4. The ¥ariance of the i parameter, by, acrossthe
training setis givenby , ;. By applying limits of 83" ,; to the parameter iy we ensurethat the
shape generatedis similar to those in the original training set.

The number of eigervectors to retain, t, can be chosenso that the model represerts some
proportion (eg 98%) of the total variance of the data, or so that the residual terms can be
considerednoise. Seesection 4.4 below.

For instance, Figure 4.3 shows the principal axesof a 2D distribution of vectors. In this
caseany of the points can be approximated by the nearestpoint on the principal axis through
the mean. x ¥x%= % + bp where b is the distance along the axis from the mean of the closest
approad to x. Thus the two dimensional data is approximated using a model with a single
parameter, b. Similarly shape models controlling many hundreds of model points may needonly
a few parametersto approximate the examplesin the original training set.

Figure 4.3: Applying a PCA to a set of 2D vectors. p is the principal axis. Any point xcan be
approximated by the nearestpoint on the line, x° (seetext).

4.4 Choice of Num ber of Mo des

The number of modesto retain, t, can be chosenin seweral ways. Probably the simplest is to
chooset soasto explain a given proportion (eg 98%) of the variance exhibited in the training
set.

Let , ; bethe eigervaluesof the covariance matrix of the training data. Each eigervalue gives
the variance of the data about the meanin the direction of the corresponang eigervector. The
total variancein the training data is the sum of all the eigervalues,Vy = ;.
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We can then choosethe t largest eigervalues sud that

Xt

Jis BuVr (4.6)

i=1

where f,, de nes the proportion of the total variation one wishesto explain (for instance,
0.98 for 98%).

If the noise on the measuremets of the (aligned) point positions has a variance of ¥£, then
we could choosethe largestt sudh that | > 3£, assumingthat the eigervalues are sorted into
descendingorder.

An alternative approac is to choose enough modesthat the model can approximate any
training exampleto within a given accuracy For instance, we may wish that the best approxi-
mation to an example has every point within one pixel of the corresponding example points.

To acdhieve this we build models with increasing numbers of modes, testing the ability of
ead to represen the training set. We choosethe rst model which passesour desired criteria.

Additional con dencecan be obtained by performing this test in a miss-one-outmanner. We
choosethe smallestt for the full model such that models built with t modes from all but any
one example can approximate the missing example suzciently well.

4.5 Examples of Shape Mo dels

Figure 4.4 shows the outlines of a hand usedto train a shape model. They were obtained from
a set of imagesof the authors hand. Each is represened by 72 landmark points. The endsand
junctions of the ngers are true landmarks, other points were equally spacedalong the boundary

= S
b byl
b

Figure 4.4: Example shapesfrom training set of hand outlines

Building a shape model from 18 such examplesleadsto a model of hand shape variation
whosemodesare demonstratedin gure 4.5.
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ST

Figure 4.5: E®ectof varying ead of rst three hand model shape parametersin turn between
§3s.d.

Images of the face can demonstrate a wide degreeof variation in both shape and texture.
App earancevariations are causedby di®erencedetweenindividuals, the deformation of an indi-
vidual facedue to changesin expressionand speaking, and variations in the lighting. Typically
one would like to locate the features of a face in order to perform further processing(see Fig-
ure 4.6). The ultimate aim varies from determining the identity or expressionof the personto
deciding in which direction they are looking [74].

Figure 4.6: Example faceimage annotated with landmarks

Figure 4.7 showvs example shapes from a training set of 300 labelled faces (see Figure 4.6
for an example image shawing the landmarks). Each image is annotated with 133 landmarks.
The shape model has 36 modes, which explain 98% of the variance in the landmark positions
in the training set. Figure 4.8 shaws the e®ectof varying the rst three shape parametersin
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turn between§ 3 standard deviations from the meanvalue, leaving all other parametersat zero.
These modes explain global variation due to 3D pose changes, which cause movemert of all
the landmark points relative to one another. Lesssigni cant modes causesmaller, more local
changes. The modes obtained are often similar to those a human would chooseif designinga
parameterised model. However, they are derived directly from the statistics of a training set
and will not always separateshape variation in an obvious manner.
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Figure 4.7: Example shapesfrom training set of faces
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Figure 4.8: E®ect of varying eah of rst three face model shape parametersin turn between
§ 3 s.d.

4.6 Generating Plausible Shapes

If we wish to usethe model x = %X + ©b to generateexamplessimilar to the training set, we
must choosethe parameters, b, from a distribution learnt from the training set. Thus we must
estimate this distribution, p(b), from the training set. We will de ne a set of parameters as
“plausible’ if p(b) , p:, wherep; is somesuitable threshold on the p.d.f.. p; is usually chosenso
that someproportion (eg 98%) of the training set passeshe threshold.

If we assumethat Iy are independert and gaussian,then
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XK
logp(b) = j 05 — + const 4.7)
i=1
To constrainpb to plausible valueswe can either apply hard limits to ead elemen, b, (for
instancejlj - 3 ), or we can constrain b to bein a hyperellipsoid,

A !
Xt
i My (4.8)

i=1 >

Where the threshold, My, is chosenusing the A? distribution.

4.6.1 Non-Linear Mo dels for PDF

Approximating the distribution as a gaussian(or as uniform in a hyper-box) works well for a
wide variety of examples,but cannot adequately represert non-linear shape variations, suc as
those generatedwhen parts of the object rotate, or there are changesin viewing position of a
3D object. There have beenseeral non-linear extensionsto the PDM, either using polynomial
modes [109], using a multi-layer perceptron to perform non-linear PCA [108] or using polar
co-ordinatesfor rotating sub-parts of the model [51].

Howevwer, all theseapproachesassumethat varying the parametersb within given limits will
always generateplausible shapes, and that all plausible shapescan be so generated. This is not
always the case. For instance, if a sub-part of the shape can appear in one of two positions, but
not in-between, then the distribution hastwo separatepeaks,with an illegal spacein between.
Without imposing more complex constraints on the parametersb, models of the form x = f (b)
are likely to generateillegal shapes.

For instance, considerthe set of synthetic training examplesshown in Figure 4.9. Here 28
points are usedto represen a triangle rotating inside a square (there are 3 points along ead
line segmen). If we apply PCA to the data, we nd there are two signi cant componerts.
Projecting the 100 original shapesx into the 2-D spaceof b (using (4.5)) givesthe distribution
shown in Figure 4.10. This is clearly not gaussian. To generatenew examplesusing the model
which are similar to the training setwe must constrain the parametersb to be near the edgeof
the circle. Points at the mean (b = 0) should actually be illegal.

One approach would be to usean alternativ e parameterisation of the shapes. Heap and Hogg
[51] usepolar coordinates for someof the model points, relative to other points. A more general
approad is to use non-linear models of the probability density function, p(b). This allows the
modelling of distinct classesof shape aswell as non-linear shape variation, and doesnot require
any labelling of the classof ead training example.

A useful approad is to model p(b) using a mixture of gaussiansapproximation to a kernel
density estimate of the distribution.

xn
Pmix (X) = W G(X 1)) (4.9)
=1

SeeAppendix G for details.
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Figure 4.9: Examplesfrom train- Figure 4.10: Distribution of bfor
ing set of synthetic shapes 100 synthetic shapes

Example of the PDF for a Set of Shapes

Figure 4.11 shows the p.d.f. estimated for b for the rotating triangle set described above. The
adaptive kernelmethod wasused, with the initial h estimated using cross-\alidation. The desired
number of componerts can be obtained by specifying an acceptableapproximation error. Figure
4.12 shaws the estimate of the p.d.f. obtained by tting a mixture of 12 gaussiansto the data.

Figure 4.11: Plot of pdf esti- Figure 4.12: Plot of pdf approxi-
mated using the adaptive kernel mation using mixture of 12 gaus-
method sians

4.7 Finding the Nearest Plausible Shape

When tting a model to a new set of points, we have the problem of nding the nearestplausible
shape, x to atarget shape, x'. The rst estimateis to project into the parameter space,giving
b= ©T(x% x).

We de ne a set of parametersas plausible if p(b) , p:. If p(b) < p; we wish to move x to
the nearestpoint at which it is consideredplausible.
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f Opyr model of p(b) is asa single gaussian,we can simply truncate the elemers by sud that
jhj - 3 .. Alternativ ely we can scaleb until
Xt

i - My (4.10)

Where the threshold, My, is chosenusing the A? distribution.

If, however, we use a mixture model to represert p(b), and p(b% < p;, we must nd the
nearestb sud that p(b) , p;. In practice this is dixcult to locate, but an acceptableapproxi-
mation can be obtained by gradient ascent - simply move uphill until the threshold is reached.
The gradient of (4.9) is straightforward to compute, and suitable step sizescan be estimated
from the distance to the mean of the nearestmixture componert.

For instance, Figure 4.13shows an exampleof the synthetic shape usedabove, with its points
perturbed by noise. Figure 4.14 shaws the result of projecting into the spaceof b and back.
There is signi cant reduction in noise, but the triangle is unacceptably large compared with
examplesin the training set. Figure 4.15 shows the shape obtained by gradient ascen to the
nearestplausible point using the 12 componert mixture model estimate of p(b). The triangle is
now similar in scaleto thosein the training set.

/ A
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Figure 4.13: Shape with Figure 4.14: Projection Figure 4.15: Nearby
noise into b-space plausible shape

4.8 Fitting a Mo del to New Points

An example of a model in an image is described by the shape parameters, b, combined with
a transformation from the model co-ordinate frame to the image co-ordinate frame. Typically
this will be a Similarity transformation de ning the position, (X¢;Y;), orientation, p, and scale,
s, of the model in the image.

The positions of the model points in the image, x, are then given by

X = Txvsu(k + ©b) (4.11)

Where the function Tx,.v,:s;u performs a rotation by p, a scaling by s and a translation by
(Xt; Yy). For instance, if applied to a single point (xy),
A 1 A 1A LA
X Xt Scosp  ssinp X

Txavisw y = v, T i ssinp scosy y (4.12)
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Supposenow we wish to nd the best poseand shape parametersto match a model instance
xto anewsetof imagepoints, Y . Minimising the sum of squaredistancesbetweencorresponding
model and image points is equivalent to minimising the expression

jY i TXt;Yt;s;u(k + ©b)j2 (4.13)
A simple iterativ e approac to achieving this is as follows:
Initialise the shape parameters, b, to zero
Generatethe model instancex = X + ©b

Find the poseparameters(Xi; Y;; s; W) which best map xto Y (SeeAppendix B).

R

Invert the poseparametersand useto project Y into the model co-ordinate frame:

Y = Tiesu(Y) (4.14)
5. Project y into the tangent plane to X by scaling by 1=(y:%).
6. Update the model parametersto match to y

b=0"(yi %) (4.15)

7. Apply constraints on b(see4.6,4.7 above).
8. If not converged,return to step 2.

Convergenceis declared when applying an iteration producesno signi cant changein the
poseor shape parameters. This approac usually convergesin a few iterations.

4.9 Testing How Well the Mo del Generalises

The shape models described use linear combinations of the shapes seenin a training set. In
order to be able to match well to a new shape, the training set must exhibit all the variation
expectedin the classof shapesbeing modelled. If it doesnot, the model will be over-constrained
and will not be able to match to sometypesof new example. For instance, a model trained only
on squareswill not generaliseto rectangles.

One approad to estimating how well the model will perform is to use jack-knife or miss-
one-out experiments. Given a training set of s examples,build a model from all but one, then
't the model to the examplemissedout and record the error (for instance using (4.13)). Repeat
this, missing out ead of the s examplesin turn. If the error is unacceptably large for any
example, more training examplesare probably required. However, small errors for all examples
only mean that there is more than one example for eat type of shape variation, not that all
typesare properly covered (though it is an encouragingsign).

Equation (4.13) givesthe sum of square errors over all points, and may averageout large
errors on one or two individual points. It is often wiseto calculate the error for ead point and
ensurethat the maximum error on any point is suzciently small.
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4.10 Estimating p(shape

Given a con guration of points, x, we would like to be able to decide whether x is a plausible
example of the classof shapesdescribed by our training set.

The original training set, oncealigned, can be considereda set of samplesfrom a probability
density function, p(x), which we must estimate.

Any shape can be approximated by the nearestpoint in the sub-spacede ned by the eigen-
vectors,©. A point in this subspaceis de ned by a vector of shape parameters,b.

Let dx = x| X. Then the best (least squares)approximation is given by x°= % + ©b where
b=0©Tdx.

The residual error isthenr = dx | ©b.

The square magnitude of this is

jriz = rTr
= dxTdxj 2dx"©b + bT©T©b (4.16)
jri. = jdxj%i jbj?

Applying a PCA generatestwo subspacegde ned by © and its null-space) which split the
shape vector into two orthogonal componerts with coezxcients described by the elemeris of band
r, which we assumeto be independert.

Thus

p(x) = p(r):p(b) (4.17)

logp(x) = logp(r) + logp(b) (4.18)

If we assumethat ead elemer of r is independert and distributed as a gaussianwith
variance ¥¢, then

p(r) / exp(i O:5irj*=%)

logp(r) = i 0:5jrj?=% + const (4.19)

The distribution of parameters, p(b), can be estimated as described in previous sections.
Given this, we can estimate the p.d.f.at a new shape, x, using

logp(x) = logp(b) i 0:5(jdxj? jbj?)=% + const (4.20)

The value of %% can be estimated from miss-one-outexperimerts on the training set.
Non-linear extensionsof shape models using kernel basedmethods have been presened by
Romdani et. al.[99] and Twining and Taylor [117], amongst others.

4.11 Relaxing Shape Mo dels

When only a few examplesare available in a training set, the model built from them will be
overly constrained - only variation obsened in the training setis represerted.
It is possibleto arti cially add extra variation, allowing more °exibilit y in the model.
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4.11.1 Finite Element Mo dels

Finite Elemert Methods allow us to take a single shape and treat it asif it were made of an
elastic material. The techniquesof Modal Analysis give a set of linear deformations of the shape
equivalent to the resonant modesof vibration of the original shape. Such an approac hasbeen
used by seweral groups to dewvelop deformable models for computer vision, including Pentland
and Sclaro®[93], Karaolani et. al.[64] and Nastar and Ayache [88]. Howewer, the modes are
somewhatarbitrary and may not be represertativ e of the real variations which occur in a class
of shapes.

A elastic body can be represened as a set of n nodes, a massmatrix M and a sti®ness
matrix K. In two dimensionsthese are both 2n £ 2n. Modal Analysis allows calculation of a
set of vibrational modesby solving the generalisedeigenproblem

KO, = MO ,- 2 (4.21)

diagonal matrix of eigervalues. (! ; is the frequencyof the i!" mode). The energyof deformation
in the i™ mode is proportional to ! 2,

If we assumethe structure can be modelled as a set of point unit massesthe massmatrix,
M, becomesthe identity, and (4.21) simpli es to computing the eigervectors of the symmetric
matrix K,

KO, = ©- ? (4.22)

Thusiif u is a vector of weights on eady mode, a new shape can be generatedusing
X=X+ Oyu (4.23)

4.11.2 Combining Statistical and FEM Mo des

Equation 4.23is clearly related to the form of the statistical shape modelsdescribed above. Both
are linear models. This suggeststhat there is a way to combine the two approades. If we have
just one example shape, we cannot build a statistical model and our only option is the FEM
approach to generating modes. If, howewver, we have two examples,we can build a statistical
model, but it would only have a single mode, linearly interpolating betweenthe two shapes. It
would have no way of modelling other distortions.

One approad to combining FEMs and the statistical modelsis asfollows. We calculate the
modes of vibration of both shapes,then usethem to generatea large number of new examples
by randomly selecting model parametersu using some suitable distribution. We then train a
statistical model on this new set of examples. The resulting model would then incorporate a
mixture of the modes of vibration and the original statistical mode interpolating betweenthe
original shapes.

Sud a strategy would be applicable for any number of shapes. However, we should decrease
the magnitude of the allowed vibration modes as the number of examplesincreasesto avoid
incorporating spurious modes. As we get more training examples, we need rely lesson the
arti cial modesgeneratedby the FEM.
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It would be time consumingand error prone to actually generatelarge numbers of synthetic
examplesfrom our training set. Fortunately the e®ectcan be achieved with a little matrix
algebra.

For simplicity and exciency, we assumethe modes of vibration of any example can be
approximated by those of the mean.

Let X bethe meanof a set of s examples,S be the covariance of the setand ©, be the modes
of vibration of the mean derived by FEM analysis.

Supposewe wereto generatea setof examplesby selectingthe valuesfor u from a distribution
with zero mean and covariance S,,. The distribution of ©,u then has a covariance of

©ySuO, (4.24)

and the distribution of x = x; + ©,u will have a covariance of

Ci = XiX{ + ©,S,0] (4.25)

about the origin.
If we treat the elemerns of u as independert and normally distributed about zero with a
variance on u; of ®, i, then

Sy = ®ay (4.26)

wherea, = diag(, y1:::).
The covariance of x; about the origin is then

Ci = XiX{ + ®,8,0] (4.27)

If the frequency assaiated with the | mode is ! j then we will choose

by =12 (4.28)

This givesa distribution which haslarge variation in the low frequency large scaledeforma-
tion modes, and low variation in the more local high frequency modes.

One can justify the choice of , yj by considering the strain energy required to deform the
original shape, %, into a new examplex. The cortribution to the total from the j " mode is

_1o02
The form of Equation 4.29 ensuresthat the energy tends to be spread equally amonst all
the modes.

The constart ® controls the magnitude of the deformations, and is discussedbelow.
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4.11.3 Combining Examples

To calculate the covariance about the origin of a set of examplesdrawn from distributions about
m original shapes,fx;g, we simply take the mean of the individual covariances

3

P
o= 1N ®OyE O + xix]

= ®0,0,0] + Sy + kX7

where Sy, is the covariance of the m original shapesabout their mean.
Thus the covariance about the meank is then

S SO %kxT

Sy + ©0y3,©] (4.31)

We can then build a combined model by computing the eigervectors and eigervaluesof this
matrix to give the modes. When ® = 0 (the magnitude of the vibrations is zero) S = S, and
we get the result we would from a pure statistical model.

When we allow non-zerovibrations of ead training example, (® > 0), the eigervectors of S
will include the e®ectsof the vibrational modes.

