$\S 6$ Forms and vector fields on Euclidean space

Problem 1. For spherical coordinates we have the following expression of the basis vectors in the Cartesian coordinates x, y, z :

$$
\begin{aligned}
& \boldsymbol{e}_{r}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta) \\
& \boldsymbol{e}_{\theta}=(r \cos \theta \cos \varphi, r \cos \theta \sin \varphi,-r \sin \theta) \\
& \boldsymbol{e}_{\varphi}=(-r \sin \theta \sin \varphi, r \sin \theta \cos \varphi, 0)
\end{aligned}
$$

Using this, we can calculate the pairwise scalar products. First the scalar squares: $\left(\boldsymbol{e}_{r}, \boldsymbol{e}_{r}\right)=(\sin \theta \cos \varphi)^{2}+(\sin \theta \sin \varphi)^{2}+(\cos \theta)^{2}=\sin ^{2} \theta+\cos ^{2} \theta=1$; and, similarly, $\left(\boldsymbol{e}_{\theta}, \boldsymbol{e}_{\theta}\right)=r^{2},\left(\boldsymbol{e}_{\varphi}, \boldsymbol{e}_{\varphi}\right)=r^{2} \sin ^{2} \theta$. Now, $\left(\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}\right)=(\sin \theta \cos \varphi)$ $(r \cos \theta \cos \varphi)+(\sin \theta \sin \varphi)-(\cos \theta)(r \sin \theta)=r \sin \theta \cos \theta-r \sin \theta \cos \theta=0$. Similarly one can show that $\left(\boldsymbol{e}_{r}, \boldsymbol{e}_{\varphi}\right)=0$ and $\left(\boldsymbol{e}_{\theta}, \boldsymbol{e}_{\varphi}\right)=0$. Therefore we have the following matrix:

$$
\left(g_{i j}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right)
$$

where the coordinates are in the order r, θ, φ, and $g=\operatorname{det}\left(g_{i j}\right)=r^{4} \sin ^{2} \theta$. Hence $\sqrt{g}=r^{2} \sin \theta$ and the volume form is $d V=r^{2} \sin \theta d r d \theta d \varphi$.

Problem 2.

(a) Using θ, φ as parameters we have for a point of the sphere:

$$
\boldsymbol{x}=(R \sin \theta \cos \varphi, R \sin \theta \sin \varphi, R \cos \theta),
$$

and the corresponding basis in the tangent plane is $\boldsymbol{e}_{\theta}, \boldsymbol{e}_{\varphi}$, where

$$
\begin{aligned}
& \boldsymbol{e}_{\theta}=(R \cos \theta \cos \varphi, R \cos \theta \sin \varphi,-R \sin \theta) \\
& \boldsymbol{e}_{\varphi}=(-R \sin \theta \sin \varphi, R \sin \theta \cos \varphi, 0) .
\end{aligned}
$$

(Notice the difference with the previous problem; there coordinates in \mathbb{R}^{3} are considered and r is a variable, while here R is a constant and we consider coordinates on the 2-dimensional sphere.) We obtain the matrix ($h_{i j}$) of the pairwise scalar products ($i, j=1,2$):

$$
\left(h_{i j}\right)=\left(\begin{array}{cc}
R^{2} & 0 \\
0 & R^{2} \sin ^{2} \theta
\end{array}\right) .
$$

Hence its determinant equals $R^{4} \sin ^{2} \theta$, and the area element for the sphere is

$$
d S=R^{2} \sin \theta d \theta \wedge d \varphi
$$

(b) We denote the basis vectors corresponding to x, y in the tangent plane to the sphere at a point \boldsymbol{x} as $\boldsymbol{e}_{x}, \boldsymbol{e}_{y}$. They should not be confused with the basis vectors in \mathbb{R}^{3} corresponding to the Cartesian coordinates x, y, z. We have $\boldsymbol{x}=\left(x, y, \sqrt{R^{2}-x^{2}-y^{2}}\right)$. (This parametrization is valid for the upper hemisphere.) Thus

