
THEODORE VORONOV. VECTOR CALCULUS. Fall 2005. Selected solutions

§6 Forms and vector fields on Euclidean space

Problem 1. For spherical coordinates we have the following expression of
the basis vectors in the Cartesian coordinates x, y, z:

er = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

eθ = (r cos θ cos ϕ, r cos θ sin ϕ,−r sin θ)

eϕ = (−r sin θ sin ϕ, r sin θ cos ϕ, 0)

Using this, we can calculate the pairwise scalar products. First the scalar
squares: (er, er) = (sin θ cos ϕ)2+(sin θ sin ϕ)2+(cos θ)2 = sin2 θ+cos2 θ = 1;
and, similarly, (eθ, eθ) = r2, (eϕ, eϕ) = r2 sin2 θ. Now, (er, eθ) = (sin θ cos ϕ)
(r cos θ cos ϕ) + (sin θ sin ϕ)− (cos θ)(r sin θ) = r sin θ cos θ− r sin θ cos θ = 0.
Similarly one can show that (er, eϕ) = 0 and (eθ, eϕ) = 0. Therefore we have
the following matrix:

(gij) =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 ,

where the coordinates are in the order r, θ, ϕ, and g = det(gij) = r4 sin2 θ.
Hence

√
g = r2 sin θ and the volume form is dV = r2 sin θ dr dθ dϕ.

Problem 2.
(a) Using θ, ϕ as parameters we have for a point of the sphere:

x = (R sin θ cos ϕ, R sin θ sin ϕ, R cos θ),

and the corresponding basis in the tangent plane is eθ, eϕ, where

eθ = (R cos θ cos ϕ, R cos θ sin ϕ,−R sin θ)

eϕ = (−R sin θ sin ϕ, R sin θ cos ϕ, 0).

(Notice the difference with the previous problem; there coordinates in R3 are
considered and r is a variable, while here R is a constant and we consider
coordinates on the 2-dimensional sphere.) We obtain the matrix (hij) of the
pairwise scalar products (i, j = 1, 2):

(hij) =

(
R2 0
0 R2 sin2 θ

)
.

Hence its determinant equals R4 sin2 θ, and the area element for the sphere
is

dS = R2 sin θ dθ ∧ dϕ.
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(b) We denote the basis vectors corresponding to x, y in the tangent plane
to the sphere at a point x as ex, ey. They should not be confused with the
basis vectors in R3 corresponding to the Cartesian coordinates x, y, z. We
have x = (x, y,

√
R2 − x2 − y2). (This parametrization is valid for the upper

hemisphere.) Thus

ex =
∂x

∂x
= (1, 0,− x√

R2 − x2 − y2
)

ey =
∂x

∂y
= (0, 1,− y√

R2 − x2 − y2
)

and for the pairwise scalar products we have: (ex, ex) = 1 + x2

R2−x2−y2 =
R2−y2

R2−x2−y2 , (ex, ey) = xy
R2−x2−y2 , and (ey, ey) = R2−x2

R2−x2−y2 , giving a matrix (hij):

(hij) =

(
R2−y2

R2−x2−y2
xy

R2−x2−y2

xy
R2−x2−y2

R2−x2

R2−x2−y2

)
.

Its determinant equals

(R2 − x2 − y2)−2
(
(R2 − x2)(R2 − y2)− x2y2

)
=

(R2 − x2 − y2)−2R2(R2 − x2 − y2) = R2(R2 − x2 − y2)−1

Hence the area element for the sphere is

dS =
R dx ∧ dy√
R2 − x2 − y2

=
R dx ∧ dy

z
.

