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Horizontal movements of frame structures induced by vertical
loads

T. Ji, B. R. Ellis and A. J. Bell

This paper considers the significance of vertical loads

that can produce horizontal movements of frame

structures. It is shown that, with a small number of

exceptions, vertical loads can induce horizontal

movements of symmetric, antisymmetric and

asymmetric frames, which represent a wide range of

engineering structures. The magnitudes of the horizontal

movements depend on both the structural form and the

location of the vertical loading. When vertical loads are

applied dynamically, the movements of a structure can

be significantly enlarged if one of the natural frequencies

of the structure in the horizontal direction is close to

one of the vertical load frequencies. These findings are

illustrated by site measurements showing the horizontal

movements of a framed building induced by vertical

loading. Some implications of the findings are discussed

briefly for several types of structure, including cantilever

grandstands, temporary grandstands, cable-suspended

bridges and rail bridges, in which horizontal response

induced by vertical loading may need to be considered in

design.

NOTATION

A1(t) magnitude of vibration contributed by the first

mode

CL load factor that relates to the type and distribution

of vertical loads

CS structural factor that is a function of structural form,

Æ, and the distribution of member rigidities, �
CLS equivalent horizontal load factor

EIb flexural rigidity for beam

EIc flexural rigidity for column

F horizontal concentrated force

M A, M B bending moments at the two ends of a fixed beam

induced by vertical loads

P vertical concentrated static load

P(t) vertical concentrated dynamic load

PTV total vertical load

f p frequency of a harmonic load

h height of frame

h1, h2 heights of the left and right columns of an

asymmetric frame

m mass density along element length

u, €uu displacement and acceleration in the horizontal

direction

Æ ratio of the column height to the span of a frame

� rigidity ratio of beam to column

ª length ratio of the left column to the right column

of a frame

ŁA, €ŁŁA rotation and rotational acceleration at node A

ŁB, €ŁŁB rotation and rotational acceleration at node B

�21, �31 the second and third components of the first

normal mode vector

1. INTRODUCTION

When a structure moves horizontally, it is usually considered

that this is in response to horizontal loads. However, vertical

loads can also induce horizontal movements. This is because

structures are three-dimensional and movements in the

orthogonal directions are often coupled. For some structures

such horizontal movements can be a significant design

consideration, especially when dynamic response is an

important factor.

Horizontal movements may result from the following:

• Horizontal loading (e.g. wind loading which will generate

translational movement of tall buildings).

• Loading that, although primarily vertical, has a horizontal

component, for example walking. The Millennium Bridge

in London is a structure where significant horizontal

movements were induced by people walking.
1

• Vertical loading acting on asymmetric structures. Due to

the structural geometry, vertical loads can induce both

vertical and horizontal movements (i.e. vertical motion is

coupled with a horizontal response). A simple example is a

uniformly distributed vertical load on an inclined

cantilever.

• Vertical loading acting asymmetrically on structures. Due

to their location, vertical loads can induce both vertical

and horizontal movements. An example is that of a train

crossing a bridge and producing horizontal movements

orthogonal to the rails; this will be discussed later.

This paper considers the last two situations where vertical

loading can generate horizontal movements in frame

structures. Initially a theoretical evaluation of the horizontal
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movement of a symmetric structure subject to asymmetric

loading is considered and a number of load cases and

structural combinations are examined. This is then extended to

antisymmetric and asymmetric structures and the analytical

results are verified by finite element (FE) calculations. An

equivalent horizontal load factor is determined to represent the

effect of the horizontal movements of frame structures due to

vertical loads. For symmetric and antisymmetric frames the

equivalent horizontal load factor can be expressed as a product

of a load factor and a structural factor. Thus the effects of the

distribution of vertical loads and structural geometry can be

examined independently.

The examples presented consider static loading but the results

are equally applicable to dynamic situations although here the

possibility of resonance needs to be considered. An example is

provided to illustrate that vertical dynamic loading can lead to

a resonance that is primarily in the horizontal direction if the

frequency of the dynamic load coincides with a horizontal

natural frequency of the structure. To support the theoretical

findings, measurements of the response of a floor subject to a

crowd of people jumping rhythmically are presented which

show that the vertical and horizontal responses of the floor

occur at the same frequency as that of the vertical load.