$$
\begin{aligned}
& \boldsymbol{e}_{x}=\frac{\partial \boldsymbol{x}}{\partial x}=\left(1,0,-\frac{x}{\sqrt{R^{2}-x^{2}-y^{2}}}\right) \\
& \boldsymbol{e}_{y}=\frac{\partial \boldsymbol{x}}{\partial y}=\left(0,1,-\frac{y}{\sqrt{R^{2}-x^{2}-y^{2}}}\right)
\end{aligned}
$$

and for the pairwise scalar products we have: $\left(\boldsymbol{e}_{x}, \boldsymbol{e}_{x}\right)=1+\frac{x^{2}}{R^{2}-x^{2}-y^{2}}=$ $\frac{R^{2}-y^{2}}{R^{2}-x^{2}-y^{2}},\left(\boldsymbol{e}_{x}, \boldsymbol{e}_{y}\right)=\frac{x y}{R^{2}-x^{2}-y^{2}}$, and $\left(\boldsymbol{e}_{y}, \boldsymbol{e}_{y}\right)=\frac{R^{2}-x^{2}}{R^{2}-x^{2}-y^{2}}$, giving a matrix $\left(h_{i j}\right)$:

$$
\left(h_{i j}\right)=\left(\begin{array}{cc}
\frac{R^{2}-y^{2}}{R^{2}-x^{2}-y^{2}} & \frac{x y}{R^{2}-x^{2}-y^{2}} \\
\frac{x}{R^{2}-x^{2}-y^{2}} & \frac{R^{2}-x^{2}}{R^{2}-x^{2}-y^{2}}
\end{array}\right) .
$$

Its determinant equals

$$
\begin{aligned}
\left(R^{2}-x^{2}-y^{2}\right)^{-2} & \left(\left(R^{2}-x^{2}\right)\left(R^{2}-y^{2}\right)-x^{2} y^{2}\right)= \\
& \left(R^{2}-x^{2}-y^{2}\right)^{-2} R^{2}\left(R^{2}-x^{2}-y^{2}\right)=R^{2}\left(R^{2}-x^{2}-y^{2}\right)^{-1}
\end{aligned}
$$

Hence the area element for the sphere is

$$
d S=\frac{R d x \wedge d y}{\sqrt{R^{2}-x^{2}-y^{2}}}=\frac{R d x \wedge d y}{z} .
$$

Problem 3. In Cartesian coordinates in \mathbb{R}^{n} if $\boldsymbol{X}=\sum X^{i} \boldsymbol{e}_{i}$, then

$$
\begin{aligned}
& \boldsymbol{X} \cdot d \boldsymbol{r}=\sum X^{i} d x^{i} \\
& \boldsymbol{X} \cdot d \boldsymbol{S}=\sum(-1)^{i-1} X^{i} d x^{1} \wedge \ldots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \ldots \wedge d x^{n}
\end{aligned}
$$

(summation from 1 to n). In particular in $\mathbb{R}^{3}, \boldsymbol{X} \cdot d \boldsymbol{r}=X^{1} d x+X^{2} d y+X^{3} d z$ and $\boldsymbol{X} \cdot d \boldsymbol{S}=X^{1} d y \wedge d z+X^{2} d z \wedge d x+X^{3} d x \wedge d y$ (notice the order of factors in the second term). Hence we get the following answers:
(a) for $\boldsymbol{X}=2 \boldsymbol{e}_{1}-3 \boldsymbol{e}_{2}+4 \boldsymbol{e}_{3}$,

$$
\begin{aligned}
& \boldsymbol{X} \cdot d \boldsymbol{r}=2 d x-3 d y+4 d z \\
& \boldsymbol{X} \cdot d \boldsymbol{S}=2 d y \wedge d z-3 d z \wedge d x+4 d x \wedge d y
\end{aligned}
$$

(b) for $\boldsymbol{X}=(2 x+z) \boldsymbol{e}_{1}+5 y \boldsymbol{e}_{2}+(x-y+z) \boldsymbol{e}_{3}$,

$$
\begin{aligned}
\boldsymbol{X} \cdot d \boldsymbol{r} & =(2 x+z) d x+5 y d y+(x-y+z) d z \\
\boldsymbol{X} \cdot d \boldsymbol{S} & =(2 x+z) d y \wedge d z+5 y d z \wedge d x+(x-y+z) d x \wedge d y
\end{aligned}
$$