Problem 3. In Cartesian coordinates in Rn if X =
∑

X iei, then

X · dr =
∑

X i dxi

X · dS =
∑

(−1)i−1X i dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn

(summation from 1 to n). In particular in R3, X ·dr = X1 dx+X2 dy+X3 dz
and X · dS = X1 dy ∧ dz + X2 dz ∧ dx + X3 dx ∧ dy (notice the order of
factors in the second term). Hence we get the following answers:
(a) for X = 2e1 − 3e2 + 4e3,

X · dr = 2 dx− 3 dy + 4 dz

X · dS = 2 dy ∧ dz − 3 dz ∧ dx + 4 dx ∧ dy

(b) for X = (2x + z)e1 + 5ye2 + (x− y + z)e3,

X · dr = (2x + z) dx + 5y dy + (x− y + z) dz

X · dS = (2x + z) dy ∧ dz + 5y dz ∧ dx + (x− y + z) dx ∧ dy
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(c) for X = r (where r is the radius-vector),

X · dr = x dx + y dy + z dz

X · dS = x dy ∧ dz + y dz ∧ dx + z dx ∧ dy

Problem 4. The gradient grad f is the vector field corresponding to the
1-form df , i.e., grad f · dr = df or

(grad f, Y ) = 〈df,Y 〉

for an arbitrary vector field Y (at the LHS stands the scalar product of
two vectors, at the RHS the value of a 1-form on a vector). Let grad f =
(grad f)iei. Taking as Y the basis vector fields ej associated with an arbi-
trary coordinate system, i = j, . . . , n, we obtain therefore

(grad f)igij =
∂f

∂xj
.

Here gij = (ei, ej). From this we get finally

(grad f)i = gij ∂f

∂xj

where gij with upper indices denote the elements of the inverse matrix for
(gij).

Since for both polar coordinates in R2 and spherical coordinates in R3

the matrix (gij) is diagonal (see above for the case of spherical coordinates),
multiplying by the inverse matrix reduces to the division by the diagonal
entries of (gij). We get

grad f =
∂f

∂r
er +

1

r2

∂f

∂ϕ
eϕ

for polars in R2 and

grad f =
∂f

∂r
er +

1

r2

∂f

∂θ
eθ +

1

r2 sin2 θ

∂f

∂ϕ
eϕ

for spherical coordinates in R3.

Problem 5.
(a) In Cartesian coordinates r =

∑
xiei and r =

√
(x1)2 + . . . + (xn)2,

hence
∂r

∂xi
=

2xi

2
√

(x1)2 + . . . + (xn)2
=

xi

r
.
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It follows that

grad r =
∑ 1

r
xiei =

r

r
,

i.e., the unit vector in the direction of r.
(b) In polar coordinates in R2, using the result of Problem 4, we have

grad r =
∂r

∂r
er +

∂r

∂ϕ
eϕ = 1er + 0eϕ = er.

(c) Similarly, in spherical coordinates in R3, we have

grad r =
∂r

∂r
er + 0 = er.

The answers in parts (b) and (c) of course agree with the answer in part
(a), since the basis vector er is exactly the unit vector in the direction of the
radius-vector.

Problem 6.
First method. In Cartesian coordinates in Rn for X = X iei

div X =
∂X i

∂xi
.

Hence for our vector field X = f(r)r = f(r)xiei where r =
√

(x1)2 + . . . + (xn)2

we have

div X =
∂(fxi)

∂xi
=

(
f ′(r)

∂r

∂xi
xi + f(r)

∂xi

∂xi

)
=(

f ′(r)
xi

r
xi + f(r)

)
= f ′(r)

r2

r
+ nf(r) = f ′(r)r + nf(r).

Second method. Recall that in arbitrary coordinates in Rn for X = X iei

div X =
1
√

g

∂(X i√g)

∂xi
.

Here ei = ∂x
∂xi is the basis associated with a given coordinate system and

g = det(gij), where gij = (ei, ej). We can apply this formula using our
knowledge of polar coordinates in R2 and spherical coordinates in R3 (when
n = 2 and n = 3). Our vector field equals X = f(r)r = f(r)rer. In R2 in
polar coordinates we have

√
g = r and

div X =
1

r

∂(f(r)r2)

∂r
=

f ′(r)r2 + 2rf(r)

r
= f ′(r)r + 2f(r);
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in R3 in spherical coordinates we have
√

g = r2 sin θ and

div X =
1

r2 sin θ

∂(f(r)r3 sin θ)

∂r
=

f ′(r)r3 + 3r2f(r)

r2
= f ′(r)r + 3f(r).