As the number of examplesincreaseswe wish to rely more on the statistics of the real data
and lesson the arti cial variation introduced by the modes of vibration. To achieve this we
must reduce® as m increases.We usethe relationship

®= ®=m (4.32)

4.11.4 Examples

Two setsof 16 points were generated,one forming a square, the other a rectangle with aspect
ratio 0.5. Figure 4.16 shows the modes corresponding to the four smallest eigervalues of the
FEM governing equation for the square. Figure 4.17 shows those for a rectangle.
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Figure 4.16: First four modes of vi- Figure 4.17: First four modes of vi-
bration of a square bration of a rectangle
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Figure 4.18 shows the modes of variation generatedfrom the eigervectors of the combined
covariance matrix (Equation 4.31). This demonstratesthat the principal mode is now the mode
which changesthe aspect ratio (which would be the only onefor a statistical model trained on
the two shapes). Other modesare similar to those generatedby the FEM analysis.
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Figure 4.18: First modesof variation of a combined model containing a squareand a rectangle.
The mode cortrolling the aspect ratio is the most signi cant.

4115 Relaxing Mo dels with a Prior on Covariance

Rather than using Finite Element Methods to generatearti cial modes, a similar e®ectcan be
achieved simply by adding extra valuesto elemeris of the covariance matrix during the PCA.
This is equivalert to specifying a prior on the covariance matrix. The approad is to compute
the covariance matrix of the data, then either add a small amount to the diagonal, or to the
ij ' elemens which correspond to covariance between ordinates of nearby points. Encouraging
higher covariance between nearby points will generate arti cial modes similar to the elastic
modes of vibration. The magnitude of the addition should be inversely proportional to the
number of samplesavailable. For instance, see[25] or work by Wang and Staib [125].



Chapter 5

Statistical Mo dels of App earance

To synthesisea complete image of an object or structure, we must model both its shape and
its texture (the pattern of intensity or colour acrossthe region of the object). Here we describe
how statistical models can be built to represer both shape variation, texture variation and the
correllations betweenthem. Suc models can be usedto generatephoto-realistic (if necessary)
synthetic images.

The models are generated by conbining a model of shape variation with a model of the
texture variations in a shape-normalisedframe. By “texture' we meanthe pattern of intensities
or colours acrossan image patch. We require a training set of labelled images, where key
landmark points are marked on ead example object. For instance, to build a face model we
require face images marked with points at key positions to outline the main features (Figure
5.1).

Given such a set we can generatea statistical model of shape variation from the points (see
Chapter 4 for details). Given a mean shape, we can warp ead training exampleinto the mean
shape, to obtain a “shape-free’ patch (Figure 5.1). We then build a statistical model of the
texture variation in this patch (essetially an eigen-facetype model [116]).

There will be correlations between the parameters of the shape model and those of the
texture model acrossthe training set. To take accourt of thesewe build a combined appearance
model which controls both shape and texture.

The following sectionsdescribe these stepsin more detail.

5.1 Statistical Mo dels of Texture

To build a statistical model of the texture (intensity or colour over an image patch) we warp
ead example image so that its cortrol points match the mean shape (using a triangulation
algorithm - seeAppendix F). This removes spurious texture variation due to shape di®erences
which would occur if we simply performed eigervector decomposition on the un-normalisedface
patches (as in the eigen-faceapproac [116]). We then sample the intensity information from
the shape-normalised image over the region covered by the meanshape to form a texture vector,
Oim - For example, Figure 5.1 shows a labelled face image, the model points and the face patch
normalised into the mean shape. The sampled patch contains little of the texture variation

29
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Shape Free Patch

Figure 5.1: Eacdh training examplein split into a set of points and a "shape-free'image patch

causedby the exaggeratedexpression- that is mostly taken accourt of by the shape.
To minimise the e®ectof global lighting variation, we normalise the example sampleshby
applying a scaling, ®, and o®set, ,

g= (Omi 1)=@® (5.1)

The valuesof ® and  are chosento best match the vector to the normalised mean. Let § be
the mean of the normalised data, scaledand o®setso that the sum of elemerts is zero and the
variance of elemerts is unity. The valuesof ® and  required to normalise gim are then given

by
®= gim Y ; ~ = (Qim:1)=n (5.2)
where n is the number of elemerts in the vectors.
Of course, obtaining the mean of the normalised data is then a recursive process,as the
normalisation is de ned in terms of the mean. A stable solution can be found by using one of
the examplesas the rst estimate of the mean, aligning the others to it (using 5.1 and 5.2),

re-estimating the mean and iterating.
By applying PCA to the normalised data we obtain a linear model:

g= 8§+ Pgbyg (5.3)

whered is the meannormalisedgrey-level vector, P 4 is a set of orthogonal modesof variation
and by is a set of grey-level parameters.
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The texture in the image frame can be generatedfrom the texture parameters,bgy, and the
normalisation parameters®, . For linearity we represei thesein avectoru = (®; 1;7)T (See
Appendix E). In this form the identit y transform is represenied by the zerovector. The texture
in the image frame is then given by

gim = Tu(§+ Pgbg) = (1 + ug)(§ + Pgbg) + u2l (5.4)

5.2 Combined App earance Mo dels

The shape and texture of any example can thus be summarised by the parameter vectors b
and bg. Sincethere may be correlations betweenthe shape and texture variations, we apply a
further PCA to the data asfollows. For ead example we generatethe concatenatedvector

A A !
Wsbs _ WsPl(Xi X)

by - P-gl;-(g i 8)
whereW ¢ is adiagonalmatrix of weights for eat shape parameter, allowing for the di®erence

in units betweenthe shape and grey models (see below). We apply a PCA on these vectors,
giving a further model

b= (5.5)

b= P (5.6)

where P are the eigervectors and ¢ is a vector of appearance parameters cortrolling both
the shape and grey-lewels of the model. Sincethe shape and grey-model parameters have zero
mean, ¢ doestoo.

Note that the linear nature of the model allows us to expressthe shape and grey-lewels
directly asfunctions of ¢

X=%X+PWilPC ; g=8+ PgPcC (5.7)
where A |
PCS
P.= 5.8
c ch ( )
Or more, to summarize, as
X = %X+ QgC
5.9
g = 8§+ QqC 2
where
Qs = PsWis Pecs
5.10
Qg = PgPg ( )

An example image can be synthesisedfor a given ¢ by generating the shape-freegrey-level
image from the vector g and warping it using the cortrol points described by x.
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5.2.1 Choice of Shape Parameter Weights

The elemerts of bs have units of distance, those of by have units of intensity, so they cannot
be compareddirectly. BecauseP ¢ has orthogonal columns, varying by by one unit movesg by
one unit. To make bs and by commensurate,we must estimate the e®ectof varying bs on the
sampleg. To do this we systematically displace ead elemen of bg from its optimum value on
ead training example, and samplethe image given the displacedshape. The RMS changein g
per unit changein shape parameter by givesthe weight ws to be applied to that parameter in
equation (5.5).

A simpler alternative is to setW s = rl wherer? is the ratio of the total intensity variation
to the total shape variation (in the normalised frames). In practise the synthesis and seardh
algorithms are relatively insensitive to the choice of W s.

5.3 Example: Facial App earance Mo del

We usedthe method described above to build a model of facial appearance.We useda training
set of 400 imagesof faces,ead labelled with 122 points around the main features (Figure 5.1).
From this we generateda shape model with 23 parameters, a shape-free grey model with 114
parametersand a combined appearancemodel with only 80 parametersrequired to explain 98%
of the obsened variation. The model usesabout 10,000pixel valuesto make up the face patch.

Figures 5.2 and 5.3 shov the e®ectsof varying the rst two shape and grey-level model
parameters through 8§ 3 standard deviations, as determined from the training set. The rst
parameter correspondsto the largest eigervalue of the covariance matrix, which givesits variance
acrossthe training set. Figure 5.4 shows the e®ectof varying the rst four appearancemodel
parameters, shaving changesin identity, poseand expression.

Figure 5.2: First two modesof shape Figure 5.3: First two modesof grey-
variation (8 3 sd) level variation (& 3 sd)

5.4 Appro ximating a New Example

Givena newimage, labelled with a set of landmarks, we can generatean approximation with the
model. We follow the stepsin the previous sectionto obtain b, combining the shape and grey-
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Figure 5.4: First four modes of appearancevariation (8 3 sd)

level parameters which match the example. Since P is orthogonal, the combined appearance
model parameters, c are given by

c=Plb (5.11)

The full reconstruction is then given by applying equations (5.7), inverting the grey-lewel
normalisation, applying the appropriate poseto the points and projecting the grey-level vector
into the image.

For example, Figure 5.5 shows a previously unseenimage alongsidethe model reconstruction
of the face patch (overlaid on the original image).

Figure 5.5: Example of combined model represenation (right) of a previously unseenfaceimage
(left)



Chapter 6

Image Interpretation with Mo dels

6.1 Overview

To interpret an image using a model, we must nd the set of parameterswhich best match the
model to the image. This set of parametersde nes the shape, position and possibly appearance
of the target object in an image, and can be used for further processing,sud as to make
measuremers or to classify the object.

There are seeral approacheswhich could be takento matching a model instanceto animage,
but all can be thought of asoptimising a cost function. For a set of model parameters,c, we can
generatean instance of the model projected into the image. We can compare this hypothesis
with the target image, to geta t function F(c). The best set of parametersto interpret the
object in the image is then the set which optimises this measure. For instance, if F(c) is an
error measure,which tends to zero for a perfect match, we would like to chooseparameters, c,
which minimise the error measure.

Thus, in theory all we have to do is to choose a suitable 't function, and use a general
purposeoptimiser to nd the minimum. The minimum is de ned only by the choice of function,
the model and the image, and is independert of which optimisation method is usedto nd it.
Howevwer, in practice, care must be taken to choosea function which can be optimised rapidly
and robustly, and an optimisation method to match.

6.2 Choice of Fit Function

Ideally we would like to choosea t function which represers the probability that the model
parameters describe the target image object, P(cjl) (where | represens the image). We then
choosethe parameterswhich maximise this probability.

In the caseof the shape models described above, the parameterswe can vary are the shape
parameters, b, and the pose parameters X;; Y;;s; . For the appearancemodels they are the
appearancemodel parameters, ¢ and the poseparameters.

The quality of t of an appearancemodel canbe assessetly measuringthe di®erencebetween
the target image and a synthetic image generatedfrom the model. This is described in detail in
Chapter 8.

34
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The form of the t measurefor the shape models aloneis harder to determine. If we assume
that the shape model represens boundariesand strong edgesof the object, a useful measureis
the distance betweena given model point and the neareststrong edgein the image (Figure 6.1).

Normal to Model

Boundary Nearest Edge
on Normal (X',Y")
|

Model Point (X,Y)
Model Boundary

Image Object

Figure 6.1: An error measurecan be derived from the distance between model points and
strongest nearby edges.

If the model point positions are given in the vector X, and the nearestedgepoints to each
model point are X % then an error measureis

F(b;Xe; Y s;W) = jX % Xj? (6.1)

Alternativ ely, rather than looking for the best nearby edges,one can seart for structure
nearby which is most similar to that occuring at the given model point in the training images
(seebelow).

It should be noted that this T measurerelies upon the target points, X % begin the correct
points. If someare incorrect, due to clutter or failure of the edge/feature detectors, Equation
(6.1) will not be a true measureof the quality of t.

An alternativ e approad is to samplethe image around the current model points, and deter-
mine how well the image samplesmatch models derived from the training set. This approad
was taken by Haslam et al [50].

6.3 Optimising the Mo del Fit

Given no initial knowledge of where the target object lies in an image, nding the parameters
which optimise the 't is a a dixcult general optimisation problem. This can be tackled with
generalglobal optimisation techniques,suc as Genetic Algorithms or Simulated Annealing [53].

If, however, we have an initial approximation to the correct solution (we know roughly where
the target object isin animage,dueto prior processing),we canuselocal optimisation techniques
sudch asPowell's method or Simplex. A good overview of practical numeric optimisation is given
by Presset al [95].

However, we can take advantage of the form of the t function to locate the optimum rapidly.
We derive two algorithms which amourts to directed seard of the parameter space- the Active
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Shape Model and the Activ e AppearanceModel.

In the following chapters we describe the Activ e Shape Model (which matchesa shape model
to an image) and the Active AppearanceModel (which matchesa full model of appearanceto
an image).



Chapter 7

Activ e Shape Mo dels

7.1 Intro duction

Given a rough starting approximation, an instance of a model can be t to an image. By
choosing a set of shape parameters, bfor the model we de ne the shape of the object in an
object-certred co-ordinate frame. We can create an instance X of the model in the image frame
by de ning the position, orientation and scale,using Equation 4.11.

An iterativ e approach to improving the 't of the instance, X, to animageproceedsasfollows:

1. Examine a region of the image around ead point X to nd the best nearby match for
the point X?

2. Update the parameters(Xy; Y;; s; |, b) to best t the new found points X

3. Repeat until corvergence.

In practise we look along pro les normal to the model boundary through each model point
(Figure 7.1). If we expect the model boundary to correspond to an edge,we can simply locate
the strongest edge(including orientation if known) along the prole. The position of this gives
the new suggestedocation for the model point.

Profile Normal
to Boundary

Intensity

Model Point Distance along profil

Model Boundary

Image Structure

Figure 7.1: At eadh model point samplealong a pro le normal to the boundary
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However, model points are not always placed on the strongest edgein the locality - they
may represen a weaker secondaryedgeor someother image structure. The best approac is to
learn from the training set what to look for in the target image.

There are two broad approadesto this. The rst is to build statistical models of the image
structure around the point and during seart simply nd the points which best match the
model. (One method of doing this is described below). The secondis to treat the problem
as a classi cation task. Here one can gather examplesof features at the correct location, and
examplesof featuresat nearby incorrect locations and build a two classclassi er. The classi er
can then be usedto nd the point which is most likely to be true position and least likely to
be background. This approach has beenusedby van Ginneken [118]to segmem lung elds in
chest radiographs.

In the following we will describe a simple method of modelling the structure which hasbeen
found to be e®ective in many applications (though is not necessarilyoptimal). Esserially we
sample along the pro les normal to the boundaries in the training set, and build statistical
models of the grey-lewel structure.

7.2 Mo delling Local Structure

Supposefor a given point we sample along a pro le k pixels either side of the model point in
the it" training image. We have 2k + 1 sampleswhich can be put in a vector g;. To reducethe
e®ectsof global intensity changeswe sample the derivative along the prole, rather than the
absolute grey-level values. We then normalise the sample by dividing through by the sum of
absolute elemen values,

g! P g (7.0)
i 1Gi ]

We repeat this for ead training image, to get a set of normalised samplesf g;g for the given
model point. We assumethat these are distributed as a multiv ariate gaussian,and estimate
their mean § and covariance Sy. This givesa statistical model for the grey-level pro Te about
the point. This is repeated for every model point, giving one grey-level model for ead point.

The quality of t of a new sample, gs, to the model is given by

f(gs) = (9si g)Tsig Yosi 8) (7.2)

This is the Mahalanobisdistance of the samplefrom the model mean,and is linearly related to
the log of the probability that gs is drawn from the distribution. Minimising f (gs) is equivalent
to maximising the probability that gs comesfrom the distribution.

During seard we samplea pro le m pixels either side of the current point ( m > k). We
then test the quality of t of the corresponding grey-level model at eat of the 2(mj k) + 1
possiblepositions along the sample (Figure 7.2) and choosethe one which givesthe best match
(lowest value of f (gs)).

This is repeated for every model point, giving a suggestednew position for eat point. We
then apply one iteration of the algorithm given in (4.8) to update the current poseand shape
parametersto best match the model to the new points.
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Wm

Sampled Profile

Model
Cost of Fit

Figure 7.2: Seart along sampledpro le to nd best t of grey-level model

7.3 Multi-Resolution  Activ e Shape Mo dels

To improve the exciency and robustnessof the algorithm, it is implement in a multi-resolution
framework. This involves rst searding for the object in a coarseimage, then re ning the
location in a seriesof ner resolution images. This leadsto a faster algorithm, and one which is
lesslikely to get stuck on the wrong image structure.

For ead training and test image, a gaussianimage pyramid is built [15]. The baseimage
(level 0) is the original image. The next image (level 1) is formed by smoothing the original then
subsamplingto obtain an image with half the number of pixels in ead dimension. Subsequeh
levels are formed by further smoothing and sub-sampling (Figure 7.3).

Level 2

\\ Level 1

Level 0

Figure 7.3: A gaussianimage pyramid is formed by repeated smoothing and sub-sampling

During training we build statistical models of the grey-lewels along normal pro les through
ead point, at ead level of the gaussianpyramid. We usually usethe samenumber of pixels in
ead pro le model, regardlessof level. Sincethe pixels at level L are 2- times the size of those
of the original image, the models at the coarserlevelsrepresen more of the image (Figure 7.4).
Similarly, during seard we needonly seart a few pixels, (ns), either side of the current point
position at ead level. At coarselevels this will allow quite large movemerts, and the model
should corvergeto a good solution. At the ner resolution we need only modify this solution
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Figure 7.4: Statistical models of grey-level pro les represen the samenumber of pixels at eath
level

When searding at a given resolution level, we needa method of determining whento change
to a ner resolution, or to stop the seard. This is done by recording the number of times that
the best found pixel along a seard pro le is within the certral 50% of the pro le (ie the best
point is within ng=2 pixels of the current point). When a sutcient number (eg, 90%) of the
points are sofound, the algorithm is declaredto have corvergedat that resolution. The current
model is projected into the next image and run to corvergenceagain. When corvergenceis
reached on the nest resolution, the seard is stopped.

To summarise,the full MRASM seart algorithm is asfollows:

1. SetL = Lmax
2. While L , 0

(&) Compute model point positions in image at level L.
(b) Seart at ng points on pro le either side each current point
(c) Update poseand shape parametersto t model to new points

(d) Return to (2a) unlessmore than pgese Of the points are found closeto the current
position, or Nnax iterations have beenapplied at this resolution.

(e) IfL>0thenL! (Lj 1)
3. Final result is given by the parametersafter corvergenceat level 0.

The model building processonly requiresthe choice of three parameters:

Mo del Parameters

n | Number of model points

t | Number of modesto use

k | Number of pixels either side of point to represern in grey-model
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The number of points is dependert on the complexity of the object, and the accuracy with
which one wishesto represen any boundaries. The number of modes should be chosenthat a
suxcient amount of object variation can be captured (see4.9 above). The number of pixels to
model in ead pixel will depend on the width of the boundary structure (however, using 3 pixels
either side has given good results for many applications).