The implications of these findings are discussed for

grandstands and bridges, where horizontal responses induced

by predominantly vertical loading may be key design

considerations.

2. STATIC RESPONSE

2.1. A symmetric system

Consider a simple symmetric frame with no horizontal forces

but subjected to any form of vertical load, such as a

concentrated vertical load on a beam as shown in Fig. 1. The

beam has a length of L and rigidity of EIb, and the two

columns have the same length of h and rigidity of EIc.

If the axial deformations of the columns and the beam of the

frame are negligible, the structure has three degrees of

freedom, the horizontal displacement, u, and the rotations, ŁA

and ŁB, at the connections of the beam and columns. Thus the

equations of static equilibrium of the frame are given by:

EI c

h3

24 6h 6h
6h 4h2(Æ�þ 1) 2h2Æ�
6h 2h2Æ� 4h2(Æ�þ 1)

2
4

3
5

u
ŁA

ŁB

8<
:

9=
;¼

0
M A

M B

8<
:

9=
;1

where

Æ ¼ h=L � ¼ EI b=EI c2

M A and M B are the fixed end moments of the beam arising

from the vertical loading. The positive sign occurs when the

end moment induces clockwise rotation. Equation (1) indicates

that the vertical loads, which cause the moments M A and M B,

induce rotations and horizontal displacements of the frame

connections. As the stiffness matrix in equation (1) is fully

populated, the horizontal displacement is coupled with the

rotations.

Expanding the first row of equation (1) gives

u ¼ � h(ŁA þ ŁB)

4
3

from which it can be seen that u is zero only when ŁA ¼ �ŁB.

This occurs when symmetric loads are applied to the beam.

Solving equation (1) gives the horizontal movement of the

frame due to the vertical loads as

u ¼ �(M A þ M B)

4(6Æ� þ 1)ÆL

h3

EIc
4

The negative sign indicates that the movement of the frame is

towards its left. If a horizontal force to the left, �F, is applied

at one of the beam–column connections instead of the vertical

load, solution of equation (1) gives the horizontal displacement

as

u ¼ �(3Æ� þ 2)F

12(6Æ� þ 1)

h3

EI c
5

For the same horizontal displacement at the

beam–column connections of the frame,

equating equations (4) and (5) gives

F ¼ (M A þ M B)12(6Æ� þ 1)

4(6Æ� þ 1)(3Æ� þ 2)ÆL

¼ (M A þ M B)

LPTV

3

(3Æ� þ 2)Æ
PTV

¼ CLCS PTV ¼ CLS PTV

6

in which

h

L

(a) (b)

Fig. 1. A symmetric frame subject to an asymmetric vertical load:
(a) frame and loading; (b) deformations
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CL ¼
M A þ M B

LPTV
7

CS ¼
3

(3Æ� þ 2)Æ
8

CLS ¼ CLCS9

where PTV is the total vertical load; CL is a load factor that

relates to the type and distribution of vertical loads; CS is a

structural factor that is a function of structural form, Æ, and

the distribution of member rigidities, �; and CLS is the

equivalent horizontal load factor.

It can be seen that the smaller the values of Æ and � the larger

the structural factor. It should also be noted that the load

factor and the structural factor are independent for this case.

Equation (6) indicates that the equivalent horizontal load can

be expressed as a product of the load factor, the structural

factor and the total vertical load. Table 1 provides values of the

load factor for several vertical load distributions on the beam

with two fixed ends. Table 2 shows the structural factor for a

range of geometry and rigidity ratios.

Consider a particular case where Æ ¼ 1, � ¼ 1 and a

concentrated load, P, acts at a quarter of the length of the

beam as shown in Fig. 1. The moments in equation (1) are

M A ¼ �
3Ph

64
M B ¼

9Ph

64
10

Substituting these into equation (6) gives

F ¼ 63P

1120
¼ 0:05625 P11

In this case the effect of the vertical load, P, on the horizontal

movement of the frame is equal to that of a horizontal load of

5:625% P.