(c) for $\boldsymbol{X}=\boldsymbol{r}$ (where \boldsymbol{r} is the radius-vector),

$$
\begin{aligned}
& \boldsymbol{X} \cdot d \boldsymbol{r}=x d x+y d y+z d z \\
& \boldsymbol{X} \cdot d \boldsymbol{S}=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
\end{aligned}
$$

Problem 4. The gradient grad f is the vector field corresponding to the 1-form $d f$, i.e., $\operatorname{grad} f \cdot d \boldsymbol{r}=d f$ or

$$
(\operatorname{grad} f, \boldsymbol{Y})=\langle d f, \boldsymbol{Y}\rangle
$$

for an arbitrary vector field \boldsymbol{Y} (at the LHS stands the scalar product of two vectors, at the RHS the value of a 1 -form on a vector). Let $\operatorname{grad} f=$ $(\operatorname{grad} f)^{i} \boldsymbol{e}_{i}$. Taking as \boldsymbol{Y} the basis vector fields \boldsymbol{e}_{j} associated with an arbitrary coordinate system, $i=j, \ldots, n$, we obtain therefore

$$
(\operatorname{grad} f)^{i} g_{i j}=\frac{\partial f}{\partial x^{j}}
$$

Here $g_{i j}=\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)$. From this we get finally

$$
(\operatorname{grad} f)^{i}=g^{i j} \frac{\partial f}{\partial x^{j}}
$$

where $g^{i j}$ with upper indices denote the elements of the inverse matrix for $\left(g_{i j}\right)$.

Since for both polar coordinates in \mathbb{R}^{2} and spherical coordinates in \mathbb{R}^{3} the matrix $\left(g_{i j}\right)$ is diagonal (see above for the case of spherical coordinates), multiplying by the inverse matrix reduces to the division by the diagonal entries of $\left(g_{i j}\right)$. We get

$$
\operatorname{grad} f=\frac{\partial f}{\partial r} \boldsymbol{e}_{r}+\frac{1}{r^{2}} \frac{\partial f}{\partial \varphi} \boldsymbol{e}_{\varphi}
$$

for polars in \mathbb{R}^{2} and

$$
\operatorname{grad} f=\frac{\partial f}{\partial r} \boldsymbol{e}_{r}+\frac{1}{r^{2}} \frac{\partial f}{\partial \theta} \boldsymbol{e}_{\theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial f}{\partial \varphi} \boldsymbol{e}_{\varphi}
$$

for spherical coordinates in \mathbb{R}^{3}.

Problem 5 ,

(a) In Cartesian coordinates $\boldsymbol{r}=\sum x^{i} \boldsymbol{e}_{i}$ and $r=\sqrt{\left(x^{1}\right)^{2}+\ldots+\left(x^{n}\right)^{2}}$, hence

$$
\frac{\partial r}{\partial x^{i}}=\frac{2 x^{i}}{2 \sqrt{\left(x^{1}\right)^{2}+\ldots+\left(x^{n}\right)^{2}}}=\frac{x^{i}}{r}
$$

It follows that

$$
\operatorname{grad} r=\sum \frac{1}{r} x^{i} \boldsymbol{e}_{i}=\frac{\boldsymbol{r}}{r},
$$

i.e., the unit vector in the direction of \boldsymbol{r}.
(b) In polar coordinates in \mathbb{R}^{2}, using the result of Problem 4, we have

$$
\operatorname{grad} r=\frac{\partial r}{\partial r} \boldsymbol{e}_{r}+\frac{\partial r}{\partial \varphi} \boldsymbol{e}_{\varphi}=1 \boldsymbol{e}_{r}+0 \boldsymbol{e}_{\varphi}=\boldsymbol{e}_{r}
$$

(c) Similarly, in spherical coordinates in \mathbb{R}^{3}, we have

$$
\operatorname{grad} r=\frac{\partial r}{\partial r} \boldsymbol{e}_{r}+0=\boldsymbol{e}_{r}
$$

The answers in parts (b) and (c) of course agree with the answer in part (a), since the basis vector \boldsymbol{e}_{r} is exactly the unit vector in the direction of the radius-vector.