The seard algorithm has four parameters:

Search Parameters (Suggesteddefault)

Lmax | Coarsestlevel of gaussianpyramid to seart

Ns Number of sample points either side of current point (2)
Nmax | Maximum number of iterations allowed at ead level (5)
Pciose | Proportion of points found within ns=2 of current pos. (0.9)

The levels of the gaussianpyramid to seat will depend on the size of the object in the
image.

7.4 Examples of Search

Figure 7.5 demonstratesusing the ASM to locate the features of a face. The model instance is
placed near the certre of the image and a coarseto ne seard performed. The seart starts at
level 3 (1/8 the resolution in x and y comparedto the original image). Large movemerts are
made in the rst few iterations, getting the position and scaleroughly correct. As the searth
progressego ner resolutions more subtle adjustments are made. The nal convergence(after a
total of 18 iterations) givesa good match to the target image. In this caseat most 5 iterations
were allowed at ead resolution, and the algorithm cornvergesin much lessthan a second(on a
200MHz PC).

Figure 7.6 demonstrateshow the ASM can fail if the starting position is too far from the
target. Sinceit is only searting along pro les around the current position, it cannot correct
for large displacemens from the correct position. It will either divergeto in nit y, or converge
to an incorrect solution, doing its best to match the local image data. In the caseshown it has
beenable to locate half the face, but the other sideis too far away.

Figure 7.7 demonstrates using the ASM of the cartilage to locate the structure in a new
image. In this casethe seard starts at level 2, samplesat 2 points either side of the current
point and allows at most 5 iterations per level. A detailed description of the application of such
a model is given by Sollowvay et. al. in [107].
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After 6 iterations After 18 iterations

Figure 7.5: Seart using Activ e Shape Model of a face

After 2 iterations After 20 Iterations

Figure 7.6: Seard using Activ e Shape Model of a face, given a poor starting point. The ASM is
a local method, and may fail to locate an acceptableresult if initialised too far from the target
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After 1 iteration
& 1‘{_ =

After 6 iterations After 14 iterations

Figure 7.7: Seard using ASM of cartilage on an MR image of the knee
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Chapter 8

Activ e App earance Mo dels

8.1 Intro duction

The Activ e Shape Model seart algorithm allowed us to locate points on a new image, making
use of constraints of the shape models. One disadvantage is that it only usesshape constraints
(together with someinformation about the image structure near the landmarks), and does not
take advantage of all the available information - the texture acrossthe target object. This can
be modelled using an AppearanceModel 5. In this chapter we describe an algorithm which
allows usto nd the parametersof such a model which generatesa synthetic image as closeas
possibleto a particular target image, assuminga reasonablestarting approximation.

8.2 Overview of AAM Search

We wish to treat interpretation asan optimisation problem in which we minimise the di®erence
betweena new image and one synthesisedby the appearancemodel. A di®erencevector £l can
be de ned:

H=1ii Im (8.1)

where |; is the vector of grey-level valuesin the image, and | ,, is the vector of grey-lewel
valuesfor the current model parameters.

Tolocate the bestmatch betweenmodel and image, we wish to minimise the magnitude of the
di®erencevector, ¢ = jiljz, by varying the model parameters, c. Sincethe appearancemodels
can have many parameters, this appearsat rst to be a dizcult high-dimensional optimisation
problem. We note, however, that ead attempt to match the model to a new image is actually
a similar optimisation problem. We proposeto learn something about how to solve this classof
problemsin advance. By providing a-priori knowledge of how to adjust the model parameters
during during image seard, we arrive at an excient run-time algorithm. In particular, the
spatial pattern in H, encadesinformation about how the model parameters should be changed
in order to achieve a better 't. In adopting this approac there are two parts to the problem:
learning the relationship between#l and the error in the model parameters, +¢ and using this
knowledgein an iterativ e algorithm for minimising ¢.
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8.3 Learning to Correct Mo del Parameters

The appearancemodel hasparameters,c, cortrolling the shape and texture (in the model frame)
accordingto

X X+ QgsC
g g+ QqC

whereX is the meanshape, § the meantexture in a meanshaped patch and Qs,Qg are matrices
describing the modes of variation derived from the training set.

A shape in the image frame, X, can be generated by applying a suitable transformation
to the points, x : X = S;(x). Typically S; will be a similarity transformation described by
a scaling, s, an in-plane rotation, p, and a translation (ty;ty). For linearity we represer the
scaling and rotation as (sx;Sy) wheresy = (scospj 1), sy = ssinp. The poseparameter vector
t = (sx;Sy;tx;ty)T is then zerofor the identity transformation and St s (X) ¥4 St (S (X)) (see
Appendix D).

The texture in the imageframe is generatedby applying a scalingand o®setto the intensities,
Oim = Tu(9) = (u1 + 1)gim + u2l, whereu is the vector of transformation parameters, de ned
sothat u = 0 is the identit y transformation and T+, (9) Y4 Ty (T2, (9)) (seeAppendix E).

The appearancemodel parameters, ¢, and shape transformation parameters,t, de ne the
position of the model points in the image frame, X, which givesthe shape of the image patch to
be represented by the model. During matching we samplethe pixels in this region of the image,
gim, and project into the texture model frame, gs = T/ *(gim). The current model texture is
givenby gm = § + QgC. The current di®erencebetween model and image (measuredin the
normalized texture frame) is thus

(8.2)

r(p) = 9gsi 9m (8.3)

where p are the parametersof the model, p™ = (cTjtTju™).
A simple scalar measureof di®erenceis the sum of squaresof elemens of r, E(p) = rr.
A rst order Taylor expansionof (8.3) gives

((p+ £p) = r(p) + %rp (8.4)

Where the ij ™ elemen of matrix & is 3%1'
Supposeduring matching our current residual is r. We wish to choosetp soasto minimize

jr(p + #p)j°. By equating (8.4) to zerowe obtain the RMS solution,

#p = i Rr(p) where R = (%T %)i 1%T (8.5)
In a standard optimization scheme it would be necessaryto recalculate % at ewvery step, an
expensive operation. Howewer, we assumethat since it is being computed in a normalized
referenceframe, it can be consideredapproximately xed. We can thus estimate it once from
our training set. We estimate & by numeric di®erertiation, systematically displacing eadh
parameter from the known optimal value on typical imagesand computing an averageover the
training set. Residualsat displacemerts of di®ering magnitudes are measured(typically up to
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0.5 standard deviations of eady parameter) and combined with a Gaussiankernel to smooth
them.
dl’i X
—— = W(Eg)(ri(p + k) i ri(p) (8.6)
dp; K
where w(x) is a suitably normalized gaussianweighting function.
We then precompute R and useit in all subsequeh searheswith the model.
Imagesusedin the calculation of & can either be examplesfrom the training setor synthetic
imagesgeneratedusing the appearancemodel itself. Where synthetic imagesare used, one can
either use a suitable (e.g. random) badkground, or can detect the areasof the model which
overlap the badkground and remove those samplesfrom the model building process.This latter
makes the nal relationship more independent of the badckground. Where the badground is
predictable (e.g. medical images), this is not necessary
The bestrange of valuesof +c, #t and tu to useduring training is determined experimentally .
Ideally we seekto model a relationship that holds over as large a range errors, g, as possible.
Howevwer, the real relationship is found to be linear only over a limited range of values. Our
experiments on the face model suggestthat the optimum perturbation wasaround 0.5 standard
deviations (over the training set) for eadh model parameter, about 10%in scale,the equivalent
of 3 pixels translation and about 10% in texture scaling.

8.3.1 Results For The Face Mo del

We applied the above algorithm to the face model described in section 5.3.
We can visualise the e®ectsof the perturbation asfollows. If a; is the i" row of the matrix
R, the predicted changein the i!" parameter, +c; is given by

G = @ity (8.7)

and a; givesthe weight attachedto di®erert areasof the sampledpatch when estimating the
displacemen. Figure 8.1 shows the weights corresponding to changesin the poseparameters,
(sx;sy;tx;ty). Bright areasare positive weights, dark areas negative. As one would expect,
the x and y displacemen weights are similar to x and y derivative images. Similar results are
obtained for weights corresponding to the appearancemodel parameters

Figure 8.2 and 8.3 shaw the rst and third modesand corresponding displacemen weights.
The areaswhich exhibit the largest variations for the mode are assignedthe largest weights by
the training process.

Figure 8.1: Weights corresponding to changesin the poseparameters, (Sx; Sy; tx; ty)
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Figure 8.2: First mode and displace- Figure 8.3: Third mode and dis-
ment weights placemen weights

8.3.2 Perturbing The Face Mo del

To examinethe performanceof the prediction, we systematically displacedthe face model from
the true position on a set of 10 test images, and used the model to predict the displacemen
given the samplederror vector. Figures 8.4 and 8.5 show the predicted translations against the
actual translations. There is a good linear relationship within about 4 pixels of zero. Although
this breaks down with larger displacemerns, as long as the prediction has the samesign as the
actual error, and does not over-predict too far, an iterativ e updating scheme should cornverge.
In this caseup to 20 pixel displacemerts in x and about 10 in y should be correctable.
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Figure 8.4: Predicted dx vs actual Figure 8.5: Predicted dy vs actual
dx. Errorbars are 1 standard error dy. Errorbars are 1 standard error

We can, however, extend this range by building a multi-resolution model of object appear-
ance. We generate Gaussianpyramids for ead of our training images,and generatean appear-
ancemodel for ead level of the pyramid. Figure 8.6 shaws the predictions of models displaced
in X at three resolutions. LO is the basemodel, with about 10,000pixels. L1 has about 2,500
pixels and L2 about 600 pixels.

The linear region of the curve extends over a larger range at the coarserresolutions, but is
lessaccurate than at the nest resolution. Similar results are obtained for variations in other
poseparametersand the model parameters.

Figure 8.7 shaws the predicted displacemerts of sy and sy against the actual displacemerts.
Figure 8.8 shaws the predicted displacemers of the rst two model parametersc; and ¢, (in
units of standard deviations) against the actual. In all casesthere is a certral linear region,
suggestingan iterativ e algorithm will corvergewhen closeenoughto the solution.
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Figure 8.6: Predicted dx vs actual dx for 3 levels of a Multi-Resolution model. LO: 10000pixels,
L1: 2500pixels, L2: 600 pixels. Errorbars are 1 standard error
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Figure 8.7: Predicted sy and sy vs actual and ¢, vs actual

8.4 lterativ e Mo del Re nemen t

Given a method for predicting the correction which needsto made in the model parameterswe
can construct an iterativ e method for solving our optimisation problem.

Given the current estimate of model parameters, cg, and the normalised image sample at
the current estimate, gs, one step of the iterativ e procedureis as follows:

2 Evaluate the error vector +go = gsi 9m

2 Evaluate the current error Eg = j#goj?

2 Compute the predicted displacemen, ¢ = Axgg

2 Setk=1

2 Letcy=coj k*c

2 Samplethe image at this new prediction, and calculate a new error vector, +g1
2 |f j#g1j® < E then acceptthe new estimate, ¢y,

2 Otherwisetry at k = 1.5, k = 0:5, k = 0:25 etc.
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This procedureis repeateduntil no improvemert is madeto the error, j+gj2, and corvergence
is declared.

We use a multi-resolution implementation, in which we iterate to convergenceat ead level
before projecting the current solution to the next level of the model. This is more excient and
can corvergeto the correct solution from further away than seard at a single resolution.

8.4.1 Examples of Activ e App earance Mo del Search

We usedthe face AAM to seard for facesin previously unseenimages. Figure 8.9 shaws the
best t of the model given the image points marked by hand for three faces. Figure 8.10 shaws
framesfrom a AAM seard for ead face, ead starting with the mean model displacedfrom the
true facecertre.

Initial 2its 8 its 14 its 201its converged

Figure 8.10: Multi-Resolution seard from displaced position

As an example of applying the method to medical images,we built an AppearanceModel
of part of the knee as seenin a slice through an MR image. The model was trained on 30
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examples,ead labelled with 42 landmark points. Figure 8.11 shows the e®ectof varying the
‘rst two appearancemodel parameters. Figure 8.12 shows the best t of the model to a new
image, given hand marked landmark points. Figure 8.13 shows frames from an AAM seard
from a displaced position.

Figure 8.11: First two modes _
of appearance variation of Figure 8.12: Best t of kneemodel to new

knee model image given landmarks

Initial 2 its Converged (11 its)

Figure 8.13: Multi-Resolution seard for knee

8.5 Exp erimen tal Results

To obtain a quartitativ e evaluation of the performanceof the algorithm we trained a model on
88 hand labelled face images,and tested it on a di®erert set of 100 labelled images. Each face
was about 200 pixels wide.

On ead test image we systematically displaced the model from the true position by § 15
pixels in x and y, and changedits scaleby § 10%. We then ran the multi-resolution seard,
starting with the mean appearancemodel. 2700 seardes were run in total, ead taking an
average of 4.1 secondson a Sun Ultra. Of those 2700, 519 (19%) failed to corverge to a
satisfactory result (the mean point position error was greater than 7.5 pixels per point). Of
those that did corverge, the RMS error between the model certre and the target certre was
(0:8; 1:8) pixels. The s.d. of the model scaleerror was 6%. The mean magnitude of the nal
imageerror vector in the normalised frame relative to that of the bestmodel t giventhe marked
points, was 0.88 (sd: 0.1), suggestingthat the algorithm is locating a better result than that
provided by the marked points. Becauseit is explicitly minimising the error vector, it will
compromisethe shape if that leadsto an overall improvemert of the grey-lewel t.
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Figure 8.14 shows the mean intensity error per pixel (for an image using 256 grey-lewels)
against the number of iterations, averagedover a set of seardies at a single resolution. In
ead casethe model was initially displacedby up to 15 pixels. The dotted line givesthe mean
reconstruction error usingthe hand marked landmark points, suggestinga good result is obtained
by the seard.

Figure 8.15 shaws the proportion of 100 multi-resolution seardheswhich corvergedcorrectly
given starting positions displaced from the true position by up to 50 pixels in x and y. The
model displays good results with up to 20 pixels (10% of the face width) displacemet.

14 1
12

10 |

Mean intensity error/pixel

0 25 50 7.5 100 125 150 17.5 20.0
Number of Iterations

Figure 8.14: Mean intensity error as seard progresses.Dotted line is the meanerror of the best
't to the landmarks.

% converged correctly

.50 -40' -30' -20 -100 0 10 20 30 40 50
Displacement (pixels)

Figure 8.15: Proportion of searhieswhich convergedfrom di®erert initial displacemens
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8.5.1 Examples of Failure

Figure 8.16 shows two exampleswherean AAM of structures in an MR brain slice has failed to
locate boundaries correctly on unseenimages. In both casesthe examplesshov more extreme
shape variation from the mean, and it is the outer boundaries that the model cannot locate.
This is becausethe model only samplesthe imageunder its current location. There is not always
enoughinformation to drive the model outward to the correct outer boundary. One solution
is to model the whole of the visible structure (seebelow). Alternativ ely it may be possibleto
include explicit searting outside the current patch, for instance by searding along normals
to current boundariesasis done in the Active Shape Model. In practice, where time permits,
one can use multiple starting points and then selectthe best result (the one with the smallest
texture error).

Figure 8.16: Detail of examplesof seart failure. The AAM doesnot always nd the correct
outer boundaries of the vertricles (seetext).

8.6 Related Work

In recert years many model-basedapproadcesto the interpretation of images of deformable
objects have been described. One motivation is to achieve robust performance by using the
model to constrain solutionsto be valid examplesof the object modelled. A model also provides
the basis for a broad range of applications by “explaining' the appearanceof a given image
in terms of a compact set of model parameters. These parameters are useful for higher level
interpretation of the scene. For instance, when analysing face imagesthey may be used to
characterise the identity, pose or expressionof a face. In order to interpret a new image, an
excient method of nding the best match betweenimage and model is required.

Various approacesto modelling variabilit y have beendescribed. The most commongeneral
approad is to allow a prototype to vary accordingto somephysical model. Bajcsy and Kovacic
[1] describe a volume model (of the brain) that alsodeformselastically to generatenew examples.
Christensenet al [19] describe a viscous®ow model of deformation which they alsoapply to the
brain, but is very computationally expensiwe. Park et al [91] and Pentland and Sclaro®[93] both
represett the outline or surfacesof prototype objects using nite elemer methods and describe
variability in terms of vibrational modes. Such modes are not always the most appropriate
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description of deformation. Turk and Pertland [116]useprincipal componert analysisto describe
faceimagesin terms of a set of basisfunctions, or “eigenfaces'.Though valid modes of variation
are learnt from a training set, and are more likely to be more appropriate than a “physical’
model, the eigenfaceis not robust to shape changes,and doesnot deal well with variability in
poseand expression. However, the model can be matched to an image easily using correlation
basedmethods.

Poggioand co-workers[39][61] synthesisenew views of an object from a set of exampleviews.
They t the model to an unseenview by a stochastic optimisation procedure. This is slow, but
can be robust becauseof the quality of the synthesisedimages. Cootes et al [24] describe a 3D
model of the grey-lewel surface,allowing full syrnthesis of shape and appearance. However, they
do not suggesta plausible seart algorithm to match the model to a newimage. Nastar at al [89]
describe a related model of the 3D grey-lewvel surface,combining physical and statistical modes
of variation. Though they describe a seard algorithm, it requires a very good initialisation.
Ladesat al [73] model shape and somegrey level information using Gabor jets. However, they
do not imposestrong shape constraints and cannot easily synthesisea new instance.

In deweloping our new approach we have bene ted from insights provided by two earlier
papers. Covell [26] demonstrated that the parametersof an eigen-featuremodel can be usedto
drive shape model points to the correct place. The AAM described here is an extension of this
idea. Black and Yacoob [7] uselocal, hand crafted models of image °ow to track facial features,
but do not attempt to model the whole face. The AAM can be thought of as a generalisation of
this, in which the image di®erencepatterns corresponding to changesin eady model parameter
are learnt and usedto modify a model estimate.

Fast model matching algorithms have beendeweloped in the tracking community. Gleicher
[43] describes a method of tracking objects by allowing a single template to deform under a
variety of transformations (atne, projective etc). He choosesthe parametersto minimize a sum
of squaresmeasureand essetially precomputesderivativesof the di®erencevector with respect
to the parametersof the transformation. Hagerand Belhumeur [47] describe a similar approad,
but include robust kernelsand models of illumination variation.