2.1.1. Example 1: Consider the frame shown in Fig. 1(a) with

h ¼ 6:0 m, L ¼ 6:0 m, E ¼ 30 3 109 N=m2, I b ¼ I c ¼
0:254=12 ¼ 3:255 3 10�4 m4 and P ¼ 100 kN (acting on a

quarter of the length of the beam from the right end).

Figure 1(b) shows the deformed shape of the frame subject to

the concentrated vertical load. The horizontal displacements

calculated using equation (5) and the finite element method
2

are �7:406 mm and �7:405 mm, respectively.

The combined effect of the load and structural factors is shown

in Table 3, which provides the equivalent horizontal load factor

for three different load distributions on frames with Æ ¼ 0:5,

1·0 and 2·0, and � ¼ 0:5, 1·0 and 2·0.

From Tables 1, 2 and 3 it can be concluded that:

• The magnitude of the horizontal displacement induced by

vertical loads (equation (4)) or the equivalent horizontal

load (equation (6)) depends on the load distribution and the

structural form.

• The structural factors are significantly larger than the load

factors.

• The smaller the values of Æ and �, the larger the equivalent

horizontal load (i.e. if the frame is relatively low and has a

relatively large span, and/or the rigidity of the beam is

smaller than that of the column, the frame will be

subjected to a relatively large equivalent horizontal). Hence

the load equivalent horizontal load for a taller frame is

smaller than that for a similar lower frame if both are

subjected to the same vertical loading.

• The height/length ratio, Æ, is more significant than the

rigidity ratio, �, in determining the magnitude of the

horizontal movement.

• The horizontal movement of a frame due to vertical loads

is zero only when M A ¼ �M B (i.e. when concentrated

loads act on the beam–column joints or when a symmetric

load is applied to the

beam.

2.2. An antisymmetric

system

If the left column of the

frame shown in Fig. 1(a) is

rotated through 1808 around

its connection to the beam, it

becomes antisymmetric as

shown in Fig. 2(a). The

equivalent horizontal load

can be found, as in section

2.1, by solving its

equilibrium equations as

Load distribution MA MB CL

Uniformly distributed load over full length �qL2=12 qL2=12 0

Concentrated load acting at a quarter of the
span from the right

�3PL=64 9PL=64 3=32

Uniformly distributed load over a half of the
span from right

�5qL2=192 11qL2=192 1=16

Uniformly distributed load over three quarters
of the span from right

�63qL2=1024 81qL2=1024 3=128

Table 1. The load factor, CL, for different load distributions for a symmetric system

� ¼ 0:5 � ¼ 1:0 � ¼ 2:0

Æ ¼ 0:5 2·1818 1·7143 1·2000
Æ ¼ 1:0 0·8570 0·6000 0·3750
Æ ¼ 2:0 0·3000 0·1875 0·1071

Table 2. The structure factor, CS, for different ratios
of length and rigidity for a symmetric system
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F ¼ (M B � M A)

4(2Æ� þ 1)ÆL

12(2Æ� þ 1)

(Æ� þ 2)

¼ (M B � M A)

LPTV

3

(Æ�þ 2)Æ
PTV ¼ CLCS PTV ¼ CLS PTV

12

where

CL ¼
M B � M A

LPTV
13

CS ¼
3

(Æ� þ 2)Æ14

and CLS is defined by equation (9). Equations (12), (13) and

(14) have the same form as equations (6), (7) and (8). For

comparison similar tables for the load factor, structural factor

and equivalent horizontal load factor of the antisymmetric

frame are given in Tables 4, 5 and 6.

In addition to the conclusions

drawn from section 2.1,

which are also valid for the

antisymmetric system, it can

be deduced that:

• The load factor and

structural factor for the

antisymmetric systems

are significantly larger

than those for the

symmetric system. Hence,

the magnitude of the

horizontal movement due

to vertical loads depends

on the structural form.