Problem 6 ,

First method. In Cartesian coordinates in \mathbb{R}^{n} for $\boldsymbol{X}=X^{i} \boldsymbol{e}_{i}$

$$
\operatorname{div} \boldsymbol{X}=\frac{\partial X^{i}}{\partial x^{i}}
$$

Hence for our vector field $\boldsymbol{X}=f(r) \boldsymbol{r}=f(r) x^{i} \boldsymbol{e}_{i}$ where $r=\sqrt{\left(x^{1}\right)^{2}+\ldots+\left(x^{n}\right)^{2}}$ we have

$$
\begin{aligned}
\operatorname{div} \boldsymbol{X}=\frac{\partial\left(f x^{i}\right)}{\partial x^{i}} & =\left(f^{\prime}(r) \frac{\partial r}{\partial x^{i}} x^{i}+f(r) \frac{\partial x^{i}}{\partial x^{i}}\right)= \\
& \left(f^{\prime}(r) \frac{x^{i}}{r} x^{i}+f(r)\right)=f^{\prime}(r) \frac{r^{2}}{r}+n f(r)=f^{\prime}(r) r+n f(r) .
\end{aligned}
$$

Second method. Recall that in arbitrary coordinates in \mathbb{R}^{n} for $\boldsymbol{X}=X^{i} \boldsymbol{e}_{i}$

$$
\operatorname{div} \boldsymbol{X}=\frac{1}{\sqrt{g}} \frac{\partial\left(X^{i} \sqrt{g}\right)}{\partial x^{i}}
$$

Here $\boldsymbol{e}_{i}=\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{x}^{i}}$ is the basis associated with a given coordinate system and $g=\operatorname{det}\left(g_{i j}\right)$, where $g_{i j}=\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)$. We can apply this formula using our knowledge of polar coordinates in \mathbb{R}^{2} and spherical coordinates in \mathbb{R}^{3} (when $n=2$ and $n=3$). Our vector field equals $\boldsymbol{X}=f(r) \boldsymbol{r}=f(r) r \boldsymbol{e}_{r}$. In \mathbb{R}^{2} in polar coordinates we have $\sqrt{g}=r$ and

$$
\operatorname{div} \boldsymbol{X}=\frac{1}{r} \frac{\partial\left(f(r) r^{2}\right)}{\partial r}=\frac{f^{\prime}(r) r^{2}+2 r f(r)}{r}=f^{\prime}(r) r+2 f(r) ;
$$

in \mathbb{R}^{3} in spherical coordinates we have $\sqrt{g}=r^{2} \sin \theta$ and

$$
\operatorname{div} \boldsymbol{X}=\frac{1}{r^{2} \sin \theta} \frac{\partial\left(f(r) r^{3} \sin \theta\right)}{\partial r}=\frac{f^{\prime}(r) r^{3}+3 r^{2} f(r)}{r^{2}}=f^{\prime}(r) r+3 f(r) .
$$

This agrees, of course, with the formula for any n obtained above using Cartesian coordinates.
Remark. Spherical coordinates $r, \theta_{1}, \ldots, \theta_{n-1}$ can be defined in \mathbb{R}^{n} for arbitrary n, generalizing from \mathbb{R}^{2} and \mathbb{R}^{3}. For them $\sqrt{g}=r^{n-1} \Omega\left(\theta_{1}, \ldots, \theta_{n-1}\right)$, where $\Omega\left(\theta_{1}, \ldots, \theta_{n-1}\right)$ is a certain function depending only on the angular coordinates $\theta_{1}, \ldots, \theta_{n-1}$ (for $n=2, \Omega(\varphi)=1$; for $n=3, \Omega(\theta, \varphi)=\sin \theta$). This "angular factor" is irrelevant for calculating $\operatorname{div}\left(f(r) r \boldsymbol{e}_{r}\right)$, - we get

$$
\begin{aligned}
\operatorname{div} \boldsymbol{X}=\frac{1}{r^{n-1} \Omega\left(\theta_{1}, \ldots, \theta_{n-1}\right)} \frac{\partial\left(f(r) r^{n} \Omega\left(\theta_{1}, \ldots, \theta_{n-1}\right)\right.}{\partial r} & =\frac{1}{r^{n-1}} \frac{\partial\left(f(r) r^{n}\right)}{\partial r}= \\
\frac{f^{\prime}(r) r^{n}+n r^{n-1} f(r)}{r^{n-1}} & =f^{\prime}(r) r+n f(r) .
\end{aligned}
$$