This agrees, of course, with the formula for any n obtained above using
Cartesian coordinates.
Remark. Spherical coordinates r, θ1, . . . , θn−1 can be defined in Rn for arbi-
trary n, generalizing from R2 and R3. For them

√
g = rn−1Ω(θ1, . . . , θn−1),

where Ω(θ1, . . . , θn−1) is a certain function depending only on the angular
coordinates θ1, . . . , θn−1 (for n = 2, Ω(ϕ) = 1; for n = 3, Ω(θ, ϕ) = sin θ).
This “angular factor” is irrelevant for calculating div (f(r)rer), — we get

div X =
1

rn−1Ω(θ1, . . . , θn−1)

∂(f(r)rnΩ(θ1, . . . , θn−1)

∂r
=

1

rn−1

∂(f(r)rn)

∂r
=

f ′(r)rn + nrn−1f(r)

rn−1
= f ′(r)r + nf(r).

Problem 7. If X = rαr in Rn, we can apply the result of the previous
problem. We get

div (rαr) = αrα−1r + nrα = (α + n)rα.

It follows that div (rαr) = 0 in Rn for α = −n. For example, we get the
following vector fields with zero divergence: in R2, the field X = r

r2 ; in R3,
the field X = r

r3 . Remark. Notice that these fields are defined only for r 6= 0.
The equality div X = 0 is valid only for r 6= 0.

Problem 8. When we calculate curl in R3, we use the following formula:

curl X = ∇×X =

∣∣∣∣∣∣
e1 e2 e3

∂1 ∂2 ∂3

X1 X2 X3

∣∣∣∣∣∣
with the right-hand side valid in Cartesian coordinates. Here ∂i = ∂

∂xi ,

X = X1e1 + X2e2 + X3e3,

and ∇ denotes the symbolic vector field ∇ =
∑

ei∂i (formula in Cartesian
coordinates), the components of which are partial derivatives.
(a) We have

div X =
∂(x− y + 3z)

∂x
− ∂(2x + z)

∂y
+

∂(−x + y + z)

∂z
= 1 + 1 = 2;
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curl X =

∣∣∣∣∣∣
e1 e2 e3

∂x ∂y ∂z

x− y + 3z −(2x + z) −x + y + z

∣∣∣∣∣∣ =

e1(1 + 1)− e2(−1− 3) + e3(−2 + 1) = 2e1 + 4e2 − e3.

(b)

div X =

∂(a11x + a12y + a13z)

∂x
+

∂(a12x + a22y + a23z)

∂y
+

∂(a13x + a23y + a33z)

∂z
=

a11 + a22 + a33;

curl X =

∣∣∣∣∣∣
e1 e2 e3

∂x ∂y ∂z

a11x + a12y + a13z a12x + a22y + a23z a13x + a23y + a33z

∣∣∣∣∣∣ =

e1(a23 − a23)− e2(a13 − a13) + e3(a12 − a12) = 0.

(c)

div X =
∂(a12y + a13z)

∂x
+

∂(−a12x + a23z)

∂y
+

∂(−a13x− a23y)

∂z
= 0;

curl X =

∣∣∣∣∣∣
e1 e2 e3

∂x ∂y ∂z

a12y + a13z −a12x + a23z −a13x− a23y

∣∣∣∣∣∣ =

e1(−a23 − a23)− e2(−a13 − a13) + e3(−a12 − a12) =

− 2 (a23e1 − a13e2 + a12e3) .

Remark. Notice that in parts (b) and (c) the components (X1, X2, X3) of
the vector field X = X1e1 + X2e2 + X3e3 can be written asX1

X2

X3

 = A

x
y
z

 =

a11 a12 a13

a12 a22 a23

a13 a23 a33

x
y
z

 ,

with a symmetric matrix A, or asX1

X2

X3

 = A

x
y
z

 =

 0 a12 a13

−a12 0 a23

−a13 −a23 0

x
y
z

 ,

with an antisymmetric matrix A, respectively. The divergence of X equals
(in both cases) the trace of the matrix A, which is zero in the antisymmetric
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case, and the curl of X for an antisymmetric matrix A is equal up to a
constant factor to the vector ω ∈ R3 such that ω × v = Av for any v ∈ R3

(compare with Problem 9, part (b)).

