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ABSTRACT

This paper is concerned with modelling the vertical vibration of the human body in a standing position. The
human body is modelled as a column consisted of two uniform members with different properties. Solutions
of the free vibration of the model are given and the effect of several distributions of the stiffnesses are
considered. The modal mass, frequencies and axial stiffnesses of four people are determined using a
combination of this model and experimental experiments. Based on the proposed model, it is found that: 1)
the fundamental mode of the human body shows that all parts of the human body vibrate in the same
direction and the top of the body has the maximum movement; 2) the modal mass of the human body can be
calculated and the model provides a theoretical basis for studying human-structure vibration.

1. INTRODUCTION

The study of the response of the human body to shock and vibration is an important part of
biomechanics engineering research, and experimental and numerical investigations have been
conducted for many years. Because the human body is a complex organic system, experimental
investigations play an important role in studying human body vibration. A shaking table is often
adopted for measuring the impedance or the apparent mass from which the fundamental frequency
of the human whole-body can be abstracted. This technique seems unstable for people in a standing
position, because people naturally stabilise themselves when the shaking table moves. The
stabilisation may be tensing the muscle or bending the knees. The former will increase the body
stiffness which results in a higher body frequency while the latter will reduce the whole body
stiffness which produces a lower frequency. This may explain why the resonance frequencies of
standing men vary over a wide range from 4 to 16 Hz[1]. A method for the indirect measurement of
the human whole-body frequency has been developed[2] which can avoid the above difficulties in
the measurement of the frequency at the standing position. However, it seems improbable that the
higher frequencies and vibrating modes of a human body can be measured through experimental
studies.

A viable alternative to experimental evaluation is to approximate the human body by a
mathematical model and analyse the desired behaviour of the model. A human body can be
represented by a lumped system consisting of masses, springs and dashpots. 1SO5982 [3] and
Ref[4] provided a two degree-of-freedom system, although it is really two single-degree-of-
freedom systems, with the model parameters being determined by experiments. Nigam and
Malik[5] introduced a 15 DOF spring mass system. This model was based on an anthropomorphic
model of the average male body in a standing posture with the body modelled using ellipsoidal
segments. Assumptions of the mass and stiffness of these segments were used to derive the lumped
parameters of the system. In general the difficulty with using this type of model is to determine the
parameters of the system, such as mass, stiffness of spring and damping of each lumped mass.

This paper treats a human body as a continuum rather than a discrete system. The vertical vibration
of the human body in a standing position is modelled as the axial vibration of a one-dimensional
member. To represent the main characteristics of the human body, the one-dimensional member
consists of two uniform bars with different properties. In combination with the indirect
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measurement of the fundamental frequency of the human body at the standing position, the axial
stiffness of the human body can be determined and the frequencies of higher modes can be
predicted. The advantages of using this model are that the modal mass of the human body can be
evaluated and the model has fewer unknowns to be determined than the discrete system.

2. ANALYSIS OF THE VIBRATORY MODEL
2.1 Assumptions for the model development

To study a human body theoretically, it is important to clarify the basic assumptions involved in the
development of the model. They are:

1. Local vibrations in a human body are neglected.
For the global vibration of a human body, the local vibrations of the body, such as the arm vibration
and eye ball vibration, are insignificant.

2. The human body is modelled in two uniform parts.

The human body is a complex continuum. It would be a hopeless task to attempt to model this
complex system exactly. Basically, the human body consists of four main parts: head, torso,
arms and legs (Fig.1.a). Because the head has less than 5% of the whole body weight[5] and the
vibration of arms is neglected, the head, arms and the torso are grouped as the upper part of the
body while legs and feet are grouped as the lower part (Fig.1.b). Only the differences in the
mechanical properties between the two parts are modelled (Fig.1.c).

3. The upper part has two third and the lower part has one third of the whole body weight.

Nigam[5] gave the weight of fifteen segments of a whole body as 74.9kg with the body segments
considered to be ellipsoidal and the density of each segment taken to be the same and equal to
the average density of the whole body. When the weight of these segments are grouped into the
upper and lower parts of the body, it is noted that the lower part has a weight of 24.94kg while
the upper part is 49.96kg, i.e. almost the double the weight of the lower part.