Problem 7. If $\boldsymbol{X}=r^{\alpha} \boldsymbol{r}$ in \mathbb{R}^{n}, we can apply the result of the previous problem. We get

$$
\operatorname{div}\left(r^{\alpha} \boldsymbol{r}\right)=\alpha r^{\alpha-1} r+n r^{\alpha}=(\alpha+n) r^{\alpha} .
$$

It follows that $\operatorname{div}\left(r^{\alpha} \boldsymbol{r}\right)=0$ in \mathbb{R}^{n} for $\alpha=-n$. For example, we get the following vector fields with zero divergence: in \mathbb{R}^{2}, the field $\boldsymbol{X}=\frac{r}{r^{2}}$; in \mathbb{R}^{3}, the field $\boldsymbol{X}=\frac{r}{r^{3}}$. Remark. Notice that these fields are defined only for $\boldsymbol{r} \neq 0$. The equality $\operatorname{div} \boldsymbol{X}=0$ is valid only for $\boldsymbol{r} \neq 0$.

Problem 8. When we calculate curl in \mathbb{R}^{3}, we use the following formula:

$$
\operatorname{curl} \boldsymbol{X}=\boldsymbol{\nabla} \times \boldsymbol{X}=\left|\begin{array}{lll}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\
\partial_{1} & \partial_{2} & \partial_{3} \\
X_{1} & X_{2} & X_{3}
\end{array}\right|
$$

with the right-hand side valid in Cartesian coordinates. Here $\partial_{i}=\frac{\partial}{\partial x^{i}}$,

$$
\boldsymbol{X}=X_{1} \boldsymbol{e}_{1}+X_{2} \boldsymbol{e}_{2}+X_{3} \boldsymbol{e}_{3}
$$

and $\boldsymbol{\nabla}$ denotes the symbolic vector field $\boldsymbol{\nabla}=\sum \boldsymbol{e}_{i} \partial_{i}$ (formula in Cartesian coordinates), the components of which are partial derivatives.
(a) We have

$$
\operatorname{div} \boldsymbol{X}=\frac{\partial(x-y+3 z)}{\partial x}-\frac{\partial(2 x+z)}{\partial y}+\frac{\partial(-x+y+z)}{\partial z}=1+1=2 ;
$$

$$
\operatorname{curl} \boldsymbol{X}=\left|\begin{array}{ccc}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x-y+3 z & -(2 x+z) & -x+y+z
\end{array}\right|=\mathbf{\boldsymbol { e } _ { 1 } (1 + 1) - \boldsymbol { e } _ { 2 } (- 1 - 3) + \boldsymbol { e } _ { 3 } (- 2 + 1) = 2 \boldsymbol { e } _ { 1 } + 4 \boldsymbol { e } _ { 2 } - \boldsymbol { e } _ { 3 } .}
$$

(b)

$$
\begin{aligned}
& \operatorname{div} \boldsymbol{X}= \\
& \frac{\partial\left(a_{11} x+a_{12} y+a_{13} z\right)}{\partial x}+\frac{\partial\left(a_{12} x+a_{22} y+a_{23} z\right)}{\partial y}+\frac{\partial\left(a_{13} x+a_{23} y+a_{33} z\right)}{\partial z}= \\
& a_{11}+a_{22}+a_{33} ; \\
& \operatorname{curl} \boldsymbol{X}=\left\lvert\, \begin{array}{ccc}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & e_{3} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
a_{11} x+a_{12} y+a_{13} z & a_{12} x+a_{22} y+a_{23} z & a_{13} x+a_{23} y+a_{33} z \\
\boldsymbol{e}_{1}\left(a_{23}-a_{23}\right)-\boldsymbol{e}_{2}\left(a_{13}-a_{13}\right)+\boldsymbol{e}_{3}\left(a_{12}-a_{12}\right)=0 .
\end{array}\right.
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \operatorname{div} \boldsymbol{X}= \frac{\partial\left(a_{12} y+a_{13} z\right)}{\partial x}+\frac{\partial\left(-a_{12} x+a_{23} z\right)}{\partial y}+\frac{\partial\left(-a_{13} x-a_{23} y\right)}{\partial z}=0 ; \\
& \operatorname{curl} \boldsymbol{X}=\left|\begin{array}{ccc}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
a_{12} y+a_{13} z & -a_{12} x+a_{23} z & -a_{13} x-a_{23} y
\end{array}\right|= \\
& \boldsymbol{e}_{1}\left(-a_{23}-a_{23}\right)-\boldsymbol{e}_{2}\left(-a_{13}-a_{13}\right)+\boldsymbol{e}_{3}\left(-a_{12}-a_{12}\right)= \\
&-2\left(a_{23} \boldsymbol{e}_{1}-a_{13} \boldsymbol{e}_{2}+a_{12} \boldsymbol{e}_{3}\right) .
\end{aligned}
$$