Problem 9.
(a)
First method. One can see that the following identity holds:

curl (fX) = (grad f)×X + f curl X

for arbitrary function f and vector field X in R3 (it immediately follows
from the symbolic determinant formula for calculating curl in Cartesian co-
ordinates). Applying it we get curl (f(r)r) = (grad f(r)) × r + f(r) curl r.
Notice now that grad f(r) = f ′(r) grad r = f ′(r) r/r (see Problem 5) and
that curl r = 0 (check directly!). Hence curl (f(r)r) = f ′(r)r−1r × r + 0 =
0 + 0 = 0.
Second method. We can use a version of the symbolic determinant formula
valid for arbitrary coordinates: if ei = ∂x

∂xi for arbitrary coordinates x1, x2, x3

in an open domain in R3 and X = X iei, then

curl X =
1
√

g

∣∣∣∣∣∣
e1 e2 e3

∂1 ∂2 ∂3

X1 X2 X3

∣∣∣∣∣∣
where Xi = gijX

j = X ·ei. As above, ∂i = ∂
∂xi and gij = ei ·ej, g = det(gij).

In particular, in spherical coordinates r, θ, ϕ we have

curl X =
1

r2 sin θ

∣∣∣∣∣∣
er eθ eϕ

∂r ∂θ ∂ϕ

Xr Xθ Xϕ

∣∣∣∣∣∣
where Xr = X ·er, etc. Hence for X = f(r)r = f(r)rer we immediately get

curl (f(r)r) =
1

r2 sin θ

∣∣∣∣∣∣
er eθ eϕ

∂r ∂θ ∂ϕ

f(r)r 0 0

∣∣∣∣∣∣ = 0

(recall that er · er = 1, er · eθ = 0 and er · eϕ = 0).
(b) Denote Y = Ω× r; we have

Y = e1(ω2z − ω3y)− e2(ω1z − ω3x) + e3(ω1y − ω2x),

where Ω = ω1e1 + ω2e2 + ω3e3. Hence, in Cartesian coordinates

div Y =
∂(ω2z − ω3y)

∂x
+

∂(−ω1z + ω3x)

∂y
+

∂(ω1y − ω2x)

∂z
= 0
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and

curl Y =

∣∣∣∣∣∣
e1 e2 e3

∂x ∂y ∂z

ω2z − ω3y −ω1z + ω3x ω1y − ω2x

∣∣∣∣∣∣ =

e1(ω1 + ω1) + e2(ω2 + ω2) + e3(ω3 + ω3) = 2Ω .

Problem 10. The simplest way is to use the formulae in Cartesian coordi-
nates in Rn:

div X =
∂X i

∂xi
and grad f =

∑ ∂f

∂xi
ei .

We have

div (fX) =
∂(fX i)

∂xi
=

∂f

∂xi
X i + f

∂X i

∂xi
= grad f ·X + f div X

as claimed.

Problem 11. Compare with Problem ?? (the statements are almost iden-
tical). We either apply d to the form ω = 1

2
r2 dϕ and get

dω =
1

2
d(r2 dϕ) =

1

2
2rdr ∧ dϕ = rdr ∧ dϕ = dS,

hence by the Stokes formula∮
∂D

ω =

∫
D

dω =

∫
D

dS = area(D)

(here we used the formula for the area element in polar coordinates dS =
rdr∧dϕ), or we can first rewrite ω in Cartesian coordinates: ω = 1

2
(xdy−ydx)

and then dω = dx ∧ dy = dS, the rest being the same. (Notice that dS, in
contrast with dω, does not have the meaning of ‘d’ of some ‘S’; rather this
traditional notation has the symbolic meaning of an ‘infinitesimal element’
of area, which is traditionally denoted by the letter S.)

Problem 12.
(a) Denote the sphere by SR and the ball by BR. Notice that SR = ∂BR.
By the Stokes theorem we have∮

SR

ω =

∫
BR

dω =

∫
BR

d(ax dy ∧ dz + by dz ∧ dx + cz dx ∧ dy) =∫
BR

(a+b+c)dx∧dy∧dz = (a+b+c)

∫
BR

dV = (a+b+c) vol(BR) =
4

3
πR3(a+b+c).

(b) Denote the cube by C; notice that vol C = 1. By the Stokes formula we
get∮

∂C

ω =

∫
C

dω =

∫
C

(a+b+c)dx∧dy∧dz = (a+b+c) vol(C) = a+b+c.
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