4. The upper and lower parts have the same height.
By simple measurements, the heights of the upper and lower parts of people are approximately
the same.

(a) (b) (©
Fig.1 Model Simplification of a Standing Person
Based on the above assumptions, the vertical vibration of the human body can be studied as the
axial vibration of a column assembled from two uniform bars having different properties.



2.2 Free axial vibration of the model

For a column represented by two uniform bars (Fig.1.c), the properties are constant along each
segment and the equation of axial motion[6,7] is:

J°u Ju

mi?—kiyzo i:1,2 (1)

The solution of the above equation has the following form
u(x, t) =T(t)O(x) )
By substituting Eq.2 into Eq.1 and separating the variables, the differential equation of the mode

shape is
®/(x) +b*®d,(x)=0 i=12 (3)

b,:w\/r;:: i=12 @)

where m;, k. and ®,(x) are the mass density, the tension stiffness of the cross-section and the

mode shape of the i th segment of the column. @ is the frequency of the column in the axial
vibration. The solution of Eq.3 is
®,(x) =C, cosbx; + D;sinbx; =12 (5)

in which

in which the coefficients C, and D, define the mode shape and can be determined according to the
boundary conditions.

For the lower part: (i=1)

At x,=0 ®,(0)=0 @)

At x =L N, (L) = k(L) (b)
For the upper part: (i=2)

At x,=0 ®,(0)=C, (©)

At x,=0 N, (0) = k,@,(0) (d)

At X, =L, N,(L,) = k,@5(L,) =0 (e)

Due to continuity, the deformation and force at the transition point between the lower and upper
parts are the same, i.e.

O(L)=D,0)  and  Ny(L)=N,0) ("

Following Egs.(a-d and f), the coefficients C,C,,D, and D, can be determined and the modes
become:

®,(x,) = Dsinbx; 0<x, <L

6
Mk, cosb L, sinb,x,} 0<x, <L, ©)

®,(x,) = D{sinbL, cosh,x, +
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Where D is an appropriate factor that makes @,(L,)=1. Substituting the second formula of Eq.6
into Eq.(e) yields the transcendental axial frequency equation as follows:

tanb L, tanb,L, = /rr:l—tl (7)

When the ratio of the tension stiffnesses of the upper and lower parts of the column are given, the
solution of EQ.7 can be obtained. However it is not clear what the stiffness ratio is. Several possible
ratios are considered and the most appropriate one is found later from the comparison between
calculations and measurements. Three cases are given as follows:

Case 1. If k, =2k,, then b, =2b and /ml—kl =1
m2k2

The frequency equation becomes

tanbL tan2bL =1 (8)

2.3 Solutions of special cases

The first four solutions of Eq.8 are

b L, =05236, 2618, 3665, 5.760

The corresponding mode shapes are

@,(x,) = Dsin(b,L, 1) 0<x <L
- ©)
@,(x,) = Dsin[blL1(1+%)] 0<x, <L,
Case 2. If k, =k, , then b, =+/2b and /ml—ki :Q.
mk, 2
The frequency equation is
V2
tanb L, tan~/2b L, = - (10)
The first four solutions of the above equation are:
b L, =05813, 2.0, 3237, 4553
The corresponding mode shapes are
®,(x,) = Dsin(b L, -2) 0<x <L,
L,
s ) (12)
@, (x,) = D{sinb L, cos(«/?blLif)+7cosblLisin(«/§b1L1i) } 0<x, <L,
mk,
Case 3. When 2k, =k, , there are b, =b, and ok 05.
272
The frequency equation is
tan’bL, =05 (12)



The first four solutions of the above equation are:

b L =0.6155, 2526, 3757, 5668

The corresponding mode shapes are
®,(x,) = Dsin(blLlf) 0<x <L,

@,(x,) = D{sinbL, cos(blLl%)Jr0.5cosblL15in(blL1%) } 0<x, <L,

3. MECHANICAL CHARACTERISTICS OF STANDING PEOPLE
3.1 Modal mass

When considering vibration of a particular mode, the modal mass is required for the analysis. The
modal mass of the j th mode is

* L L
M= "m®f(x)dx+ - mdf,(x)dx (14)

For the j th mode the mode shape is determined using the j th solution of bL,. Following the
assumptions that L =L, and m, =2m,, for people having a total mass of M, the mass densities of
the lower and upper parts of the column are respectively:

M 2M

m=— and m,=—

3L 3L,

Substituting Eq.15 into Eg.14 and integrating Eq. 14 for the three cases, the modal masses are
obtained and given in Table 1.