• Equation (12) indicates

that the antisymmetric frame has no horizontal movement

when M A ¼ M B, which requires a particular distribution

of antisymmetric vertical loading. For any other vertical

loading situation, there will be a resulting horizontal

movement.

Example 2: Consider the frame shown in Fig. 2(a) with similar

data to that used for Example 1: h ¼ 6:0 m, L ¼ 6:0 m,

E ¼ 30 3 109 N=m2, I b ¼ I c ¼ 0:254=12 ¼ 3:255 3 10�4 m4

and P ¼ 100 kN (acting on a quarter of the length of the beam

from the right end).

The equivalent horizontal load can be evaluated using equation

(12) as 18:75 kN. The finite element method is used to calculate

the horizontal displacements induced by the vertical load of

100 kN and the horizontal load of 18·75 kN, respectively. These

displacements are identical and have a value of �34:56 mm.

Fig. 2(b) shows the deformed shape of the frame subject to the

concentrated vertical load.

2.3. An asymmetric system

If the lengths of the columns of the frame shown in Fig. 1(a)

are different, the frame becomes asymmetric as shown in Fig.

3(a). The ratios given in equation (9) are redefined as follows:

Æ ¼ h1=L � ¼ EIb=EIc ª ¼ h1=h215

and the equivalent horizontal load becomes

F ¼ 3[(Æ�(2� ª2)þ 2ª]M A þ 3[Æ�(2ª2 � 1)þ 2ª2]M B

ÆL[4(Æ� þ 1)ªþ Æ�(3Æ� þ 4)]PTV

3 PTV ¼ CLS PTV

16

where

CLS ¼
3[(Æ�(2� ª2)þ 2ª]M A þ 3[Æ�(2ª2 � 1)þ 2ª2]M B

ÆL[4(Æ� þ 1)ªþ Æ�(3Æ�þ 4)]PTV
17

CLS is the equivalent horizontal load factor, which is a

function of load distribution, location and structural form. In

contrast to the symmetric and antisymmetric frames considered

� ¼ 0:5 � ¼ 1:0 � ¼ 2:0 � ¼ 0:5 � ¼ 1:0 � ¼ 2:0 � ¼ 0:5 � ¼ 1:0 � ¼ 2:0

Æ ¼ 0:5 0·2045 0·1607 0·1125 0·1364 0·1071 0·0750 0·0511 0·0402 0·0281
Æ ¼ 1:0 0·0804 0·0563 0·0352 0·0536 0·0375 0·0234 0·0201 0.0141 0.0088
Æ ¼ 2:0 0·0281 0·0176 0·0100 0·0188 0·0117 0·0067 0·0070 0·0044 0·0025

Table 3. The equivalent horizontal load factor, CLS, for a symmetric system

h

h

L

(a) (b)

Fig. 2. An antisymmetric frame subject to an
asymmetric vertical load: (a) frame and loading; (b)
deformations
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in the previous two sections, the load factor and the structural

factor are coupled for the asymmetric frame.

Consider ª ¼ 3=2. The equivalent horizontal load factors for

the same loading cases, length ratios and rigidity ratios, as for

the symmetric and antisymmetric frames, are given in Table 7.

Example 3: Consider the frame shown in Fig. 3(a) with

h1 ¼ 6:0 m, h2 ¼ 4:0 m, L ¼ 6:0 m, E ¼ 30 3 109 N=m2,

I b ¼ I c ¼ 0:254=12 ¼ 3:255 3 10�4 m4 and P ¼ 100 kN

(acting on a quarter of the length of the beam from the right

end).

The equivalent horizontal

load for this case is evaluated

using equation (16) and is

15:73 kN. The horizontal

displacements calculated

using the FE method for the

vertical and horizontal loads

have the same value of

�10:59 mm. Fig. 3(b) shows

the deformed shape of the

frame.

Comparing the results in

Tables 3 and 7, it can be seen

that the equivalent horizontal

load factors for the

asymmetric frame are significantly larger than those for the

symmetric frame. This again shows that structural form affects

the magnitudes of horizontal movements of frame structures

subject to vertical loads.