In a parallel developmert Sclaro®and Isidoro have demonstrated "Activ e Blobs' for tracking
[101]. The approach is broadly similar in that they use image di®erencesto drive tracking,
learning the relationship between image error and parameter o®setin an o®-line processing
stage. The main di®erenceis that Active Blobs are derived from a single example, whereas
Activ e App earanceModelsuseatraining setof examples. The former usea singleexampleasthe
original model template, allowing deformations consistent with low energy mesh deformations
(derived using a Finite Elemert method). A simply polynomial model is usedto allow changes
in intensity acrossthe object. AAMs learn what are valid shape and intensity variations from
their training set.

Sclaro®and Isidoro suggestapplying a robust kernel to the image di®erences,an idea we
will usein later work. Also, sinceannotating the training setis the most time consuming part
of building an AAM, the Activ e Blob approach may be useful for “bootstrapping' from the rst
example.

La Casciaet. al.[71] describe a related approadc to head tracking. They project the face
onto a cylinder (or more complex 3D face shape) and use the residual di®erencesdhetween the
sampled data and the model texture (generatedfrom the rst frame of a sequence)to drive a
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tracking algorithm, with encouragingresults.

When the AAM corvergesit will usually be closeto the optimal result, but may not achieve
the exact position. Stegmannand Fisker [40, 80, 112]hasshown that applying a generalpurpose
optimiser can improve the nal match.



Chapter 9

Constrained AAM Search

9.1 Intro duction

The last chapter intro duced a fast method of matching appearancemodelsto images,the AAM.
In many practical applications an AAM aloneis insuxcient. A suitable initialisation is required
for the matching processand when unconstrained the AAM may not always corverge to the
correct solution. The appearance model provides shape and texture information which are
combined to generatea model instance. A natural approach to initialisation and constraint is
to provide prior estimatesof the position of someof the shape points, either manually or using
automatic feature detectors. For instance, when matching a face model it is useful to have an
estimate of the positions of the eyes, which could either be provided by a user or located using
a suitable eye detector.

This chapter reformulates the original least squaresmatching of the AAM seard algorithm
into a statistical framework. This allows the introduction of prior probabilities on the model
parameters and the inclusion of prior constraints on point positions. The latter allows one or
more points to be pinned down to particular positions with a given variance. This framework
enablesthe AAM to be integrated with other feature location tools in a principled manner, as
long asthose tools can provide an estimate of the error on their output.

In the following we describe the mathematics in detail, give examplesof using point con-
straints to help user guided image markup and give the results of quartitativ e experiments
studying the e®ectsof constraints on image matching.

9.2 Mo del Matc hing

Model matching can be treated as an optimisation process,minimising the di®erencebetween
the synthesized model image and the target image. The appearancemodel parameters, ¢, and
shape transformation parameters,t, de ne the position of the model points in the image frame,
X, which givesthe shape of the image patch to be represenied by the model. To test the quality

of the match with the current parameters, the pixels in the region of the image de ned by X

are sampledto obtain a texture vector, gim . Theseare projected into the texture model frame,
gs = Ti Y(gim). The current model texture is given by gm = § + QgcC. The current di®erence

55
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betweenmodel and image (measuredin the normalized texture frame) is thus

r(p) = 9gsi 9m (9.1)

where p is a vector cortaining the parametersof the model, pT = (c"jtTju’).

9.2.1 Basic AAM Form ulation

The original formulation of Active AppearanceModels aimed to minimise a sum of squaresof
residualsmeasure,E1(p) = r'r. Supposethat during an iterativ e matching processthe current
residual wasr. We wish to choosean update +p soasto minimize E1(p + £p). By applying a
“rst order Taylor expansionto (8.3) we can show that +p must satisfy

%ip =ir (9.2)
wherethe ij ' elemen of matrix % is %‘ Thus
#p = j Rr(p) (9-3)
where T T
@ @, @
Ri= (= =) "— 9.4
1= (e @) @ (9.4)

In a standard optimization schemeit would be necessanto recalculate % at every step, an
expensiwe operation. Howewer, it is assumedthat sinceit is being computed in a normalized
referenceframe, it can be consideredapproximately xed. It is thus estimated once from the
training set. % can be estimated by numeric di®ereriation, systematically displacing eat
parameter from the known optimal value on typical imagesand computing an averageover the
training set. Residualsat displacemerts of di®ering magnitudes are measured(typically up to
0.5 standard deviations of eady parameter) and combined with a Gaussiankernel to smooth
them. R and % are precomputed and usedin all subsequeh searhieswith the model.

9.2.2 MAP Form ulation

Rather than simply minimising a sum of squaresmeasure,we can put the model matching in a
probabalistic framework. In a maximum a-posteriori (MAP) formulation we seekto maximise

p(modelidata) / p(datajmodel)p(model) (9.5)

If we assumethat the residual errors can be treated as uniform gaussianwith variance ¥, and
that the model parameters are gaussianwith diagonal covariance Sg, then maximising (9.5) is
equivalent to minimising
Ea(p) = % °r'r+ pT(SpHp (9.6)
If we form the combined vector
!
Y r

y= i o: (9.7)
SpOSp
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then E; = yTy and

%1l
y(p+#)=yP)+ g ob P (9.8)
p
In this casethe optimal update step is the solution to the equation
A ‘a A !
A _ . %r(p)
Sllol@ Pp=i Sé’ 0:5p 9.9
which can be shown to have the form
p =i (Rar + K2p) (9.10)

where R, and K , can be precomputedduring training. In this casethe update step consists
just of image sampling and matrix multiplication.

9.2.3 Including Priors on Point Positions

Supposewe have prior estimatesof the positions of somepoints in the imageframe, X o, together
with their with covariancesSy . Unknown points will give zero valuesin appropriate positions
in X and e®ectiwely in nite variance, leading to suitable zero valuesin the inversecovariance,
S§<1. Let d(p) = (X j Xo) bea vector of the displacemens of the current point positions from
those target points. A measureof quality of t (related to the log-probability) is then

Es(P) = % 2rTr+pT(S)hp + d'si'd (9.11)
Following a similar approacd to that above we obtain the update step as a solution to
Atp =i ay (9.12)
where 3 T T ’
— 20T @ il @'gil@
frm e e Ta Sce - (9.13)
a1 = %2Zr(p)+Sytp+ S siid

When computing % onemust take into accoun the global transformation aswell asthe shape
changes,the parameters of which have beenfolded into the vector p in the above to simplify
the notation. The positions of the model points in the image plane are given by

X = Si(% + Qsc) (9.14)

where S; (:) applies a global transformation with parameterst.
Therefore % = (9i9), where

% - @Bt@EX)QS % = @& (x) (9.15)

@

These can be substituted into (9.12) and (9.13) to obtain the update steps. Note that in
this casea linear system of equations must be solved at ead iteration. As an example, belov
we describe the isotropic case.
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9.2.4 Isotropic Point Errors

Considerthe special casein which the xed points are assumedto have positional variance equal
in ead direction, thus the covariance, Sx is diagonal. Supposethe shape transformation S;(x)
is a similarity transformation which scalesby s.

Let xo= Si }(Xo) andy = s(x i xo). Then dTSi*d = yTSily.

If assumewe all parametersare equally likely, to simplify notation, then (9.11) becomes

Es(p) = % %r'r+y'Sily (9.16)

The update step is the solution to

Asztp = | a3 (9.17)

where u 1

SIS 28 %
o . (9.18)

as = H’G r(m+ G Sky

and 2 = (2i%), € = sQs
i 1(x s

% =i SWi (X XO):(gx;%;O;O) (9.19)

9.3 Experiments

To test the e®ectsof applying constraints to the AAM seard, we performed a seriesof exper-
iments on images from the M2VTS face database [84]. We trained an AAM on 100 images
and tested it on another 100 images. 68 points were usedto de ne the face shape, and 5000
grey-scalepixels usedto represen the texture acrossthe face patch. The separation between
the eyesis about 100 pixels. The model used 56 appearanceparameters.

9.3.1 Point Constrain ts

To test the e®ectof constraining points, we assumedthat the position of the eye certres was
known to a given variance. We then displaced the model from the correct position by up to
10 pixels (5% of face width) in x and y and ran a constrained seard. Nine seartes were
performed on ead of the 100 unseentest images. Measuremens were made of the boundary
error (the RMS separation in pixels between the model points and hand-marked boundaries)
and the RMS texture error in grey level units (the imageshave grey-valuesin the range [0,255]).
The eye certres were assumedknown to various accuracies,de ned in terms of a variance on
their position.

Figure 9.1 shows the e®ecton the boundary error of varying the variance estimate. Figure
9.2 shows the e®ecton texture error. The results suggestthat there is an optimal value of
error standard deviation of about 7 pixels. Pinning down the eye points too harshly reducesthe
ability of the model to match accurately elsewhere.
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Figure 9.1: E®ecton boundary error of varying variance on two eye certres
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Figure 9.2: E®ecton texture error of varying variance on two eye certres

To test the e®ectof errors on the positions of the xed points, we repeated the above exper-
iment, but randomly perturbed the xed points with isotropic gaussiannoise. This simulates
inaccuraciesin the output of feature detectors that might be usedto nd the points. Figure
9.3 shaws the boundary error for di®erern noise variances. The known noise variance was used
asthe constraining variance on the points. This shows that for small errors on the xed points
the searth gives better results. However as the positional errors increasethe xed points are
e®ectiely ignored (a large variance givesa small weight), and the boundary error gets no worse.

9.3.2 Including Priors on the Parameters

We repeated the above experiment, but added a term giving a gaussianprior on the model
parameters, ¢ - equation (9.11). Figures 9.4, 9.5 show the results. There is an improvemern in
the positional error, but the texture error becomesworse.

Figure 9.6 shaws the distribution of boundary errors at seard convergencewhen matching
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Figure 9.3: Boundary error vs eye certre variance

is performed with/without priors on the parameters and with/without xing the eye points.
Figure 9.7 shavs the equivalent texture errors. Again, the most noticable e®ectis that including
a prior on the parameterssigni cantly increasesthe texture error, though there is little change
to the boundary error. Adding the prior biasesthe match toward the mean. Small changesin
point positions (eg away from edges)can intro duce large changesin texture errors, sothe image
evidencetends to resist point movemert towards the mean. Howevwer, there is lessof a gradient
for small changesin parameters which a®ecttexture, so they tend to move toward the mean
more readily.
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Figure 9.4: Boundary error vs varying eye certre variance, using a prior on the model parameters

9.3.3 Varying Num ber of Points

The experiment was repeated once more, this time varying the number of point constraints.
Figure 9.8 shows the boundary error as a function of the number constrained points. The eye
certres were xed rst, then the mouth, the chin and the sidesof the face. There is a gradual



9.4. SUMMARY 61

15 ¢ T T T T T T T
148 -

146 | } j{} ______________ 1
14.4 J{ J( 1

14.2

T
Z
-
-
.
\
—k—

|

13.8
13.6

Texture Error (grey-values)

| | | | | | |
o 1 2 3 4 5 6 7 8
log10(variance)

Figure 9.5: Texture error vs varying eye certre variance, using a prior on the model parameters
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Figure 9.6: Distribution of boundary errors given constraints on points and parameters

improvemert as more points are added. Figure 9.9 shows the texture error. This improves at
“rst, asthe model is lesslikely to fail to corvergeto the correct result with more constraints.
However, when more points are addedthe texture error beginsto increaseslightly, asthe texture
match becomescompromisedin order to satisfy the point constraints.

9.4 Summary

We have reformulated the AAM matching algorithm in a statistical framework, allowing it to
be combined with userinput and other tools in a principled manner. This is very useful for real
applications where seeral di®eren algorithms maybe required to obtain robust initialisation
and matching.

Providing constraints on somepoints can improve the reliabilit y and accuracy of the model
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Figure 9.7: Distribution of texture errors given constraints on points and parameters

matching. Adding a prior to the model parameters can improve the mean boundary position
error, but at the expenseof a signi cant degradation of the overall texture match.

The ability to pin down points interactively is useful for interactive model matching. The
appearance models require labelled training sets, which are usually generated manually. A
“bootstrap' approad canbe usedin which the current model is usedto help mark up newimages,
which are then added to the model. The interactive searth makes this processsigni cantly
quicker and easier.

We anticipate that this framework will allow the AAMs to be usedmore e®ectively in prac-
tical applications.
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Chapter 10

Variations on the Basic AAM

In this chapter we describe modi cations to the basic AAM algorithm aimed at improving
the speed and robustnessof seart. Since someregions of the model may change little when
parameters are varied, we need only sample the image in regions where signi cant changesare
expected. This should reducethe cost of ead iteration.

The original formulation manipulates the combined shape and grey-level parametersdirectly.
An alternativ e approad is to useimageresidualsto drive the shape parameters,computing the
grey-lewel parametersdirectly from the image given the current shape. This approad may be
useful when there are few shape modesand many grey-level modes.

10.1 Sub-sampling During Search

In the original formulation, during seard we sample all the points in the model to obtain gs,
with which we predict the changeto the model parameters. There may be 100000r more suc
pixels, but fewer than 100 parameters. There is thus considerableredundancy, and it may be
possibleto obtain good results by sampling at only a sub-setof the modelled pixels. This could
signi cantly reducethe computational cost of the algorithm.

The changein the i parameter, ¢, is given by

16 = Ajtg (10.1)

Where A; is the i row of A .

The elemerns of A; indicate the signi cance of the corresponding pixel in the calculation
of the changein the parameter. To choosethe most useful subset for a given parameter, we
simply sort the elemens by absolute value and selectthe largest. Howewer, the pixels which
best predict changesto one parameter may not be useful for any other parameter.

To selecta useful subsetfor all parameters we compute the best u% of elemens for eadh
parameter, then generatethe union of such sets. If u is small enough,the union will be lessthan
all the elemerts.

Givensud a subset,we perform a new multi-v ariate regression,to compute the relationship,
ACbetweenthe changesin the subsetof samples,+g® and the changesin parameters

+c = A%gP° (10.2)

64
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Seart can proceedas described above, but using only a subsetof all the pixels.

10.2 Search Using Shape Parameters

The original formulation manipulatesthe parameters,c. An alternativ e approad is to useimage
residualsto drive the shape parameters, bs, computing the grey-level parameters, bg, and thus
¢, directly from the image given the current shape. This approacdh may be useful when there
are few shape modesand many grey-level modes.

The update equation in this casehasthe form

ibs = Big (103)

wherein this casetg is given by the di®erencebetweenthe current image samplegs and the
best t of the grey-level model to it, gm,

Osi (§+ Pgbg)

wherebg = P§(gsi 8).

During a training phase we use regressionto learn the relationship, B, between zbs and
1g (as givenin (10.4)). Sinceany #g is orthogonal to the columns of P4, the update equation
simpli es to

s = B(gsi §)
BOsi Doffset

Thus one approac to tting a model to an image is simply to keeptrack of the poseand
shape parameters, bs. The grey-level parameters can be computed directly from the sample
at the current shape. The constraints of the conmbined appearancemodel can be applied by
computing ¢ using (5.5), applying constraints then recomputing the shape parameters. As in
the original formulation, the magnitude of the residual j£gj can be usedto test for convergence.

In caseswhere there are signi cantly fewer modes of shape variation than combined ap-
pearancemodes, this approach may be faster. However, sinceit is only indirectly driving the
parameterscortrolling the full appearance,c, it may not perform aswell asthe original formu-
lation.

Note that we could test for convergenceby monitoring changesin the shape parameters, or
simply apply a xed number of iterations at ead resolution. In this casewe do not needto use
the grey-level model at all during seard. We would just do a single match to the grey-lewels
sampledfrom the nal shape. This may give a signi cantly faster algorithm.

(10.5)

10.3 Results of Exp erimen ts

To comparethe variations on the algorithm described above, an appearancemodel was trained
on a set of 300 labelled faces. This set cortains seweral images of eat of 40 people, with a
variety of di®eren expressions.Each image was hand annotated with 122 landmark points on
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the key features. From this data wasbuilt a shape model with 36 parameters,a grey-level model
of 10000pixels with 223 parametersand a combined appearancemodel with 93 parameters.

Three versionsof the AAM weretrained for thesemodels. One with the original formulation,
a secondusing a sub-setof 25% of the pixels to drive the parametersc, and a third trained to
drive the shape parameters, bg, alone.

A test set of 100unseennewimages(of the sameset of peoplebut with di®erern expressions)
was usedto comparethe performanceof the algorithms. On ead image the optimal posewas
found from hand annotated landmarks. The model was displaced by (+15, 0 ,-15) pixels in x
and y, the remaining parameters were set to zero and a multi-resolution seard performed (9
tests per image, 900in all).

Two seart regimeswere used. In the rst a maximum of 5 iterations were allowed at each
resolution level. Each iteration tested the model at ¢ ! c¢j kzc for k = 1:0;0:5%;:::;0:5%,
acceptingthe rst that gave an improved result or declaring convergenceif none did.

The secondregime forced the update ¢! ¢ +c without testing whether it was better or
not, applying 5 stepsat ead resolution level.

The quality of 't wasrecordedin two ways;

q__
2 The RMS grey-lewel error per pixel in the normalised frame,  j+vj?=Ngixei s

2 The meandistance error per model point

For example, the result of the rst seart shown in Figure 8.10 above givesan RMS grey
error of 0.46 per pixel and a mean distance error of 3.7 pixels.

Someseardieswill fail to cornvergeto nearthe correct result. This is detected by a threshold
on the mean distance error per model point. Thosethat have a mean error of > 7.5 pixels were
consideredto have failed to cornverge.

Table 10.1 summarisesthe results. The nal errors recorded were averaged over those
seardes which corverged successfully. The top row corresponds to the original formulation
of the AAM. It wasthe slowest, but on averagegave the fewest failures and the smallest grey-
level error. Forcing the iterations decreasedhe quality of the results, but wasabout 25% faster.

Sub-sampling considerably speeded up the seard (taking only 30% of the time for full
sampling) but was much lesslikely to converge correctly, and gave a poorer overall result.

Driving the shape parametersduring seart was faster still, but again lead to more failures
than the original AAM. Howeer, it did lead to more accuratelocation of the target points when
the seard corvergedcorrectly. This was at the expenseof increasingthe error in the grey-level
match.

The best t of the AppearanceModel to the imagesgiven the labels gave a mean RMS
grey error of 0.37 per pixel over the test set, suggestingthe AAM was getting closeto the best
possibleresult most of the time.

Table 10.2 shows the results of a similar experiment in which the models were started from
the best estimate of the correct pose,but with other model parametersinitialised to zero. This
shows a much reducedfailure rate, but con rms the conclusionsdrawn from the rst experimert.
The seart could fail even giventhe correctinitial posebecausesomeof the imagescontain quite
exaggeratedexpressionsand head movemerts, a long way from the mean. These were ditcult
to match to, even under the best conditions.