Remark. Notice that in parts (b) and (c) the components (X_{1}, X_{2}, X_{3}) of the vector field $\boldsymbol{X}=X_{1} \boldsymbol{e}_{1}+X_{2} \boldsymbol{e}_{2}+X_{3} \boldsymbol{e}_{3}$ can be written as

$$
\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right)=A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

with a symmetric matrix A, or as

$$
\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right)=A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
0 & a_{12} & a_{13} \\
-a_{12} & 0 & a_{23} \\
-a_{13} & -a_{23} & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right),
$$

with an antisymmetric matrix A, respectively. The divergence of \boldsymbol{X} equals (in both cases) the trace of the matrix A, which is zero in the antisymmetric
case, and the curl of \boldsymbol{X} for an antisymmetric matrix A is equal up to a constant factor to the vector $\boldsymbol{\omega} \in \mathbb{R}^{3}$ such that $\boldsymbol{\omega} \times \boldsymbol{v}=A \boldsymbol{v}$ for any $\boldsymbol{v} \in \mathbb{R}^{3}$ (compare with Problem 9, part (b)).

Problem 9

(a)

First method. One can see that the following identity holds:

$$
\operatorname{curl}(f \boldsymbol{X})=(\operatorname{grad} f) \times \boldsymbol{X}+f \operatorname{curl} \boldsymbol{X}
$$

for arbitrary function f and vector field \boldsymbol{X} in \mathbb{R}^{3} (it immediately follows from the symbolic determinant formula for calculating curl in Cartesian coordinates). Applying it we get curl $(f(r) \boldsymbol{r})=(\operatorname{grad} f(r)) \times \boldsymbol{r}+f(r) \operatorname{curl} \boldsymbol{r}$. Notice now that grad $f(r)=f^{\prime}(r) \operatorname{grad} r=f^{\prime}(r) \boldsymbol{r} / r$ (see Problem 5) and that curl $\boldsymbol{r}=0$ (check directly!). Hence curl $(f(r) \boldsymbol{r})=f^{\prime}(r) r^{-1} \boldsymbol{r} \times \boldsymbol{r}+0=$ $0+0=0$.
Second method. We can use a version of the symbolic determinant formula valid for arbitrary coordinates: if $\boldsymbol{e}_{i}=\frac{\partial \boldsymbol{x}}{\partial x^{i}}$ for arbitrary coordinates x^{1}, x^{2}, x^{3} in an open domain in \mathbb{R}^{3} and $\boldsymbol{X}=X^{i} \boldsymbol{e}_{i}$, then

$$
\operatorname{curl} \boldsymbol{X}=\frac{1}{\sqrt{g}}\left|\begin{array}{ccc}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\
\partial_{1} & \partial_{2} & \partial_{3} \\
X_{1} & X_{2} & X_{3}
\end{array}\right|
$$

where $X_{i}=g_{i j} X^{j}=\boldsymbol{X} \cdot \boldsymbol{e}_{i}$. As above, $\partial_{i}=\frac{\partial}{\partial x^{i}}$ and $g_{i j}=\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j}, g=\operatorname{det}\left(g_{i j}\right)$. In particular, in spherical coordinates r, θ, φ we have

$$
\operatorname{curl} \boldsymbol{X}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{lll}
\boldsymbol{e}_{r} & \boldsymbol{e}_{\theta} & \boldsymbol{e}_{\varphi} \\
\partial_{r} & \partial_{\theta} & \partial_{\varphi} \\
X_{r} & X_{\theta} & X_{\varphi}
\end{array}\right|
$$

where $X_{r}=\boldsymbol{X} \cdot \boldsymbol{e}_{r}$, etc. Hence for $\boldsymbol{X}=f(r) \boldsymbol{r}=f(r) r \boldsymbol{e}_{r}$ we immediately get

$$
\operatorname{curl}(f(r) \boldsymbol{r})=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\boldsymbol{e}_{r} & \boldsymbol{e}_{\theta} & \boldsymbol{e}_{\varphi} \\
\partial_{r} & \partial_{\theta} & \partial_{\varphi} \\
f(r) r & 0 & 0
\end{array}\right|=0
$$