2.4. Further comparison

Table 8 summarises the ranges of the equivalent horizontal

load factors for the three types of frame subject to three types

of vertical loading limiting the variations of Æ and � between

0·5 and 2·0. From Table 8 it can be seen that:

• The equivalent horizontal load factors for the

antisymmetric frame have the largest values, but this type

of structure may not be common.

• The equivalent horizontal load factors of the asymmetric

frame are at least double those of the symmetric frame for

the same loading conditions.

3. DYNAMIC RESPONSE

When a structure is subjected to cyclic dynamic loading,

resonance may occur with a consequent, and potentially

significant, increase in response. The possibility of vertical

loading resulting in a resonant horizontal response therefore

must be considered.

Consider the frame discussed

in section 2.1 and shown in

Fig. 1(a) subjected to a simple

sinusoidal vertical load, P(t),

with maximum amplitude P0:

P(t) ¼ P0 sin 2� f pt18

where f p is the frequency of

the load and t is time. The

mass densities for the columns

and the beam are assumed to

be m and 10m respectively,

with the high density of the

beam representing added

loads that may arise from

floors, etc. The equation of the

undamped forced vibrations

of the frame is, when

Æ ¼ � ¼ 1:0,

Load distribution MA MB CL

Uniformly distributed load over full length �qL2=12 qL2=12 1=6

Concentrated load acting at a quarter of the
span from the right

�3PL=64 9PL=64 3=16

Uniformly distributed load over a half of the
span from right

�5qL2=192 11qL2=192 1=6

Uniformly distributed load over three quarters
of the span from right

�63qL2=1024 81qL2=1024 3=16

Table 4. The load factor, CL, for different load distributions for an antisymmetric
system

� ¼ 0:5 � ¼ 1:0 � ¼ 2:0

Æ ¼ 0:5 2·6667 2·4000 2·0000
Æ ¼ 1:0 1·2000 1·0000 0·7500
Æ ¼ 2:0 0·5000 0·3750 0·2500

Table 5. The structure factor, CS, for different ratios
of length and rigidity for an antisymmetric system

� ¼ 0:5 � ¼ 1:0 � ¼ 2:0 � ¼ 0:5 � ¼ 1:0 � ¼ 2:0 � ¼ 0:5 � ¼ 1:0 � ¼ 2:0

Æ ¼ 0:5 0·5000 0·4500 0·3750 0·4444 0·4000 0·3330 0·5000 0·4500 0·3750
Æ ¼ 1:0 0·2250 0·1875 0·1406 0·2000 0·1667 0·1250 0·2250 0·1875 0·1406
Æ ¼ 2:0 0·0938 0·0703 0·0469 0·0833 0·0625 0·0417 0·0938 0·0703 0·0469

Table 6. The equivalent horizontal load factor, CLS, for an antisymmetric system
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u
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>>:
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>>;

¼

0

M A

M B

8>><
>>:

9>>=
>>;

sin(2� f p t)

19

The elements in the mass matrix are obtained in the same

manner as those in the stiffness matrix. The mode shapes and

frequencies of the structure can be found by solving the

eigenvalue problem associated with equation (19). Taking the

mass density, m, equal to 150 kg=m and other data as used in

example 1, the three natural frequencies of the frame are

1:39 Hz, 5:00 Hz and 14:5 Hz, and the corresponding mode

shapes are shown in Fig. 4. The first mode shows horizontal

movements of the frame while the two other modes give

symmetric and antisymmetric rotations of the beam–column

joints respectively. The response in the first mode of the

frame is
3

A1(t) ¼
�21 M A þ �31 M B

K1

1

1� ( f p= f1)2
sin 2� f pt20

where A1(t) is the amplitude of the horizontal motion of the

frame and �21 M A þ �31 M B is the modal load for the first

mode, which acts in the horizontal direction. Equation (20)

indicates that if the modal load is not equal to zero and the

load frequency, f p, is close to the fundamental natural

frequency, f1, the vertical load will induce resonant vibration

of the frame in the horizontal direction. This conclusion can be

verified numerically.