10.3. RESULTS OF EXPERIMENTS

Driven | Sub-sample Iterations Failure Final Errors Mean
Params Max. | Forced | Rate | Point Grey | Time
§0:05| §0:005| (ms)
c 100% 5 1 4.1% 4.2 0.45 | 3270
c 100% 5 5 4.6% 4.4 0.46 | 2490
c 25% 5 1 13.9% | 4.6 0.60 920
c 25% 5 5 229% | 4.8 0.63 630
bs 100% 5 1 11.4% | 4.0 0.85 560
bs 100% 5 5 11.9% | 4.1 0.86 490

Table 10.1: Comparison between AAM algorithms given displaced certres (SeeText)

Driven | Sub-sample Iterations Failure | Final Errors
Params Max. | Forced | Rate | Point | Grey
8§01 | §0:01

c 100% 5 1 3% 4.2 0.46

c 100% 5 5 4% 4.4 0.47

C 25% 5 1 10% 4.6 0.60

c 25% 5 5 10% 4.6 0.60

bs 100% 5 1 6% 4.0 0.84
bs 100% 5 5 6% 4.1 0.87

Table 10.2: Comparison between AAM algorithms, given correct initial pose. (SeeText)
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10.4 Discussion

We have described seweral modi cations that can be made to the Active Appearance Model
algorithm. Sub-sampling and driving the shape parameters during seard both lead to faster
convergence,but were more prone to failure. The shape basedmethod was able to locate the
points slightly more accurately than the original formulation. Testing for improvemert and
corvergenceat ead iteration slowed the seardh down, but lead to better nal results.

It may be possibleto use combinations of these approadcesto achieve good results quickly,
for instance using the shape basedseard in the early stages,then polishing with the original
AAM. Further work will include deweloping strategiesfor reducing the numbers of corvergence
failures and extending the models to use colour or multisp ectral images.

Though only demonstratedfor facemodels, the algorithm haswide applicability, for instance
in matching models of structures in MR images[22]. The AAM algorithms, being able to match
10000 pixel, 100 parameter models to new imagesin a few secondsor less, are powerful new
tools for image interpretation.



Chapter 11

Alternativ es and Extensions to
AAMSs

There have beensewral suggestedimprovemerts to the basic AAM approac proposedin the
literature. Here we describe someof the more interesting.

11.1 Direct App earance Mo dels

Hou et. al.[60] claim that the relationship between the texture and the shape componerts
for facesis many to one, ie that one shape can contain many textures but that no texture is
assaiated with more than one shape. They claim that one can thus predict the shape directly
from the texture, which leadsto a faster and more reliable seard algorithm.

One can simply use regressionon the training set examplesto predict the shape from the
texture,

bs = Ry, sby (11.1)
The seard algorithm then becomesthe following (simpli ed slightly for clarity);
1. Assumean initial poset and parametersbg, b, u
2. Samplefrom image under current model and compute normalised texture g
3. Compute texture parametersbtex and normalisation u to best match g
4. Update shape using bs = Ry; sbt
5. Update poseusingt =t | Ri3g

One can of coursebe consenative and only apply the update if it leadsto an improvemert
in match, asin the original algorithm.

The processingin ead iteration is dominated by the image sampling and the computation
of the texture and poseparameter updates- this step will thus be faster than the original AAM,
assumingone usesfewer texture modesthan appearancemodes.
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Experiments on faces[60] suggestsigni cant improvemerts in seart performance (both in
accuracy and convergencerates) can be achieved using the method.

In generalis not true that the texture to shape is many to one. A trivial counter-example
is that of a white rectangle on a black badkground. The shape can vary but the texture is xed
- in this casethe relationship is oneto many, and one can make no estimate of the shape from
the texture. There are various real world medical examplesin which the texture variation of the
internal parts of the object is e®ectiwely just noiseand thus is of ho usein predicting the shape.

11.2 Inverse Comp ositional AAMs

Baker and Matthews [100] shav how the AAM algorithm can be consideredas one of a set of
image alignment algorithms which can be classi ed by how updatesare made and in what frame
one performs a minimisation during ead iteration.

Updatesto parameterscan be either

Additiv e b! b+ b, or
Comp ositional b is chosensothat Ty(x) ! Tp(Tb(X))

(In the AAM formulation in the previous chapter, the update to the poseis e®ectiely
compositional, but that to the appearanceparametersis additiv e).

The compositional approad is more general than the additive approadh. In the case of
AAMs, it canbe shown that the additive approac can give completely wrong updatesin certain
situations (seebelow for an example).

The issueof in what frame one doesthe minimisation requiresa bit of notation. To simplify
this, in the following x indexesa model template, rather than represerts a shape vector, and y
indexesa target image.

Assuming for the momert that we have a xed model texture template, M (x), and a warping
function x I W (x;p) (parameterised by p). If the target image is | (x), then in the usual
formulation we are attempting to minimise

X
[1(W (x;p)) i M (x)]? (11.2)

X

Assuming an iterativ e approad, at ead step we have to compute a changein parameters,
ip to improve the match. This involvesa minimisation over the parameters of this changeto
choosethe optimal +p. Baker and Matthews describe four casesas follows

P
Additiv e Choose#p to minimise [l (W (x;p + #p)) i M (x)]?
P
Comp ositional Choose+p to minimise [l (W (W (x;#p); p)) i M (x)]?

Inverse Additiv— e Choosexp to minimise
i1 .
y BT i M(Wiiy;p + 2p)))?

Inverse Comp ositional Choose+p to minimise
W (x5p)) i M (W (x;£p))]?
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The original formulation of the AAMs is additiv e, but makesthe assumptionthat there is an
approximately constart relationship betweenthe error image and the parameter updates. This
assumptionis not always satisfactory.

What Baker and Matthews show is that the Inverse Compositional update stchemeleadsto
an algorithm which requiresonly linear updates (so is as excient asthe AAM), but which is a
true gradient descen algorithm. They demonstrate faster corvergenceto more accurate answers
when using their algorithm when comparedto the original AAM formulation.

The update step in the InverseCompositional casecan be shown to be

X : s T
=i HIL rwl% [OW (x;p)) i M (x)] (11.3)
where i 1 ,
H:X rM% rM% (11.4)

and the Jacobian % is evaluated at (x;0).

Note that in this casethe update step is independent of p and is basically a multiplication
with a matrix which can be assumedconstart with a clear consience.

Unfortunately, applying the parameter update in the caseof a triangulated mesh, as one
might usein an appearancemodel, is non-trivial, though a reasonable rst order approximation
is possible.

What doesnot seemto be practical is to update the combined appearancemodel parameters,
c. We have to treat the shape and texture asindependen to get the advantages of the inverse
compositional approad.

We proceedas follows.

2 Given current parametersp = (b!;tT)T samplefrom image and normalise to obtain g
2 Compute update #p = R(gi 8)

2 Update parameterssothat Tp(:) ! Tp(T+p(2))

2 |terate to taste

Note that we construct R from samplesprojected into the null spaceof the texture model
(as for the shape-basedAAM in Chapter 10). Of course,we usethe compositional approad to
constructing the update matrix.

The simplest update matrix R can be estimated asthe pseudo-irverseof a matrix A which
is a projection of the Jacobianinto the null spaceof the texture model. ThusR = AT(ATA)i t
wherethe i column of A is estimated as follows

2 For ead training example nd best shape and posep
2 For the current parameter i create seweral small displacemerts +p;

2 Construct the displaced parameters, p° sud that Tpo(:) = Tp(Tsp, (1)) (where 1p; is zero
except for the i elemen, which is j



11.2. INVERSE COMPOSITIONAL AAMS 72

2 Sampleimage at this displaced position and normalise to obtain gs

2 Project out the componert in the texture subspace,irgj0 = (0si 8)i Pgpg wherebgy =
Pl(gsi &)
9

_ _ _ _ P
2 Construct the i™ column of the matrix A from a suitably weighted sumofa; = F% w; igjozirpj
J
wherew; = exp(j O:Sipj2=3/%) (3% is the variance of the displacemerts of the parameter).

2 SetR = AT(ATA)i L



Chapter 12

Comparison between ASMs and
AAMs

Given an appearancemodel of an object, we can match it to an image using either the Active
Shape Model algorithm, or the Active AppearanceModel algorithm. The ASM will nd point
locations only. Giventhese,it is easyto nd the texture model parameterswhich best represert
the texture at thesepoints, and then the best tting appearancemodel parameters.

The ASM matches the model points to a new image using an iterativ e technique which
is a variant on the Expectation Maximisation algorithm. A seard is made around the current
position of eadh point to nd a point nearby which best matchesa model of the texture expected
at the landmark. The parameters of the shape model cortrolling the point positions are then
updated to move the model points closerto the points found in the image.

The AAM manipulates a full model of appearance,which represerts both shape variation
and the texture of the region covered by the model. This can be usedto generatefull synthetic
imagesof modelled objects. The AAM usesthe di®erencebetweenthe current synthesisedimage
and the target image to update its parameters.

There are three key di®erencesdetweenthe two algorithms:

1. The ASM only usesmodels of the image texture in small regions about ead landmark
point, whereasthe AAM usesa model of the appearanceof the whole of the region (usually
inside a convex hull around the points).

2. The ASM seardes around the current position, typically along proles normal to the
boundary, whereasthe AAM only samplesthe image under the current position.

3. The ASM essetially seeksto minimise the distance betweenmodel points and the corre-
sponding points found in the image, whereasthe AAM seeksto minimise the di®erence
betweenthe synthesized model image and the target image.

This chapter describes results of experiments testing the performance of both ASMs and
AAMSs on two data sets,oneof faces,the other of structures in MR brain sections. Measuremerts
are made of their convergenceproperties, their accuracy in locating landmark points, their
capture range and the time required to locate a target structure.
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12.1 Exp erimen ts

Two data setswere usedfor the comparison:
2 400 faceimages,ead marked with 133 points

2 72 slicesof MR images of brains, each marked up with 133 points around sub-cortical
structures

For the faces,models were trained on 200 then tested on the remaining 200. For the brains
leave-one-brain-out experiments were performed.

The Appearancemodel was built to represen 5000 pixels in both cases. Multi-resolution
seard was used, using 3 levels with resolutions of 25%, 50% and 100% of the original image
in ead dimension. At most 10 iterations were run at ead resolution. The ASM used pro e
models 11 pixels long (5 either side of the point) at ead resolution, and searted 3 pixels either
side. The performance of the algorithms can depend on the choice of parameters - we have
chosenvalueswhich have beenfound to work well on a variety of applications.

Capture range

The model instance was systematically displaced from the known best position by up to § 100
pixels in x, then a seardh was performed to attempt to locate the target points. Figure 12.1
shows the RMS error in the position of the certre of gravity giventhe di®erert starting positions
for both ASMs and AAMs.
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Figure 12.1: Relative capture range of ASM and AAMs
Thus the AAM has a slightly larger capture range for the face, but the ASM has a much

larger capture range than the AAM for the brain structures. Of course,the results will depend
on the resolutions used, the size of the models usedand the seard length of the ASM pro les.

Point location accuracy

One ead test image we displacedthe model instance from the true position by § 10in x and y
(for the face)and 85 in x and y (for the brain), 9 displacemerts in total, then ran the seard
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starting with the mean shape. On completion the results were compared with hand labelled
points. Figure 12.2 shows frequency histograms for the resulting point-to-b oundary errors(the
distance from the found points to the assaiated boundary on the marked images). The ASM
gives more accurate results than the AAM for the brain data, and comparable results for the
face data.
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Figure 12.2: Histograms of point-b oundary errors after seard from displaced positions

Table 12.1 summarisesthe RMS point-to-p oint error, the RMS point-to-b oundary error, the
meantime per seard and the proportion of convergencefailures. Failure was declaredwhen the
RMS Point-Point error is greater than 10 pixels. The searhes were performed on a 450MHz
Pertiuml | PC running Linux.

Data | Model | Time/search | Pt-Pt Error | Pt-Crv Error | Failures

Face | ASM 190ms 4.8 2.2 1.0%
AAM 640ms 4.0 2.1 1.6%

Brain | ASM 220ms 2.2 1.1 0%
AAM 320ms 2.3 1.1 0%

Table 12.1: Comparison of performance of ASM and AAM algorithms on face and brain data
(SeeText)

Thus the ASM runs signi cantly faster for both models, and locates the points more accu-
rately than the AAM.

12.2 Texture Matc hing

The AAM explicitly generatesa texture image which it seeksto match to the target image.
After seard we can thus measurethe resulting RMS texture error. The ASM only locates
points positions. However, given the points found by the ASM we can nd the best t of the
texture model to the image, then record the residual. Figure 12.3 shaws frequency histograms
for the resulting RMS texture errors per pixel. The imageshave a contrast range of about
[0,255]. The AAM producesa signi cantly better performancethan the ASM on the face data,
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which is in part to be expected, sinceit is explicitly attempting to minimise the texture error.
However, the ASM producesa better result on the brain data. This is causedby a combination
of experimental set up and the additional constraints imposedby the appearancemodel.
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Figure 12.3: Histograms of RMS texture errors after seard from displaced positions

Figure 12.4comparesthe distribution of texture errors found after seard with those obtained
whenthe modelis t to the (hand marked) target points in the image (the "BestFit' line). This
demonstratesthat the AAM is able to achieve results much closerto the best t results than
the ASM (becauseit is more explicitly minimising texture errors). The di®erencebetweenthe
best t lines for the ASM and AAM hastwo causes;

2 For the ASM experimernts, though a leave-1-out approac was usedfor training the shape
models and grey pro le models, a single texture model trained on all the exampleswas
usedfor the texture error evaluation. This could t more accurately to the data than the
model usedby the AAM, trained in a leave-1-out regime.

2 The AAM ts an appearancemodel which couplesshape and texture explicitly - the ASM
treats them asindependert. For the relatively small training setsusedthis overconstrained
the model, leading to poorer results.

The latter point is demonstrated in Figure 12.5, which shows the distribution of texture
errors when tting models to the training data. One line shows the errors when tting a 50
mode texture model to the image (with shape de ned by a 50 mode shape model 't to the
labelled points). The secondshaws the best t of a full 50 mode appearancemodel to the data.
The additional constraints of the latter mean that for a given number of modesit is lessable
to t to the data than independert shape and texture models, becausethe training set is not
large enoughto properly explore the variations. For a suxciently large training set we would
expect to be able to properly model the correlation between shape and texture, and thus be
able to generatean appearancemodel which performed almost aswell asa independert models,
ead with the samenumber of modes. Of course,if the total number of modes of the shape
and texture model were constrainedto that of the appearancemodel, the latter would perform
much better.
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Figure 12.4: Histograms of RMS texture errors after seard from displaced positions
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Figure 12.5: Comparison betweentexture model best t and appearancemodel best t

12.3 Discussion

Active Shape Models seard around the current location, along pro les, so one would expect
them to have a larger capture range than the AAM which only examinesthe image directly
under its current area. This is clearly demonstrated in the results on the brain data set.

ASMs only use data around the model points, and do not take advantage of all the grey-
level information available acrossan object asthe AAM does. Thus they may be lessreliable.
Howewer, the model points tend to be placesof interest (boundaries or corners) where there is
the most information. One could train an AAM to only seard using information in areasnear
strong boundaries- this would require lessimage sampling during seard soa potentially quicker
algorithm. A more formal approad is to learn from the training setwhich pixels are most useful
for seard - this was exploredin [23]. The resulting seard is faster, but tends to be lessreliable.

One advantage of the AAM is that one can build a corvincing model with a relatively small
number of landmarks. Any extra shape variation is expressedn additional modesof the texture
model. The ASM needspoints around boundariesso asto de ne suitable directions for seard.
Becauseof the considerablework required to get reliable image labelling, the fewer landmarks
required, the better.

The AAM algorithm relies on nding a linear relationship between model parameter dis-
placemerns and the induced texture error vector. However, we could augmert the error vector
with other measuremets to give the algorithm more information. In particular one method
of combining the ASM and AAM would be to seard along proles at each model point and
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augmert the texture error vector with the distance along ead pro le of the best match. Like
the texture error, this should be driven to zero for a good match. This approach will be the

subject of further investigation.
To conclude,we nd that the ASM is faster and achievesmore accuratefeature point location

than the AAM. However, asit explicitly minimisestexture errorsthe AAM givesa better match
to the image texture.



Chapter 13

Automatic Landmark Placement

The most time consumingand scierti cally unsatisfactory part of building shape modelsis the
labelling of the training images. Manually placing hundreds (in 2D) or thousands (in 3D) of
points on every image is both tedious and error prone. To reducethe burden, semi-automatic
systemshave beendewveloped. In thesea modelis built from the current setof examples(possibly
with extra arti cial modesincluded in the early stages)and usedto seard the current image.
The user can edit the result where necessarythen add the exampleto the training set. Though
this can considerably reduce the time and e®ort required, labelling large sets of imagesis still
dixcult. It is particularly hard to place landmarks in 3D images, becauseof the ditculties of
visualisation.

Ideally a fully automated system would be deweloped, in which the computer is presened
with a setof training imagesand automatically placesthe landmarks to generatea model which
is in somesenseoptimal. This is a dizcult task, not least becauseit is not clear how to de ne
what is optimal.

13.1 Automatic landmarking in 2D

Approachesto automatic landmark placemen in 2D have assumedthat contours (either pixel-
lated or cortinuous, usually closed) have already been segmerted from the training sets. The
aim is to place points soasto build a model which best cptures the shape variation, but which
has minimal represenation error.

Scott and Longuett-Higgins [103 produce an elegan approach to the correspondenceprob-
lem. They extract saliert features from the images, such as corners and edgesand use these
to calculate a proximity matrix. This Gaussian-weighted matrix measuresthe distance between
ead feature. A singular value decomposition (SVD) is performed on the matrix to establish
a correspondencemeasurefor the features. This e®ectiely nds the minimum least-squared
distance between ead feature. This approad, however, is unable to cope with rotations of
more than 15 degreesand is generally unstable.

Shapiro and Brady [104] extend Scott?s approac to overcomethese shortcomings by con-
sidering intra-image features as well asinter-image features. As this method usesan unordered
pointset, its extensionto 3-d is problematic becausethe points can losetheir ordering. Sclaro®
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and Pertland [102] derive a method for non-rigid corresppndencebetweena pair of closed, pix-
elated boundaries. They use the same method as Shapiro and Brady to build a proximity
matrix. This is usedto build a nite elemert model that describes the vibrational modes of
the two pointsets. Corresponding points are found by comparing the modes of the two shapes.
Although this method works well on certain shapes, Hill and Taylor [57] found that the method
becomesunstable when the two shapes are similar. It is also unable to deal with loopsin the
boundary so points are liable to be re-ordered.