(15)

Table 1. The Modal Mass of the First Four Mode

Stiffness Modal Mass (M)
Ratio First Mode Second Mode | Third Mode Fourth Mode
Case 1: k, =2k, 0.5M 0.5M 0.5M 0.5M
Case 2: k, =Kk, 0.589M 0.516M 0.664M 0.505M
Case 3: 2k, =k, 0.667M 0.667M 0.667M 0.667M

It can be seen from Table 1 that

e the stiffness ratios diversify up to 300% while the modal masses change up to 33%.
¢ the modal masses are constant for Case 1 and Case 3 while the modal masses vary with different
modes for Case 2 for the first four modes.

3.2 Fundamental frequency

The solution of the eigenvalue equation (Eq.4) provides a relationship between two unknowns, the
frequency and the axial stiffness of the cross section. Therefore either the frequency or the axial
stiffness should be determined using an alternative means, such as experiment. A method for the
indirect measurement of human whole-body frequency[2] provided a way to obtain the human body



frequency without using a shaking table. The test set-up is basically a simply supported reinforced
concrete beam. The fundamental frequency of a human body can be calculated based on the
frequency measurements of the bare beam and the human occupied beam, and expressed in the
following form:

(16)

Where M, and M, are the modal masses of the human body and the test beam respectively, and
f,, f,and f, are the fundamental frequencies of the human body, the bare beam and the measured

frequency of the human occupied beam. The fundamental frequency and the modal mass of the
beam are 18.68 Hz and 107.5 kg respectively. Four people were tested[2]. The body weight M, the
measured frequency, f,, and the calculated fundamental frequency of human body, f,,

corresponding to three different modal masses of the human body are listed in Table 2.

Table 2. Indirectly Measured Fundamental Frequency of Standing People

Weight | Measured Frequency Modal Mass
(M) (kg) of the human 0.5M 0.589M | 0.667M
occupied beam (f,) (Casel) | (Case2) | (Case 3)
P1 63.5 20.02 11.05 10.42 9.96
P2 79.0 20.51 11.55 10.90 10.42
P3 82.5 20.51 11.38 10.73 10.25
P4 95.5 21.00 11.87 11.21 10.72

It can be seen from Table 2 that

o the variation of the modal mass is 33% while the variation of the body frequency is about 10%
between the maximum and the minimum values.

e The maximum difference of weight between individuals reaches 50% while the maximum
difference of frequency is less than 8%.

e The calculated human body frequency based on one measurement depends on a correct value of
the modal mass of the body. However, the difference of the body frequency between individuals
for any selected modal mass is similar.

e Case 1 provides the stiffest human body model while Case 3 gives the most flexible.

3.3 Axial stiffness

Based on the solutions of the eigenvalue equations (Egs. 8,10 and 12) and Eq.4, the axial stiffness
of the human body can be determined using the following formula:

2
k = k_o miLZi (17)
L (L)
For the upper and lower parts the axial stiffness can be expressed as follows:
2 2

2 and 2T o 2
3(bL,) 3(b,L)

For the four people the body axial stiffnesses are listed in Table 3

Table 3. Body Axial Stiffness of Human Body for Studied Cases

Case 1 (kN/m) Case 2 (kN./m) Case 3 (kN./m)

Lower(k,) | Upper(k,) | Lower(k) | Upper(k,) | Lower(k) | Upper(k,)
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P1 372.2 186.1 268.5 268.5 245.3 490.6
P2 505.9 252.9 365.5 365.5 334.0 668.1
P3 512.8 256.4 369.9 369.9 337.6 675.1
P4 645.9 322.9 467.4 467.4 427.3 854.8

It can be seen from Table 3 that

e The body axial stiffness varies significantly for the four test people. The variation reaches 75%
regardless of the studied cases, or the stiffness distributions.

e The stiffness of the lower part in Case 1 is about 50% bigger than that in Case 3 while the
stiffness of the upper part in Case 1 is over 160% less than that in case 3. This observation is true
for each individual.