Example 4: Consider the frame defined in example 1 with

m ¼ 2400 kg=m3 3 (0:25 m)2 ¼ 150 kg=m, P ¼ P0 sin 2� f p t

and P0 ¼ 100 kN.

Dynamic analysis was carried out using LUSAS
2

with the

critical damping set to zero. Fig. 5 shows the time history of

the horizontal motion of the frame, up to 10 s, due to the

vertical load. A typical resonance situation is encountered.

Although the example is simple, it illustrates the important

phenomenon that if the frequency of a vertical load is close to

one of the horizontal natural frequencies of a structure,

resonance in the horizontal direction can occur as a result of

vertical excitation. This situation should be recognised in the

design of some structures.

The necessary condition for no horizontal movement occurs

when the vertical loads are applied either symmetrically on

the beam or at the beam–column joints. For any other

distributions of vertical dynamic loads, resonance can occur in

the horizontal direction.

4. SITE MEASUREMENTS

In the introduction the example of an inclined cantilever was

used to provide an illustration where a vertical load can lead to

both vertical and horizontal movements. With cantilever

grandstands the potential problems induced by people jumping

or bouncing in time to music is topical. This type of cyclic

loading induces a characteristic type of response, which occurs

at the load frequency (the jumping frequency) and whole

number multiples thereof. So

when the structural response

is presented as a spectrum

(i.e. response plotted against

frequency), the response at

specific frequencies is shown.

Measurements on a cantilever

grandstand are presented in

reference 4 and this

characteristic response could

be seen in both the vertical

and the horizontal directions.

For this paper, another,

perhaps less obvious,

example is considered. A

h2

h1

L

(a) (b)

Fig. 3. An asymmetric frame subject to a
symmetric vertical load: (a) frame and loading; (b)
deformations

� ¼ 0:5 � ¼ 1:0 � ¼ 2:0 � ¼ 0:5 � ¼ 1:0 � ¼ 2:0 � ¼ 0:5 � ¼ 1:0 � ¼ 2:0

Æ ¼ 0:5 0·4269 0·3800 0·3146 0·3197 0·2892 0·2442 0·2251 0·2162 0·1952
Æ ¼ 1:0 0·1900 0·1573 0·1184 0·1446 0·1221 0·0938 0·1081 0·0976 0·0796
Æ ¼ 2:0 0·0786 0·0592 0·0400 0·0616 0·0469 0·0322 0·0488 0·0398 0·0285

Table 7. The equivalent horizontal load factor, CLS, for an asymmetric system
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composite floor of area 9 m by 6 m, was tested and the

structural response was measured for a group of people

jumping. Sixty-four students, evenly distributed over the floor,

were asked to jump in time to a musical beat (Fig. 6). At the

centre of the floor, the vertical acceleration was recorded for

just over 16 s, as was the horizontal acceleration in the

direction orthogonal to the direction in which the students

were facing. The peak vertical acceleration was 0:48g and

the corresponding horizontal acceleration was 0:03g. The

autospectra for these records are shown in Fig. 7, and the

characteristic response can be seen in both directions. The test

area was in fact part of the much larger flooring system shown

in Fig. 8 and the loading was thus applied asymmetrically on

the whole structure, which induced the horizontal motion.

Although this is given as an

example of vertical loading

on an asymmetric structure,

it is worthwhile considering

whether people jumping

actually generate horizontal

forces. For example, it is

recognised that people

walking actually generate a

horizontal force, normal to

the direction of walking, of

approximately 10% of the

vertical dynamic force. This

is a result of a horizontal

push from each foot with

each step; a process of

continued correction to

maintain a balanced progress.

Equally an individual

jumping will produce a small

horizontal force simply to

correct for any lateral

movement and so maintain a

selected jumping location.

However, with a group

jumping on a level floor, the

overall sum of these apparent

random horizontal forces

must tend to zero as the

number of people jumping

increases.