Hill et. al.described a method of non-rigid correspondencein 2D betweena pair of closed,
pixellated boundaries [56, 57, 58]. The method is based on generating sparse polygonal ap-
proximations for ead shape; no curvature estimation for either boundary was required. The
landmarks were further improved by an iterativ e re nement step. Results were preserted which
demonstrate the ability of this algorithm to provide accurate, non-rigid correspondences. This
pair-wise corresponder was used within a framework for automatic landmark generation which
demonstrated that landmarks similar to those identi ed manually were produced by this ap-
proach.

Baumberg and Hogg [2] describe a system which generateslandmarks automatically for
outlines of walking people. The outlines are represerted as pixellated boundaries extracted
automatically from a sequenceof imagesusing motion analysis. Landmarks are generatedon an
individual basisfor ead boundary by computing the principal axis of the boundary, identifying
a referencepixel on the boundary at which the principal axis intersects the boundary and
generating a number of equally spacedpoints from the referencepoint with respect to the path
length of the boundary. While this processis satisfactory for silhouettes of pedestrians, it is
unlikely that it will be generally successful.The authors went on to describe how the position of
the landmarks can be iterativ ely updated in order to generateimproved shape models generated
from the landmarks [3].

Benayoun et. al.[5], Kambhamettu and Goldgof [63] all use curvature information to select
landmark points. It is not, however, clear that corresponding points will always lie on regions
that have the samecurvature. Also, sincethesemethods only considerpairwise correspondences,
they may not nd the best global solution.

Kotche®and Taylor [68] useddirect optimisation to placelandmarks on setsof closedcurves.
They de ne a mathematical expressionwhich measuresthe compactnessand the speci city of a
model. This givesa measurewhich is a function of the landmark positions on the training set of
curves. A geneticalgorithm is usedto adjust the point positions soasto optimise this measure.
Their represenation is, however, problematic and doesnot guarartee a di®eomorphicmapping.
They correct the problem when it arisesby reordering correspondences,which is workable for
2D shapesbut doesnot extend to 3D. Although someof the results produced by their method
are better than hand-generatedmodels, the algorithm did not always corverge.

Bookstein [9] describesan algorithm for landmarking setsof contin uous cortours represened
aspolygons. Points are allowed to slide along contours soasto minimise a bending energyterm.

Rangargjan et al [97, 96] describe a method of point matching which simultaneously deter-
minesa set of matchesand the similarity transform parametersrequired to register two corntours
de ned by densepoint sets. The method is robust against point featureson one contour that do
not appear on the other. An optimisation method similar to simulated annealingis usedto solve
the problem to produce a matrix of corresppndences. The construction of the correspondence
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matrix cannot guararntee the production of a legal set of correspondences.

Walker et. al.[122 123] saliert features to generate correspondences,either by tracking
though a sequence,or by locating plausible pairwise matches and re ning using an EM like
algorithm to nd the best global matchesacrossa training set.

Younes[128] describesan algorithm for matching 2D curves.

Davies et. al.[28, 27] describe a method of building shape models so as to minimise an
information measure- the ideabeingto chooselandmarks soasto be able to represen the data
asexciently aspossible.

More recertly region basedapproaces have beendewveloped. For instance, De la Torre [72]
represelts a faceasa set of xed shape regionswhich can move independertly. The appearance
of eadh is represerted using an eigenmalel, and an optimisation is performed to locate the
regionson the training sequencesoasto minimise a measurerelated to the total variance of the
model. This tends to match regionsrather than points, but is an automatic method of building
a °exible appearancemodel.

Jonesand Poggio [62] describe an alternative model of appearancethey term a "Morphable
Model'. An optical °ow basedalgorithm is usedto match the model onto new images,and can
be usedin a “boot-strapping’ mode in which the model is matched to new exampleswhich can
then be added to the training set [121].

Belongie et. al.[4] describe an iterativ e algorithm for matching pairs of point sets. They
de ne a ‘shape context' which is a model of the region around ead point, and then optimise
an objective function which measuresthe di®erencein shape context and relative position of
corresponding points, allowing for shape deformation with a thin plate spline. They show
impressive recognition results on various databaseswith this technique.

Duta, Jain and Dubuisson-Jolly [90] describe a system for automatically building models by
clustering examples,discarding outliers and registering similar shapes.

13.2 Automatic landmarking in 3D

The work on landmarking in 3D has mainly assumeda training set of closed3D surfaceshas
already been segmered from the training images. As in 2D, the aim is to place landmarks
acrossthe set soasto give an “optimal’ model.

Fleute and Laval®e [41] use an framework of initially matching ead training exampleto a
single template, building a mean from these matched examples,and then iterativ ely matching
ead exampleto the current meanand repeating until convergence.Matching is performed using
the multi-resolution registration method of Szeliskiand Laval§e[113]. This method deformsthe
volume of spaceembedding the surfacerather than deforming the surfaceitself. Kelemenet al
[66] parameterisethe surfacesof ead of their shape examplesusing the method of Brechbéhler
et al [13]. Correspondencemay then be establishedbetween surfacesbut relies upon the choice
of a parametric origin on ead surface mapping and registration of the coordinate systems of
these mappings by the computation of a rotation.

Brett et. al.[14] nd corresppndenceson pairs of triangular meshes.A binary tree of corre-
sponded shapescan be generatedfrom a training set. Landmarks placed on the ‘'mean’shape at
the root of the tree can be propogatedto the leaves(the original training set). Theselandmarks
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are then usedto build 3D shape models.

Caunce and Taylor [17] describe building 3D statistical models of the cortical sulci. Points
are automatically located on the sulcal ssures and corresponded using variants on the lterativ e
ClosestPoint algorithm. The landmarks are progressiwely improved by adding in more structural
and con gural information. The nal resulting landmarks are consistent with other anatomical
studies.

Wang et. al.[124 usescurvature information to selectlandmark points. It is not, however,
clear that corresponding points will always lie on regionsthat have the samecurvature. Also,
since these methods only consider pairwise correspondences.they may not nd the best global
solution.

Dickenset. al.[31] describe a method of semi-automatically placing landmarks on objects
with an approximately cylindrical shape. Esserially the top and bottom of the object de ne
the extent, and a symmetry plane de nes the zero point for a cylindrical co-ordinate system.
The method is demonstrated on mango data and on an approximately cylindrical organin MR
data.

The method givesan approximate correspondence,which is sutcient to build a statistical
but doesnot attempt to determine a correspondencethat is in somesenseoptimal.

Li and Reinhardt [76] describe a 3D landmarking de ned by marking the boundary in each
slice of an image, equally placing landmarks around ead and then shuzing the landmarks
around (varying a single parameter de ning the starting point) so asto minimise a measure
comparing curvature on the target curve with that on a template. The equal spacing of the
points will lead to potentially poor corresppndenceson somepoints of interest.

Meier and Fisher [83] usea harmonic parameterisation of objects and warps and nd corre-
spondencesby minimising errors in structural correspondence(point-p oint, line-line type mea-
sures).

Davieset. al.[29, 30] have extendedtheir approac to build models of surfacesby minimising
an information type measure,allowing points to move acrossthe surfacesunder the in°uence of
di®eomorphictransformations.



Chapter 14

View-Based App earance Mo dels

The appearanceof an object in a 2D image can changedramatically asthe viewing angle changes.
To deal e®ectiwely with real world scenesmodels must be developed which can represen this
variability. For instance, the majority of work on face tracking and recognition assumesnear
fronto-parallel views, and tends to break down when preseried with large rotations or prole
views. Three general approadies have been used to deal with this; a) use a full 3D model
[120,42, 94], b) introduce non-linearities into a 2D model [59, 99, 110]and c) usea set of models
to represen appearancefrom di®eren view-points [86, 69, 126].

In this chapter we explorethe last approad, using statistical modelsof shape and appearance
to represent the variations in appearancefrom a particular view-point and the correlations
betweenmodels of di®erert view-points.

The appearancemodels are trained on example imageslabelled with sets of landmarks to
de ne the corresppndencesbetweenimages. The face model examplesin Chapter 5 show that
a linear model is suzcient to simulate considerable changesin viewpoint, as long as all the
modelled features (the landmarks) remained visible. A model trained on near fronto-parallel
face images can cope with pose variations of up to 45° either side. For much larger angle
displacemerts, somefeatures becomeoccluded, and the assumptionsof the model break down.

We demonstrate that to deal with full 18 rotation (from left prole to right prole), we
needonly 5 models, roughly certred on viewpoints at -90°,-45°,0°,45°,90° (where 0° corresponds
to fronto-parallel). The pairs of models at § 90° (full prole) and § 45°(half prole) are simply
re°ections of ead other, so there are only 3 distinct models. We can use these models for
estimating headpose,for tracking facesthrough wide changesin orientation and for synthesizing
new views of a subject given a single view.

Each model is trained on labelled imagesof a variety of peoplewith a range of orientations
chosen so none of the features for that model become occluded. The di®erert models use
di®eren setsof features (seeFigure 14.2). Each example view can then be approximated using
the appropriate appearance model with a vector of parameters, c. We assumethat as the
orientation changes,the parameters,c, trace out an approximately elliptical path. We canlearn
the relationship betweenc and head orientation, allowing usto both estimate the orientation of
any headand to be able to synthesizea faceat any orientation.

By usingthe Activ e App earanceModel algorithm we can match any of the individual models
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to a new image rapidly. If we know in advancethe approximate pose,we can easily selectthe
most suitable model. If we do not know, we can searh with ead of the ve models and
choosethe one which achievesthe best match. Once a model is selectedand matched, we can
estimate the head pose, and thus track the face, switching to a new model if the head pose
varies signi cantly. There are clearly correlations between the parameters of one view model
and those of a di®erert view model. In order to learn these, we need imagestaken from two
views simultaneously. For our experiments we achieved this using a judiciously placed mirror,

giving a frontal and a pro le view (Figure 14.1).

Figure 14.1: Using a mirror we capture frontal and pro le appearancesimultaneously

By annotating sudh imagesand matching frontal and pro le models, we obtain correspond-
ing sets of parameters. These can be analyzed to produce a joint model which cortrols both
frontal and pro le appearance.Sud a joint model can be usedto synthesize new views given a
single view. Though this can perhapsbe done most e®ectively with a full 3D model [120], we
demonstrate that good results can be achieved just with a set of 2D models. The joint model
canalsobe usedto constrain an Activ e AppearanceModel seard [36, 22], allowing simultaneous
matching of frontal and pro le modelsto pairs of images.

14.1 Training Data

To explore the ability of the apperancemodelsto represen the facefrom a range of angles,we
gathered a training set consisting of sequence®f individuals rotating their headsthrough 18(°,
from full proTe to full prole. Figure 14.2 shows typical examples,together with the landmark
points placed on ead example. The sets were divided up into 5 groups (left prole, left half
pro le, frontal, right half prole and right pro le). Ambiguous exampleswere assignedto both
groups, so that they could be usedto learn the relationships between nearby views, allowing
smooth transition betweenthem (seebelow).

We trained three distinct models on data similar to that shawvn in Figure 14.2. The prole
model was trained on 234 landmarked imagestaken of 15 individuals from di®erert orienta-
tions. The half-pro le model was trained on 82 images, and the frontal model on 294 images.
Re’ections of the imageswere usedto enlargethe training set.

Figure 14.3 shows the e®ectsof varying the rst two appearancemodel parameters, ¢, Cp,
of models trained on a set of faceimages,labelled as shavn in Figure 14.2. These change both
the shape and the texture component of the synthesisedimage.
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Prole Half ProTe Frontal

Figure 14.2: Examples from the training setsfor the models

c, varies 8§82 s.d.s cy varies 82 s.d.s

Figure 14.3: First two modesof the facemodels (top to bottom: pro le, half-pro le and frontal)

14.2 Predicting Pose

We assumethat the model parametersare related to the viewing angle, i, approximately as

C = Cp+ Cx COS) + Cy sin(|) (14.1)

where cg, Cx and cy are vectors estimated from training data (seebelow).

(Here we consideronly rotation about a vertical axis - head turning. Nodding can be dealt
with in a similar way.)

This is an accurate represenation of the relationship betweenthe shape, x, and orientation
angleunder an atne projection (the landmarks trace circlesin 3D which are projected to ellipses
in 2D), but our experiments suggestit is also an acceptableapproximation for the appearance
model parameters,c.

We estimate the head orientation in ead of our training examples, |, accurate to about
8§ 1(°. For eadt such image we nd the best tting model parameters, c;. We then perform
regressionbetweenf cijg and the vectorsf (1; cos(y); sin(1)) % to learn cg,cx and Cy.
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Figure 14.4 shaws reconstructions in which the orientation, , is varied in Equation 14.1.

-109°

-45° +45°
Figure 14.4: Rotation modes of three face models

Given a new examplewith parametersc, we can estimate its orientation asfollows. Let R !
be the left pseudo-inverseof the matrix (cxjcy) (thus R 1(ckjcy) = 12).
Let

(Xa;¥a)®= RL(ci co) (14.2)

then the best estimate of the orientation is tani 1(ya=xa).

Figure 14.5 shows the predicted orientations vs the actual orientations for the training sets
for eadh of the models. It demonstratesthat equation 14.1is an acceptablemodel of parameter
variation under rotation.

14.3 Tracking through wide angles

We can use the set of models to track facesthrough wide angle changes(full left prole to
full right prole). We usea simple schemein which we keep an estimate of the current head
orientation and useit to choosewhich model should be usedto match to the next image.

To track afacethrough a sequenceve locateit in the rst frame using a global seard scheme
similar to that described in [33]. This involvesplacing a model instance certred on ead point
on a grid acrossthe image, then running a few iterations of the AAM algorithm. Poor ts are
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Figure 14.5: Prediction vs actual angle acrosstraining set

Model Angle Range
Left Prole -11@ - -6Q°
Left Half-Pro Te -60° - -40°
Frontal -40° - 4Q°
Right Half-Pro'le 4° - 60°
Right Pro'le 60° - 11

Table 14.1: Valid angle rangesfor ead model

discardedand good onesretained for more iterations. This is repeated for eadh model, and the
best tting model is usedto estimate the position and orientation of the head.

We then project the current best model instance into the next frame and run a multi-
resolution seat with the AAM. We estimate the head orientation from the results of the seard,
as described above. We then use the orientation to choosethe most appropriate model with
which to continue. Each model is valid over a particular range of angles, determined from its
training set (seeTable 14.1). If the orientation suggestschanging to a new model, we estimate
the parametersof the new model from those of the current best t. We then perform an AAM
seard to match the new model more accurately. This processis repeated for eat subsequeh
frame, switching to new models as the angle estimate dictates.

When switching to a new model we must estimate the image pose (position, within image
orientation and scale) and model parameters of the new example from those of the old. We
assumelinear relationships which can be determined from the training setsfor ead model, as
long asthere are someimages(with intermediate head orientations) which belongto the training
setsfor both models.

Figure 14.10shaws the results of using the models to track the facein a new test sequence
(in this casea previously unseensequenceof a personwho is in the training set). The model
reconstruction is showvn superimposedon frames from the sequence.The methods appearsto
track well, and is able to reconstruct a corvincing simulation of the sequence.

We used this system to track 15 new sequencesof the people in the training set. Each
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sequencecortained between 20 and 30 frames. Figure 14.6 shows the estimate of the angle
from tracking against the actual angle. In all but one casethe tracking succeededand a good
estimate of the angleis obtained. In one casethe modelslost track and were unable to recover.
The systemcurrently works o®-line,loading sequencedrom disk. On a 450MHz Pertium 111
it runs at about 3 frames per second,though sofar little work has beendoneto optimise this.

100

75 |

=
o
(=]

Predicted Angle (deg.)

Actual Angle (deg.)

Figure 14.6: Comparison of angle derived from AAM tracking with actual angle (15 sequences)

14.4 Synthesizing Rotation

Given a singleview of a new person,we can nd the bestmodel match and determine their head
orientation. We can then use the best model to synthesize new views at any orientation that
can be represened by the model. If the best matching parametersare c, we use Equation 14.2
to estimate the angle, . Let r be the residual vector not explained by the rotation model, ie

r=—cj (co+ cxcogH) + cysin(y)) (14.3)

To reconstruct at a new angle, ®, we simply usethe parameters

C(®) = co+ Cx COSE®) + cysSin(®) + r (14.4)

For instance, Figure 14.7 shawns tting a model to a roughly frontal image and rotating
it. The top example usesa new view of someonein the training set. The lower exampleis a
previously unseenpersonfrom the Surrey face database[84].

This only allows us to vary the angle in the range de ned by the current view model. To
generatesigni cantly di®erernt views we must learn the relationship betweenparametersfor one
view model and another.
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Original Best Fit (-2°) Rotated to -25° Rotated to +25°

Figure 14.7: By tting a model we can estimate the orientation, then synthesize new views

145 Coupled-View App earance Mo dels

Given enough pairs of imagestaken from di®erer view points, we can build a model of the
relationship betweenthe model parametersin oneview and thosein another. Ideally the images
should betaken simultaneously, allowing correllations betweenchangesin expressionto belearnt.
We have achieved this using a singlevideo cameraand a mirror (seeFigure 14.1). A loosermodel
can be built from images taken at di®eren times, assuming a similar expression (typically
neutral) is adopted in both.

Let rj be the residual model parameters for the object in the i" imagein view j, formed
from the best tting parametersby removing the cortribution from the angle model (Equation
14.3). We form the combined parameter vectorsj; = (ri;;r,)"T. We canthen perform a principal
componert analysison the setof f jjg to obtain the main modesof variation of a combined model,

i=1+pPb (14.5)

Figure 14.8 shows the e®ectof varying the rst four of the parameterscontrolling such a model
represetting both frontal and pro le face appearance. The modes mix changesin identity and
changesin expression. For instance mode 3 appearsto demonstrate the relationship between
frontal and prole views during a smile.