3.4 Higher Frequencies

Based on Eq.18, the expression for obtaining the higher frequencies of the human body is:

fJ_:bj_L1 iﬁ:bi_l‘ifl j=234- (19)
2z ML, bl

The values of b;L, can be found in Section 2.3 for three studied cases. The first three higher
frequencies of a human body for the three cases and the four test people are listed in Table 4.

Table 4. The first three frequencies of human body for three studies cases and four people

Case 1 Case 2 Case 3

f, f, f, f, f, f, f, f, f,

P1 55.25 77.35 121.6 35.85 58.02 81.26 40.88 60.80 91.72

P2 57.75 80.85 127.1 37.50 60.69 85.00 42.76 63.60 95.96

P3 56.89 79.65 125.2 36.92 59.75 83.67 42.07 62.57 94.39

P4 59.35 83.09 130.6 38.59 62.42 87.42 43.99 65.43 98.72

The calculated higher frequencies in Table 4 show that

e The difference of higher frequencies between individuals is small, similar to the fundamental
frequency. This is almost independent of the studied cases, or the distribution of the body
stiffness.

e The difference of higher frequencies between different cases are significant, i.e. the assumption
of the stiffness distribution significantly affects the actual stiffness of the human body.

3.5 Mode Shapes
The human body response can be expressed as the summation of response of each mode. The mode
shapes for the studied three cases are given in Eqgs.(9, 11 and 13). Substituting the values of b;L,,

four modes are defined and shown in Figs.2-4.
Comparing these mode shapes for the three cases, it can be observed that

e The fundamental modes in the three cases are similar, and show that all parts of the human body
vibrate in the same direction and the top of the body has the maximum movement. Reproducing
the discrete model proposed by Nigam[5], the above characteristics of the fundamental mode are
also observed.

e For the higher modes the mode shapes are similar between Case 2 and Case 3 while the mode
shapes in Case 1 are notably different from those in other two cases. The shapes that have one or
four intersections on the horizontal axis do not exist in Case 1.




e In Cases 2 and 3, the second mode shows that the top half of the upper part and the rest of the
body move in the opposite directions. The top half of the lower part has the maximum movement
in this mode.

e The shape of the second mode in Case 1 is similar to that of the third modes in the other two
Cases. The lower part moves in the same direction as the top half of the upper part while the

movement of the lower half of the upper part is opposite to that of the top half.
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4. DISCUSSION
4.1 Human Models

To model the dynamic characteristics of people, investigators have proposed various lumped
parametric vibratory models consisted of discrete masses, springs and viscous dashpots.

The simplest one is the 2 DOF model proposed by Coermann[8] and a human vibration simulator
was produced[4]. The development of this model was based on correlating the model parameters to
the results of experimental investigations into the mechanical impedance of the human body. The
idealisation of the human body is shown in Fig.5. This model has been adopted by ISO 5982 for
deriving the driving point impedance of the human body at sitting and standing positions. The
parameters of the model are given in Table 5. The data in the Table indicates that the Mass 2
consists of the masses of the head and the upper torso and the Mass 1 represents the rest of the
body.
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Fig.5 2 DOF 1SO Model

Table 5 Parameters of the 2 DOF 1SO Model for Standing people

Element Mass Stiffness Damping
(kg) (KN/m) (KN s/m)
1 62.0 62.0 1.46
2 13.0 80.0 0.93
Note: The total body mass is 75.0 kg.

This 2 DOF model is actually two independent SDOF systems rather than a 2 DOF system because
there is no connection between two masses except the rigid frame. This model suggests that the
vibration of the human head and the upper torso is independent of the vibration of the rest of the
body. Although this model provided two frequencies that match the measurements, this model is
conceptually incorrect.