5. IMPLICATIONS

It has been shown that vertical loading can produce both

vertical and horizontal motion and, if the loading is dynamic,

resonance can occur in either the horizontal or vertical

direction. Actual frame structures will be more complicated

than the simple frames studied, but they can be considered as

an assembly of these basic units and will possess the features

revealed in sections 2 and 3. It is therefore useful to consider

the implications of these findings for some common types of

structure.

Symmetric frame Antisymmetric frame Asymmetric frame

Concentrated load acting at a
quarter of the span from the
right

0·2045 – 0·0100 0·5000 – 0·0469 0·4269 – 0·0400

Uniformly distributed load over a
half of the span from right

0·1364 – 0·0067 0·4444 – 0·0417 0·3197 – 0·0322

Uniformly distributed load over
three quarters of the span from
right

0·0511 – 0·0025 0·5000 – 0·00469 0·2251 – 0·0285

Table 8. Comparison of the ranges of the equivalent horizontal load factor

(a) (b) (c)

Fig. 4. The three normal modes of the symmetric frame: (a) horizontal movement;
(b) symmetric rotation; (c) antisymmetric rotation

0·4

0·3

0·2

0·1

0

–0·4

–0·3

–0·2

–0·1

Time: s

D
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pl
ac

em
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t: 
m

Fig. 5. Resonant response of the frame

Fig. 6. 64 students jumping on a floor in response to
music
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Although the mechanisms have been illustrated using static

models, it is likely to be the dynamic situations that are of

principal concerns, especially when resonance occurs. Hence,

most of the following examples relate to cyclic dynamic

loading.

5.1. Cantilever grandstands

The inclined cantilever was used in the introduction to

illustrate a simple example of vertical loading inducing

horizontal movement. Cantilever grandstands are frequently

subjected to dynamic crowd loads, which at certain events, like

concerts, are cyclic in nature. Fig. 9 shows the coupled vertical

and front-to-back vibration

of the cross-section of a

grandstand in one typical

mode of vibration. It can be

seen that the front-to-back

movement is larger than the

vertical movements of the

two tiers for this particular

mode. Based on this

observation and the finding

in section 3, the frame is

likely to experience

resonance in the front-to-

back direction if one of the

frequencies of vertical

loading on a tier is close to

the natural frequency

associated with the mode,

even though the vertical

movement will be small.

The fact that the whole

grandstand moves in this

mode means that the modal

mass will be large and hence

the resonance may not

always lead to excessive

movement.

Although the coupling

between vertical movements

and horizontal (front-to-

back) movements is easily

understood, measurements

have indicated that sway

(side-to-side) movements can

also be induced by vertical

loading on some grandstands.

The significance of the sway

movement due to vertical

loads depends on the

structural form. To date there

have been few measurements

of sway movement of

permanent grandstands, but

this, somewhat less obvious

coupling, should not be

overlooked.

As a simple alternative to

evaluating structural

response, frequency limits are sometimes given suggesting

that structures with fundamental frequencies above the limit

will not encounter problems from the specific form of

loading. For example, guidance was issued for permanent

grandstands indicating that structures with a vertical

frequency above 6 Hz should be suitable for concerts.
5

The

rationale was that this avoids resonance from the first or

second Fourier components of the cyclic loading, as the

higher Fourier components have not been observed to cause

problems on this type of structure. However, if this logic is

applied to horizontal movement, a difficulty arises and this

is discussed in the next section.
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Fig. 7. The acceleration spectra for 64 people jumping on a floor: (a) vertical
direction; (b) side-to-side direction
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5.2. Temporary grandstands

Temporary grandstands may also encounter dynamic crowd

loads but here horizontal motion in the sway direction is

usually critical. To avoid dynamic problems the fundamental

natural frequencies of the structures should be greater than the

related load frequencies. For these structures it has been

suggested that sway motion of the crowd will generate

horizontal loads with a frequency up to 0·9 Hz.
5

However, if

vertical jumping or bouncing is encountered this would

generate horizontal motions in a higher frequency range,

typically between 1·8 and 2·3 Hz.
7
. Thus setting a frequency

limit to avoid resonance needs to consider both vertical and

horizontal forms of loading.