14.5.1 Predicting New Views

We can usethe joint model to generatedi®erent views of a subject. We nd the joint parameters
which generatea frontal view best matching the current target, then usethe model to generate
the corresponding pro le view. Figures 14.9(a,b) shav the actual pro e and pro le predicted
from a new view of someonein the training set. In this casethe model is able to estimate the
expression(a half smile). Becausewe only have a limited set of imagesin which we have non-
neutral expressionsthe joint model built with them is not good at generalisingto new people.
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Mode 1 (b varies § 2s.d.s) Mode 2 (b, varies § 2s.d.s)

Mode 3 (bs varies § 2s.d.s) Mode 4 (by varies § 2s.d.s)

Figure 14.8: Modesof joint model, cortrolling frontal and pro le appearance

To deal with this, we built a secondjoint model, trained on about 100 frontal and prole
imagestaken from the Surrey XM2VTS face database[84]. Thesehave neutral expressionsbut
the image pairs are not taken simultaneously, and the head orientation can vary signi cantly.
Howewer, the rotation e®ectscan be removed using the approad described above, and the model
can be usedto predict unseenviews of neutral expressions. Figures 14.9(c,d) show the actual
pro le and pro le predicted from a new person(the frontal imageis shown in Figure 14.7). With

a large enoughtraining set we would be able to deal with both expressionchangesand a wide
variety of people.

a) Actual prole b) Predicted prole c) Actual prole d) Predicted prole

Figure 14.9: The joint model can be usedto predict appearanceacrossviews (seeFig 14.7 for
frontal view from which the predictions are made)

14.6 Coupled Mo del Matc hing

Giventwo di®erert views of a target, and corresponding models, we can exploit the correlations
to improve the robustnessof matching algorithms. One approac would be to modify the Active



14.6. COUPLED MODEL MATCHING 91

Frontal Model Prole Model
Measure Coupled | Independert | Coupled | Independert
RMS Point Error 4:88 05 518 05 3:38 0:15 388 0:3
(pixels)
RMS Texture Error | 7298 0:25| 7:98 0:25 | 838 0:25 888 0:4
(grey-levels)

Table 14.2: Comparison between coupled seart and independert seard

App earanceModel seart algorithm to drivethe parameters,b, of the joint model, together with
the current estimatesof pose,texture transformation and 3D orientation parameters. However,
the approac we have implemented is to train two independent AAMs (one for the frontal model,
onefor the pro Ie), and to run the seard in parallel, constraining the parameterswith the joint
model at ead step. In particular, ead iteration of the matching algorithm proceedsas follows:

2 perform oneiteration of the AAM on the frontal model, and one on the proTe model, to update
the current estimate of ¢;, ¢, and the assa@iated poseand texture transformation parameters.

2 Estimate the relative head orientation with the frontal and prole models, py, b
2 UseEquation 14.3to estimate the residualsrq, r»

2 Form the combined vectorj = (r{;r})T

2 Compute the best joint parameters,b = PT(j i }) and apply limits to taste.

2 Compute the revisedresidualsusing (r{ ;rJ)T =} + Pb

2 UseEquation 14.1to add the e®ectof head orientation badk in

Note that this approach makesno assumptionsabout the exact relative viewing angles. If
appropriate we can learn the relationship betweenp; and W (W = [ + const). This could be
usedas a further constraint. Similarly the relative positions and scalescould be learnt.

To explorewhether theseconstraints actually improve robustness,we performedthe following
experiment. We manually labelled 50 images(not in the original training set), then performed
multi-resolution seard, starting with the mean model parametersin the correct pose. We ran
the experiment twice, onceusing the joint model constraints described above, oncewithout any
constraints (treating the two models as completely independert).

Table 14.2 summarisesthe results. After eat searth we measurethe RMS distance between
found points and hand labelled points, and the RMS error per pixel betweenthe model recon-
struction and the image (the intensity valuesare in the range [0,255]). The results demonstrate
that in this casethe useof the constraints betweenimagesimproved the performance,but not
by a great deal. We would expect that adding stronger constraints, such as that betweenthe
anglespy, b, and the relative scalesand positions, would lead to further improvemens.
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14.7 Discussion

This chapter demonstratesthat a small number of view-basedstatistical models of appearance
can represett the facefrom a wide range of viewing angles. Although we have concerrated on
rotation about a vertical axis, rotation about a horizontal axis (nodding) could easily beincluded
(and probably wouldn't require any extra models for modest rotations). We have shawvn that

the models can be usedto track facesthrough wide angle changes,and that they can be used
to predict appearancefrom new viewpoints given a single image of a person.

14.8 Related Work

Statistical models of shape and texture have been widely used for recognition, tracking and
synthesis [62, 74, 36, 116, but have tended to only be usedwith near fronto-parallel images.

Moghaddam and Pentland [87] describe using view-based eigenfacemodels to represent a
wide variety of viewpoints. Our work is similar to this, but by including shape variation (rather
than the rigid eigen-patdes), we require fewer models and can obtain better reconstructions
with fewer model modes. Kruger [69] and Wiskott et. al.[126 used°exible graphsof Gabor Jets
of frontal, half-prole and full prole views for face recognition and pose estimation. Maurer
and von der Malsburg [79] demonstrated tracking headsthrough wide anglesby tracking graphs
whosenodesare facial features,located with Gabor jets. The systemis e®ectiwe for tracking, but
is not ableto synthesizethe appearanceof the facebeing tracked. Murase and Nayar [59] shoved
that the projections of multiple views of a rigid object into an eigenspacedall on a 2D manifold
in that space.By modelling this manifold they could recogniseobjects from arbitrary views. A
similar approach has beentaken by Gong et. al.[105 70] who use non-linear represertations of
the projections into an eigen-facespacefor tracking and poseestimation, and by Graham and
Allinson [45] who useit for recognition from unfamiliar viewpoints.

Romdhani et. al.[99] have extended the Activ e Shape Model to deal with full 18 rotation
of a face using a non-linear model. However, the non-linearities mean the method is slow to
match to a new image. They have also extended the AAM [110] using a kernel PCA. A non-
linear 2D shape model is combined with a non-linear texture model on a 3D texture template.
The approad is promising, but considerably more complex than using a small set of linear 2D
models.

Vetter [119, 120] has demonstrated how a 3D statistical model of face shape and texture can
be usedto generatenew views given a single view. The model can be matched to a new image
from more or lessany viewpoint usinga generaloptimization scheme,though this is slow. Similar
work hasbeendescribed by Fua and Miccio [42] and Pighin et. al.[94]. By explicitly taking into
account the 3D nature of the problem, this approac is likely to yield better reconstructions
than the purely 2D method described below. However, the view basedmodels we proposecould
be usedto drive the parametersof the 3D head model, speedingup matching times.

La Casciaet. al.[7]] describe a related approad to headtracking. They project the faceonto
a cylinder (or more complex 3D faceshape) and usethe residual di®erencedetweenthe sampled
data and the model texture (generatedfrom the rst frame of a sequence)to drive a tracking
algorithm, with encouragingresults. The model is tuned to the individual by iinitialization in
the rst frame, and doesnot explicitly track expressionchanges,asthe approac hereis able to.
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Figure 14.10: Reconstruction of tracked facessuperimposedon sequences
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Chapter 15

Applications and Extensions

The ASM and AAMs have been widely used, and numerous extensions have been suggested.
Herel cover a few that have cometo my attention. This is by ho meansa complete list - there
are now so many applications that I've lost track. If you are reading this and know of anything

I've missed,pleaselet me know - | don't have the time to keepthis asup to date, or ascomplete,
as| would like.

15.1 Medical Applications

Nikou et. al.describe a statistical model of the skull, scalp and various brain surfaces. The
model usesthe modes of vibration of an elastic spherical meshto match to sets of examples.
The parametersare then put through a PCA to build a model. (Note that this is identical to
a PDM, though without taking care over the correspondence). By matching part of the model
to the skull and scalp, constraints can then be placed on the position of other brain structures,
making it easierto locate them. They demonstrate using the model to register MR to SPECT
images.

van Ginneken[118]describesusing Activ e Shapre Modelsfor interpretting chestradiographs.
He demonstatesthat various improvemers on the original method (such as using k-Nearest
Neighbour classi ers during the pro Te model seard) give more accurate results.

Hamarneh[49, 48] hasinvestigatedthe extensionof ASMs to Spatio-Temporaral Shapes,and
has deviseda new algorithm for deforming the ST-shape model to better t the image sequence
data.

Mitc hell et. al.[85] describe building a 2D+time Appearance model of the time varying
appearanceof the heart in complete cardiac MR sequences.

The model essetially represeits the texture of a set of 2D patches, one for ead time step
of the cycle. The modestherefore capture the shape, texture and time-varying changesacross
the training set.

The AAM is suitably modi ed to match such a model to sequencedata, with encouraging
results. It shows a good capture range, making it robust to initial position, and is accurate in
its nal result.

Bosc et. al.[10] describe building a 2D+time Appearancemodel and using it to segmen
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parts of the heart boundary in echocardiogram sequences.The model (the sameas that used
above) essetially represetts the texture of a set of 2D patches, one for ead time step of the
cycle. The modes therefore capture the shape, texture and time-varying changesacrossthe
training set.

The paper describes an elegant method of dealing with the strongly non-gaussiannature
of the noisein ultrasound images. Essetially the cumulativ e intensity histogram is computed
for ead patch (after applying a simple linear transform to the intensities to get them into the
range [0,1]). This is then comparedto the histogram one would obtain from a true gaussian
distribution with the sames.d. A lookup table is created which maps the intensities so that
the normalised intensities then have an approximately gaussiandistribution. The lookup is
computed once during training, basedon the distributions of all the training examples. It is
stored, and usedto normalise ead image patch, both during training, and during AAM seard.

This distribution correction approad is shown to have a dramatic e®ecton the quality
of matching, with successfulconvergenceon a test set rising from 73% (for the simple linear
normalisation) to 97% for the non-linear method.

Li and Reinhardt [76] describe a 3D landmarking de ned by marking the boundary in eact
slice of an image, equally placing landmarks around ead and then shu2ing the landmarks
around (varying a single parameter de ning the starting point) so asto minimise a measure
comparing curvature on the target curve with that on a template. The equal spacing of the
points will lead to potentially poor corresppndenceson somepoints of interest.

Given a set of objects solabelled, a triangulated meshis createdan a 3D ASM can be built.
The statistical models of image structure at ead point (along pro les normal to the surface)
include a term measuringlocal image curvature (if | remenber correctly) which is claimed to
reducethe ambiguity in matching.

Oncethe ASM corvergesits nal state is usedas the starting point for a deformable mesh
which can be further re ned in a snake like way, including adding extra nodesto give a more
detailed match to image data.

Results were shavn on vertebra in volumetric chest HRCT images(ched this).

Lorenz et. al.[20] describe how the free vibrational modes of a 3D triangulated mesh can
be used as a model of shape variability when only a single example is available. It is similar
in principle to earlier work by Cootes and Taylor, and by Wand and Staib. They show the
represertation error when using a shape model to approximate a set of shapesagainst number
of modesused. The statistical model givesthe best represenation, but vibrational mode models
built from a singleexamplecan achieve reasonableapproximations without excessiely increasing
the number of modesrequired. A model built from the mean was signi cantly better than one
built from one of the training examples,but of coursein practise if one hasthe mean onewould
usethe statistical model.

Bernard and Pernus[6] addressthe problem of locating a set of landmarks on AP radiographs
of the pelvis which are usedto assesshe stresseson the hip joints. Three statistical appearance
modelsare built, on of ead hip joint, oneof the pelvisitself. To match a costfunction is de ned
which penalisesshape and texture variation from the model mean, and which encouragesthe
certre of ead hip joint to correspond to the certre of the circle de ned by the socket - a sensible
constraint. The modelsare matched using simulated annealingand leave-oneout tests of match
performanceare given.
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Yao et. al.[127] describe building a statistical model represering the shape and density of
bony anatomy in CT images. The shape is represened using a tetrahedral mesh. The density is
approximated using smooth Bernstein spline polynomials expressedn barycentric co-ordinates
on ead tetrahedron of the mesh. This approadt leadsto a good represettation and is fairly
compact. The demonstrate corvincing reconstructions. The aim is to build an anatomical atlas
represerting bone density.

Thodberg and Rosholm [115] have used the Active Shape Model in a commercial medical
device for bone densitometry and shown it to be both accurate and reliable. Thodberg [52]
describes using AAMs for interpretting hand radiographs, demonstrating that the AAM is an
excient and accurate method of solving a variety of tasks. He describeshow the bone measure-
ments can be usedas biometrics to verify patient identit y.

Pekar et. al.[92] use a mesh represenation of surfaces,together with a statistical shape
model, to segmen vertebrae in CT images. After a global match using the shape model, lo-
cal adaptation is performed, minimising an energy term which combines image matching and
internal model smoothnessand vertex distribution.

The appearancemodel relies on the existenceof correspondencebetween structures in dif-
ferent images, and thus on a consistert topology acrossexamples. For some structures (for
example, the sulci), this doesnot hold true. An alternative approac for sulci is described by
Caunceand Taylor [16, 17].

15.2 Tracking

Baumberg and Hogg [2] usea modi ed ASM to track peoplewalking.

Romdhani et. al.[99] have extended the Active Shape Model to deal with full 18C° rotation
of a face using a non-linear model. However, the non-linearities mean the method is slow to
match to a new image. They have also extended the AAM [110] using a kernel PCA. A non-
linear 2D shape model is combined with a non-linear texture model on a 3D texture template.
The approad is promising, but considerably more complex than using a small set of linear 2D
models.

Bowdenet. al.[11, 12] hasused 3D statistical shape modelsto estimate 3D poseand motion
from 2D images.

La Casciaet. al.[71] describe “Active Blobs' for tracking, which are in many ways similar
to AAMs, though they usea FEM model of deformation of a single prototype rather than a
statistical model.

Edwards et. al.have used ASMs and AAMs to model and track faces[35, 37, 34].

15.3 Extensions

Rogersand Graham [98] have shavn how to build statistical shape models from training sets
with missing data. This allows a feature to be presert in only a subsetof the training data
and overcomesone problem with the original formulation. An extra parameter is added which
allows the feature to be present/absent, and the statistical analysisis donein such a way asto
avoid biasing the estimates of the variance of the features which are preser.
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Non-linear extensionsof shape and appearancemodelsusing kernel basedmethods have been
preseried by Romdhani et. al.[99, 110]and Twining and Taylor [117], amongst others.

When the AAM corvergesit will usually be closeto the optimal result, but may not achieve
the exact position. Stegmannand Fisker [40, 80, 112]hasshawn that applying a generalpurpose
optimiser can improve the nal match.



Chapter 16

Discussion

Active Shape Models allow rapid location of the boundary of objects with similar shapes to
thosein a training set, assumingwe know roughly where the object is in the image. They are
particularly useful for:

2 Objects with well de ned shape (eg bones,organs, facesetc)
2 Caseswhere we wish to classify objects by shape/appearance
2 Caseswhere a represenativ e set of examplesis available

2 Caseswhere we have a good guessasto wherethe target is in the image
Howewer, they are not necessarilyappropriate for

2 Objects with widely varying shapes (eg amorphousthings, trees, long wiggly worms etc)
2 Problems involving courting large numbers of small things

2 Problems in which position/size/orientation of targets is not known approximately (or
cannot be easily estimated).

In addition, it should be noted that the accuracyto which they can locate a boundary is
constrained by the model. The model can only deform in ways obsened in the training set.
If the object in an image exhibits a particular type of deformation not presert in the training
set, the model will not 't to it. This is true of ne deformations as well as coarseones. For
instance, the model will usually constrain boundariesto be smooth, if only smooth examples
have beenseen. Thus if a boundary in an image is rough, the model will remain smooth, and
will not necessarily t well. However, using enoughtraining examplescan usually overcomethis
problem.

One of the main drawbadks of the approad is the amount of labelled training examples
required to build a good model. These can be very time consuming to generate. Howewer,
a “bootstrap' approac can be adopted. We rst annotate a single represenativ e image with
landmarks, and build a model from this. This will have a xed shape, but will be allowed to
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scale, rotate and translate. We then use the ASM algorithm to match the model to a new
image, and edit the points which do not t well. We can then build a model from the two
labelled exampleswe have, and useit to locate the points in the third. This processis repeated,
incremertally building a model, until the ASM nds new examplessuzciently accurately every
time, soneedsno more training.

Both the shape models and the seart algorithms can be extended to 3D. The landmark
points become3D points, the shape vectors become3n dimensional for n points. Although
the statistical macdhinery is identical, a 3D alignment algorithm must be used (see[54]). Of
course, annotating 3D imageswith landmarks is ditcult, and more points are required than
for a 2D object. In addition, the de nition of surfacesand 3D topology is more complex than
that required for 2D boundaries. However, 3D models which represen shape deformation can
be successfullyusedto locate structures in 3D datasetssuch as MR images(for instance [55]).

The ASM/AAMs arewell suited to tracking objects through imagesequencesin the simplest
form the full ASM/AAM seard can be applied to the rst imageto locate the target. Assuming
the object doesnot move by large amounts betweenframes, the shape for oneframe can be used
asthe starting point for the seart in the next, and only a few iterations will be required to lock
on. More advanced techniques would involve applying a Kalman Tter to predict the motion
[21[38.

To summarise, by training statistical models of shape and appearancefrom sets of labelled
exampleswe can represen both the mean shape and appearanceof a classof objects and the
common modes of variation. To locate similar objects in new imageswe can use the Active
Shape Model or Activ e AppearanceModel algorithms which, given a reasonablestarting point,
can match the model to the image very quickly.
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App endix A

Applying a PCA when there are
fewer samples than dimensions

Supposewe wish to apply a PCA to s n-D vectors, Xj, where s < n. The covariance matrix

is n £ n, which may be very large. However, we can calculate its eigervectors and eigervalues

from a smaller s £ s matrix derived from the data. Becausethe time taken for an eigervector

decomposition goesasthe cube of the size of the matrix, this can give considerablesavings.
Subract the meanfrom ead data vector and put them into the matrix D

D= ((X1i ¥)j:::j(Xsi %)) (A.1)
The covariance matrix can be written
1

S= ;oD T (A.2)
Let T bethe s£ s matrix 1
T= gDTD (A.3)

Let e be the s eigernvectors of T with corresponding eigervalues, i, sorted into descending
order. It can be shown that the s vectors De; are all eigervectors of S with corresponding
eigernvalues, i, and that all remaining eigervectors of S have zero eigervalues. Note that De;j is
not necessarilyof unit length so may require normalising.
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App endix B

Aligning Two 2D Shapes

Giventwo 2D shapes,x and x° we wish to nd the parametersof the transformation T (:) which,
when applied to x, bestaligns it with x° We will dene “best' asthat which minimisesthe sum
of squaresdistance. Thus we must choosethe parametersso asto minimise

E=jT(x)i x9? (B.1)

Below we give the solution for the similarity and the atne cases.
To simplify the notation, we de ne the following sums

P P
Sk = %P Xi Sy = %p Yi
Sxo = 7P x? Sy = 7P y?
Sy = 1 x2? Sy = = 2
X 9 p i y n yi (BZ)
Syxo = ?p Xixio SYYO = %p Yi |O
Syo = g XiyP Syxo = & yix?