A more complex model was proposed by Nigam and Malik [5]. The model is a 15 DOF mass-spring
system. The more sophisticated the model, the more parameters to be determined and the more
difficulties involved. Using this model, up to 15 modes and frequencies of the human body can be
calculated. The accuracy of this type of model is always questionable. When considering human
response to vibration, this model has limited practical value because the model does not include any
damping capability.

In this paper, a continuous human body model at the standing position is proposed. Simplifications
are made to neglect local vibrations of any part of the body and the differences between different
segments in the upper and lower parts. Therefore this model is valid for studying the global
vibration of a standing person. The advantages of using this model in the study of the dynamic
characteristics and the response of the human body to vibration are:

e The human body response to vibration can be calculated as the summation of the responses of a
few single degree-of-freedom systems according to their respective modes.

e The model has less unknown parameters to be determined than a discrete model.

4.2 Theoretical and experimental methods

The major problem with the theoretical study of the human body is the determination of the basic

input parameters, whilst with the experimental study the major problem is the evaluation of mode
shape and higher order modes. However, the theoretical study can be used to calculate mode shape
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and higher modes, whilst the experimental study can be adopted to determine the basic
characteristics of the human body. Therefore, a combined use of both methods may provide a
means to overcome their respective weaknesses.

Based on the assumption in Section 2.1, the proposed theoretical model has two independent and
unknown parameters, k; and k,. When Eq.16 and the related experiments are provided, the

unknowns are reduced from two to one, i.e., the ratio of the axial stiffness or the modal mass of the
human body. Therefore the sensitivities of the frequencies and mode shapes of the human body to
the modal mass or the ratio of the axial stiffness are studied. Using the proposed model, the human
body response at the standing position to the vertical vibration can be investigated and the body
response in each mode can be identified. In order to obtain the correct ratio of the axial stiffness or
the modal mass of the human body, another relationship should be provided and associated tests
may be required.

4.3 Human-structure vibration

In the study of the human response to structural vibration and structural vibration involving people,
the human body and the structure should be treated as a global system[9]. For some structures this
topic is particularly important:

o Office floors where sitting people may be disturbed by floor vibration induced by other people
walking or jumping.

e Grandstands where a crowd of people is involved. Both the structural safety and human comfort
should be considered.

The structural vibration of these structures is dominated by their fundamental mode and usually the
fundamental frequencies of these structures are below 10 Hz. The structural vibration is often
induced by human movements. The human induced loads have a range of frequencies and the
significant ones are less than 10 Hz. It has been noted in this study that the second frequency is
about four, three and five times the fundamental one in the studied three cases respectively. To
consider the global effect of human response to structural vibration and the structural vibration
where people are involved, only the response of the fundamental mode of the human body need to
be taken into account. Therefore, a human body can be represented as a single degree of freedom
system, according to its fundamental mode, on a structure for the study of the human-structure
vibration.

5. CONCLUSIONS

A continuous model of the vertical vibration of the human body model in a standing position is
proposed in this paper. The model can be used to investigate modes and frequencies of a human
body and to study the human body response subject to given loads. An unknown, the ratio of the
axial stiffness or the modal mass, is included in this model, therefore, a parametric study is
conducted.

The main conclusions drawn from this study are:
1. The modal mass of the human body can be calculated based on the proposed model and this
provides a theoretical basis for studying the human-structural vibration. Further preliminary tests

suggest that the modal mass of the human body is about two thirds the whole body weight. This
requires further verification.
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. When the assumed ratio of the axial stiffness of the upper and lower part of the human body

varies up to 300%, the corresponding modal mass fluctuates about 33% and the human body
frequency changes about 10%.

. The maximum difference of body weight between tested individuals varies up to 50% while the

maximum difference of the fundamental frequency of human bodies is less than 8%.
The fundamental mode of the human body shows that all parts of the human body vibrate in the
same direction and the top of the body has the maximum movement regardless of the differences
between individuals and between the ratios of axial stiffness of the proposed model.

The further study is to determine the unknown in the model and the critical damping of the model,
and then to investigate the human body response to given loads.
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