When horizontal movements of a grandstand subject to human

loads are observed, they are likely to be induced by vertical

components of human loads rather than their horizontal

components. The study in section 2 shows that the equivalent

horizontal load factor for an asymmetric frame (Table 8) is

larger than the ratio of the horizontal to vertical components

of the loads. From measurements on many temporary

grandstands, Littler
6

has shown that the largest horizontal

accelerations exhibited the same frequencies as the vertical

loading similar to the measurements of the floor response to

jumping.

5.3. Cable-suspended bridges

Consider a cross-section of a cable-suspended bridge where the

two cables are perpendicular to the bridge deck and a vertical

load is applied asymmetrically on the deck as shown in Fig.

10(a). It can be shown that there is no horizontal movement

under the vertical load. This is because the vertical and

horizontal movements are not coupled and the vertical load

produces vertical movements, which are due to elastic

elongation of the cables.

If the two cables are inclined as shown in Fig. 10(b), it can be

shown that the deck will experience both horizontal and

rotational movements when it is subjected to an

asymmetrically applied vertical load. Due to the inclination of

the cables the vertical and horizontal movements of the deck

are coupled. Thus an asymmetrically applied vertical load will

induce both vertical and horizontal movements, which are
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Fig. 9. Typical mode of vibration of a frame model of
a cantilever grandstand showing coupled vertical and
front-to-back movements
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mainly due to the geometry of the system. This can be

demonstrated using a simple model. Fig. 11 shows a metal

plate held by two inclined strings. When a concentrated load

acts at a quarter point of the plate, it produces horizontal and

rotational movements.

The behaviour of cable-suspended bridges is different to that of

the frame structures studied in sections 2 and 3. However,

cable-suspended bridges are likely to be more sensitive to

horizontal movements induced by vertical loads than frame

structures. Thus it is pertinent to examine the horizontal

movements induced by both vertical and horizontal loads.

5.4. Railway bridges

Horizontal movements of some railway bridges in China have

been observed due to the increasing speed of trains and a

number of bridges are now being reassessed for safety. As there

are often two or more rail tracks on a bridge, the loading from

any one train is effectively asymmetrical on the structure and

hence horizontal motions as described in section 2.1 are

generated. There will also be some horizontal forces generated

by lateral movement of the railway vehicles, even along

straight tracks. With the increasing speed of trains, the loading

frequency will increase and this may be a problem if resonance

occurs. Therefore it is appropriate to check horizontal as well

as vertical natural frequencies of bridges to ensure that both

are above the likely loading frequencies associated with trains

running at higher speeds.

6. CONCLUSIONS

The paper has examined the horizontal movements of frame

systems induced by vertical loads. The significance of such

horizontal movements is represented by the equivalent

horizontal load factor. It is concluded that:

(a) With few exceptions, vertical loads acting on frame

structures induce horizontal movements of the structures.

Exceptions are symmetric structures subject to symmetric

vertical loads and (rarely) antisymmetric structures subject

to antisymmetric loads.

(b) The magnitudes of the horizontal movements of frame

structures due to vertical loads depend on the load

distribution and the structural geometry.

(c) Structural form is more significant than load distribution to

the magnitude of the horizontal movements.

(d) The taller the frame, the smaller the equivalent horizontal

loading.

(e) When the frequency of a vertical dynamic load is close to

one of the natural frequencies of a structure in its

horizontal direction, resonance in the horizontal direction

can occur.

(f ) It is likely to be dynamic load situations that are of

principal concern, especially when resonance may occur.

These findings may be useful when examining the horizontal

response of structures, such as grandstands and bridges, which

are subjected to predominantly vertical loads. The implications

of the findings in practical structures have been discussed. An

awareness of these findings may help to identify and avoid

some potential problems.
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Fig. 10. Cross-sections of cable-suspended bridges

Fig. 11. Demonstration of horizontal movement
induced by a vertical load
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