B.1 Similarit y Case

Supposewe have two shapes,x and x° certred on the origin (x:1 = x%1 = 0). We wish to scale
and rotate x by (s;1) soasto minimise jsAx i x3, where A performs a rotation of a shape x
by W Let

5 2% (x:xc)=jxj2| (B.3)

X
b= Oayli vix)  TFxj? (B.4)
i=1
Then s? = a? + b? and p= tani 1(b=9. If the shapesdo not have C.0.G.son the origin, the
optimal translation is chosento match their C.0.G.s, the scaling and rotation chosenas above.
Pro of
The two dimensional Similarity transformation is
A 1 A rA 1 A

X _ ajb x 3%
Ty_bay+ty (B.5)
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We wishto nd the parameters(a;b;ty;ty) of T(:) which bestaligns x with x% ie minimises

E(abitty) = FX) i x9?

B.6
= [Li(axii by +txi xD2+ (bx +ayi + tyi y)? (B.6)
Di®erertiating w.r.t. ead parameter and equating to zero gives
a(SXX + Syy) + tXSX + tySy = SXX0+ SyyO
B(Sxx + Syy) + tySxi xSy = Syyoi Syxo (B.7)
aScj b§ +ty = Sy ’
bSc+aSy+ty = Sy

To simplify things (and without loss of generality), assumex is rst translated so that its
certre of gravity is on the origin. Thus Sy = Sy = 0, and we obtain

tx = Sxo  ty= Spo (B.8)

and

a (S0 + Syy0)=(Sxx + Syy) = x:x%&x;j? N (8.9)
b = (Sxyoi Syxo):(sxx + Syy) = (Sxyoi Syxo):JXJ2 .
If the original x wasnot certred on the origin, then the initial translation to the origin must
be taken into accourt in the nal solution.

B.2 Azxne Case

The two dimensional axne transformation is

A I A rA 1 A !
X _ ab X tx
T y c d y + t, (B.10)
We wish to nd the parameters (a;b;c;d;ty;ty) of T(:) which best aligns x with x2 ie
minimises

E(abiciditiity) = Fx)i x9°

B.11
= Lp@xit by +txi x)Z+ (oxi+ dyi + ty i y)? (8.11)
Di®erertiating w.r.t. ead parameter and equating to zero gives
aSyx + bSy + txSx =  Syo CSx + dSxy + tySy = Syyo
aSy * bSy + xSy = Syxo Sy + dSy+ Sy = Sy (B.12)
aSy+ b§ +ty = Sy cSc+dSy +ty = Spo

wherethe S, are as de ned above.
To simplify things (and without loss of generality), assumex is rst translated so that its
certre of gravity is on the origin. Thus S, = Sy = 0, and we obtain
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tx = Sxo  ty = Syo (B.13)
Substituting into B.12 and rearranging gives
A 1A A !
ab Sxx Sxy Sxx0  Syxo
= B.14
c d Sy Syy Sxyo  Syyo (814
Thus
A ! A 1A !
a b 1  Sio Syxo Syy i Syy
= — B.15
C d ¢ Sxyo Syyo i Sxy SXX ( )

where¢ = S Syy i S3.
If the original x wasnot certred on the origin, then the initial translation to the origin must
be takeninto accourt in the nal solution.



App endix C

Aligning Shapes (I 1)

Here we presert solutions to the problem of nding the optimal parametersto align two shapes
soasto minimise a weighted sum-of-squaresneasureof point di®erence.

Throughout we assumetwo setsof n points, x; and x%. We assumea transformation, x°=
T¢ (x) with parameterst. We seekto choosethe parameters,t, soasto minimise

X0
E= 2 Te(xi)™Wi(xPi Te(xi) (C.1)
i=1

The solutions are obtained by equating % = 0 (detailed derivation is left to the interested
reader).

C.1 Translation (2D)

If pure translation is allowed, A 1
Tx) = x+ ¥ (C.2)
ty
andt = (tx;ty)".
In this casethe parameters(ty;ty) are given by the solution to the linear equation
A A I A [
X ty X 0
wi 0= Wi(Xi'i xi) (C.3)
i=1 y i=1

For the special casewith isotropic weights, in which W = w;l, the solution is given by
A 1A !
il

t= W, wi(x{i i) (C.4)
i=1 i=1

For the unweighted casethe solution is simply the di®erencebetweenthe means,

t = %% % (C.5)
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C.2. TRANSLATION AND SCALING (2D)

106
C.2 Translation and Scaling (2D)
If translation and scaling are allowed
A
To(x) = sx+ X (C.6)
ty
andt = (s;tx;ty)".

In this casethe parameters(tx;

y) are given by the solution to the linear equation
10 1

s 0 s 1
XW X Wx ~ XW x0
E@ SWx %) tx % SWx (C-7)
ty
where p >
Sywx = X;I-V\/ixi Swx = W iXi Sw = Wi
_ P lTw o y0 0 (C.8)
Sswxo= X WiXx SWXo— W ix;
In the unweighted casethis simpli es to the solution of
0 SutSy S S 10 1 0 < s, 1
xx T Oyy  Ox S xx 0 Oyyo
B S n 0KBuLEX=B so (C.9)
where
P P P
S =p X Sy=p W Sc=px Sy_ (C.10)
Swo= Xix} Syo= yiy? Seo= xP? Sp= '
C.3 Similarit y (2D)
If translation, scaling and rotation are allowed
A ! A
_ aijb tx
Ti(x) = b a X7 t (C.11)
andt = (a;b;ty;ty)".
In this casethe parameters(a;b;ty;ty) are given by the solution to the linear equation
0
Sxw x Sxw JIx SWx Sxw x0
© Swix Suwax SWJX X % t § ?CP Sxawxo g (C.12)
X
Swx  Swux Swxo
where

P P
Suawix = 5 X{ JTWiJX; Swix = p Wilxi
Sywxo = XiTJTW'X-O

C.13
Swixo = WiJXiO ( )
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and A |

_ 0 j1
J= 1 0 (C.14)

In the unweighted casethis simpli es to the solution of

So+ Sy O 0§ o4
% A nSy : g%t % %SXVO' Syx° (C.15)
S, S,

C.4 Azne (2D)

If a 2D atne transformation is allowed,

A ! A !

_a b tx
)= . 4 Xt t (C.16)

andt = (a;b;c;d;tx;ty)T7.
The anisotropic weights caseis just big, but not complicated. I'll write it down one day.
In the unweighted casethe parametersare given by the solution to the linear equation

0 10 1 0 1
XX Sxy SXX Sxy 0

%sxy Sy syi%g b = B Spo Sy X (C.17)
S« Sy ty ty So Sy



App endix D

Representing 2D Pose

D.1 Similarit y Transformation Case

For 2D shapeswe usually allow translation (ty;ty), rotation, pand scaling,s. To retain linearity
we represent the poseusingt = (sx;sy;tx;ty)T where sy = (scospj 1), sy = ssiny In
homogeneousco-ordinates, this corresponds to the transformation matrix

0, 1
+ Sx | Sy t)(

Ti= s, 1+s ty X (D.1)
0 0o 1

For the AAM we must represert small changesin poseusing a vector, #t. This is to allow us
to predict small posechangesusing a linear regressionmodel of the form + = Rg. For linearity
the zero vector should indicate no change, and the posechangeshould be approximately linear
in the vector parameters. This is satis ed by the above parameterisation.

The AAM algorithm requiresusto nd the poseparameterst °of the transformation obtained
by rst applying the small changegiven by +t, then the posetransform given by t. Thus, nd
tOsothat Tyo(x) = Ty (T (X)).

If we write #t = (&sy; £Sy; #ty; #ty) T, it can be shovn that

1+ 9 1+ 35)(1 + s¢) i 1SySy
Sg (1 + s¢) + (1 + sy)sy

ty (1+ sx)Hy i syy + ty

t9 (1+ sy)dty + Syt + ty

(D.2)

Note that for small changes, Tut, (Tat, (X)) ¥4 T(at,+41,)(X), which is required for the AAM
predictions of posechangeto be consisten.
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App endix E

Representing Texture
Transformations

We allow scaling, ®, and o®sets, , of the texture vectorsg. To retain linearity we represen the
transformation parametersusing the vector u = (ug;u2)" = (®; 1,7)T. Thus

Tu(9) = (1+ u)g+ uzl (E.1)

As for the pose,the AAM algorithm requiresusto nd the parametersu®such that Tyo(g) =
Tu(T (). It is simple to show that

0
1+ u?

u

(1+ ug)(1 + 2uy)
(1+ up)tuz + U

(E.2)

Thus for small changes, T+y, (T+u,(9)) %2 T(xu,++u,)(9), Which is required for the AAM pre-
dictions of posechangeto be consistert.
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App endix F

Image Warping

Supposewe wish to warp an imagel, sothat a setof n cortrol points f x; g are mapped to new
positions, f x°g. We require a contin uous vector valued mapping function, f, suc that

f(xi)=x%8i=1:::n (F.1)

Given such a function, we can project ead pixel of image| into a newimagei® In practice,
in order to avoid holesand interpolation problems, it is better to nd the reversemap, f', taking
x?into x;. For ead pixel in the target warped image, i° we can determine where it camefrom
ini and T it in. In generalf®6 fi %, but is a good enoughapproximation.

Below we will considertwo forms of f, piece-wiseatne and the thin plate spline interpolator.

Note that we can often break down f into a sum,

X
fx) =" fi00x? (F.2)
i=1

Where the n cortinuous scalar valued functions f; ead satisfy

W)= o ' g (F3)

This ensuresf (x;) = x?.

F.1 Piece-wise Atne

The simplestwarping function is to assumeead f; is linear in alocal region and zeroeverywhere
else.

For instance, in the one dimensional case(in which ead x is a point on a line), supposethe
cortrol points are arranged in ascendingorder (Xj < Xj+1).

We would like to arrangethat f will map a point x which is halfway betweenx; and x;+; to
a point halfway betweenx? and x?,, . This is achieved by setting
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(Xi X)=(Xj+1 i %) if x2[Xi;Xi+1]andi < n
fi(x) = (Xi x)=(xji Xi;1) if x2[x;xlandi>1 (F.4)
0 otherwise

We can only sensiblywarp in the region betweenthe cortrol points, [X1; Xn].

In two dimensions,we can usea triangulation (eg Delauney) to partition the corvex hull of
the cortrol points into a set of triangles. To the points within ead triangle we can apply the
atne transformation which uniquely maps the cornersof the triangle to their new positions in
0
i°

Supposex1, X2 and x3 are three cornersof such a triangle. Any internal point can be written

X = X1+ (X2i X1)+ °(X3i X1)
BXat Xt Oxa (F.5)

where®= 1j ( + °)andso®+ + ° = 1. For x to beinside the triangle, 0- ®; ;° - 1.
Under the atne transformation, this point simply mapsto

x%=f(x) = &2+ "x9+ °xJ (F.6)

To generatea warped image we take ead pixel, x°in 19 decidewhich triangle it belongsto,
compute the coezcients ®; ;° giving its relative position in the triangle and usethem to nd
the equivalert point in the original image, . We samplefrom this point and copy the value into
pixel x%in 1°

Note that although this givesa cortin uous deformation, it is not smooth. Straight lines can
be kinked acrossboundaries betweentriangles (seeFigure F.1).

3
°

4 3 4
[ ] B J L )
— ' ™
[ ) -
1 2 1® ®2

Figure F.1: Using piece-wiseatne warping can lead to kinks in straight lines

F.2 Thin Plate Splines

Thin Plate Splineswere popularised by Bookstein for statistical shape analysis and are widely
usedin computer graphics. They lead to smooth deformations, and have the added advantage
over piee-wiseazne that they are not constrained to the convex hull of the cortrol points.
Howewer, they are more expensiwe to calculate.
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F.3 One Dimension

First consider the one dimensional case. Let U(r) = (})?log(},), where %is a scaling value
de ning the sti®nessof the spline.
The 1D thin plate spline is then

X
fa(x) = wiU(jx i xij) + ao + aix (F.7)
i=1
The weights w;,ag; a; are chosento satisfy the constraints f (x;) = x8i.
If we de ne the vector function

u(x) = (U(x i Xaj);U@(x i Xoj;:iU(x xnj);l;x)T (F.8)

then (F.7) becomes

f1(x) = wiua(x) (F.9)

By plugging ead pair of corresponding cortrol points into (F.7) we get n linear equations
of the form

Xy = WiU(jXj i Xi]) + ao + aiX; (F.10)
i=1

0. Let K bethe n £ n matrix whoseelemeris are

Let Uijj = Uji = U(jxi i xjj). Let Ui

fUij 0.
Let
0 1
1 x4
1 Xo
Q=g . . (F.11)
1 Xn
A !
_ K
L,= QI 0, (F.12)

where (0), is a 2£ 2 zero matrix.

are given by the solution to the linear equation

Liw = X9 (F.13)
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F.4 Many Dimensions

The extensionto the d-dimensional caseis straight forward.
If we de ne the vector function

ug(x) = (UGx i xaj);z:sUGx i xnj); 2x )T (F.14)

then the d-dimensionalthin plate spline is given by

f(x) = Wugq(x) (F.15)

whereW isad£ (n+ d+ 1) matrix of weights.
To chooseweights to satisfy the constraints, construct the matrices

0 1

1 x
g (F.16)

K Qd4
L= F.17
d Q'cli' Od+]_ ( )
where 0441 isa (d+ 1)£ (d+ 1) zeromatrix, and K is an £ n matrix whoseij " elemer is
U@xii xjj)-
Then construct the n+ d+ 1£ d matrix X3 from the positions of the cortrol points in the
warped image,

O

o

I

... H
X
N——

-
1 x,

0 1

X9=8 x9 (F.18)
:0q
The matrix of weights is given by the solution to the linear equation

Liw]l = X8 (F.19)

Note that care must be taken in the choice of %to avoid ill conditioned equations.



App endix G

Densit y Estimation

The kernel method of density estimation [106] gives an estimate of the p.d.f. from which N
samples,xj, have beendrawn as

XN Xi Xj
p(x) =  gK(——) (G.1)
i=1 N hd h

where K (t) de nes the shape of the kernel to be placed at ead point, h is a smoothing
parameter de ning the width of ead kernel and d is the dimension of the data. In general,the
larger the number of samples,the smallerthe width of the kernelat ead point. We usea gaussian
kernel with a covariance matrix equalto that of the original data set, S, ie K (t) = G(t : 0;S).
The optimal smoothing parameter, h, can be determined by cross-alidation [106].

G.1 The Adaptiv e Kernel Metho d

The adaptive kernel method generaliseshe kernel method by allowing the scaleof the kernels
to be di®erert at di®erert points. Essenially, broader kernelsare usedin areasof low density
where few obsenations are expected. The simplest approad is as follows:

1. Construct a pilot estimate pYx) using (G.1).

2. Dene local bandwidth factors i = (pYxi)=0)’ %, where g is the geometric mean of the

pAxi)

3. De ne the adaptive kernel estimate to be

MW . .
(h, )i 9k (2L (G.2)

p(x) = o

1
N iz
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G.2 Appro ximating the PDF from a Kernel Estimate

The kernel method can give a good estimate of the distribution. However, becauseit is con-
structed from a large number of kernels, it can be too expensiwe to use the estimate in an
application. We wish to nd a simpler approximation which will allow p(x) to be calculated
quickly.

We will usea weighted mixture of m gaussiangto approximate the distribution derived from
the kernel method.

xXn
Pmix () = W G(X:1};S)) (G.3)
j=1

Such a mixture can approximate any distribution up to arbitrary accuracy assumingsuz-
cient componerts are used. The hope is that a small number of componerts will give a "good
enough' estimate. The Expectation Maximisation (EM) algorithm [82] is the standard method
of tting such a mixture to a set of data. However, if we were to use as many componerts as
samples(m = N), the optimal t of the standard EM algorithm is to have a delta function
at eadh sample point. This is unsatisfactory. We assumethat the kernel estimate, px(x) is
in somesensean optimal estimate, designedto best generalisethe given data. We would like
Pmix (X) ! pk(x) asm! N.

A good approximation to this can be achieved by modifying the M-step in the EM algorithm
to take into accourt the covariance about ead data point suggestedby the kernel estimate (see
(G.3) below).

The number of gaussiansused in the mixture should be chosenso as to achieve a given
approximation error betweenpy(x) and pmix (X).

G.3 The Modied EM Algorithm

To 't a mixture of m gaussiansto N samplesx;, assuminga covariance of T; at ead sample,
we iterate on the following 2 steps:

E-step Compute the cortribution of the i'!" sampleto the j " gaussian

5 WjG(Xi le;Sj)

ij = G4
P M wG(Xi i 1:S)) (G-4)
M-step Compute the parametersof the gaussians,
_1P R
Wi=Rx iPi o T T Rw i RiXi (G.5)
— 1 X .1 .1 T
S = Nw, P [(xi i p)(Xii *5) + Til (G.6)

Strictly we ought to modify the E-step to take T into accourt aswell, but in our experience
just changing the M-step gives satisfactory results.



App endix H

Implemen tation

Though the core mathematics of the models described above are relatively simple, a great deal
of machinery is required to actually implemert a °exible system. This could easily be done by
a competent programmer.

However, implementations of the software are already available.

The simplest way to experiment is to obtain the MatLab packageimplemerting the Active
Shape Models, available from Visual Automation Ltd. This providesan application which allows
usersto annotate training images,to build modelsand to usethosemodelsto seard newimages.
In addition the packageallows limited programming via a MatLab interface.

A C++ software library, co-written by the author, is also available from Visual Automation
Ltd. This allows new applications incorporating the ASMs to be written.

Seehttp://www.wiau.man.ac.uk/val.htm for details of both of the above.
The author's researty group has adopted VXL ( http://www.robots.ox.ac.uk/-vxI or
http://sourceforge.net/projects/vxl ) asits standard C++ computer vision library, and

has contributed extensively to the freely available code. As of writing, the AAM and ASM
libraries are not publicly available (due to commercial constraints), but this may change in
time.

In practice the algorithms work well on low-end PC (200 Mhz). Seard will usually take less
than a secondfor models cortaining up to a few hundred points.

Details of other implementations will be postedon
http://www.isbe.man.ac.uk
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