(recall that $\boldsymbol{e}_{r} \cdot \boldsymbol{e}_{r}=1, \boldsymbol{e}_{r} \cdot \boldsymbol{e}_{\theta}=0$ and $\boldsymbol{e}_{r} \cdot \boldsymbol{e}_{\varphi}=0$).
(b) Denote $\boldsymbol{Y}=\Omega \times \boldsymbol{r}$; we have

$$
\boldsymbol{Y}=\boldsymbol{e}_{1}\left(\omega_{2} z-\omega_{3} y\right)-\boldsymbol{e}_{2}\left(\omega_{1} z-\omega_{3} x\right)+\boldsymbol{e}_{3}\left(\omega_{1} y-\omega_{2} x\right),
$$

where $\Omega=\omega_{1} \boldsymbol{e}_{1}+\omega_{2} \boldsymbol{e}_{2}+\omega_{3} \boldsymbol{e}_{3}$. Hence, in Cartesian coordinates

$$
\operatorname{div} \boldsymbol{Y}=\frac{\partial\left(\omega_{2} z-\omega_{3} y\right)}{\partial x}+\frac{\partial\left(-\omega_{1} z+\omega_{3} x\right)}{\partial y}+\frac{\partial\left(\omega_{1} y-\omega_{2} x\right)}{\partial z}=0
$$

and

$$
\operatorname{curl} \boldsymbol{Y}=\left|\begin{array}{ccc}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
\omega_{2} z-\omega_{3} y & -\omega_{1} z+\omega_{3} x & \omega_{1} y-\omega_{2} x
\end{array}\right|=.
$$

Problem 10. The simplest way is to use the formulae in Cartesian coordinates in \mathbb{R}^{n} :

$$
\operatorname{div} \boldsymbol{X}=\frac{\partial X^{i}}{\partial x^{i}} \quad \text { and } \quad \operatorname{grad} f=\sum \frac{\partial f}{\partial x^{i}} \boldsymbol{e}_{i} .
$$

We have

$$
\operatorname{div}(f \boldsymbol{X})=\frac{\partial\left(f X^{i}\right)}{\partial x^{i}}=\frac{\partial f}{\partial x^{i}} X^{i}+f \frac{\partial X^{i}}{\partial x^{i}}=\operatorname{grad} f \cdot \boldsymbol{X}+f \operatorname{div} \boldsymbol{X}
$$

as claimed.
Problem 11. Compare with Problem ?? (the statements are almost identical). We either apply d to the form $\omega=\frac{1}{2} r^{2} d \varphi$ and get

$$
d \omega=\frac{1}{2} d\left(r^{2} d \varphi\right)=\frac{1}{2} 2 r d r \wedge d \varphi=r d r \wedge d \varphi=d S
$$

hence by the Stokes formula

$$
\oint_{\partial D} \omega=\int_{D} d \omega=\int_{D} d S=\operatorname{area}(D)
$$

(here we used the formula for the area element in polar coordinates $d S=$ $r d r \wedge d \varphi)$, or we can first rewrite ω in Cartesian coordinates: $\omega=\frac{1}{2}(x d y-y d x)$ and then $d \omega=d x \wedge d y=d S$, the rest being the same. (Notice that $d S$, in contrast with $d \omega$, does not have the meaning of ' d ' of some ' S '; rather this traditional notation has the symbolic meaning of an 'infinitesimal element' of area, which is traditionally denoted by the letter S.)

Problem 12.

(a) Denote the sphere by S_{R} and the ball by B_{R}. Notice that $S_{R}=\partial B_{R}$. By the Stokes theorem we have

$$
\begin{gathered}
\oint_{S_{R}} \omega=\int_{B_{R}} d \omega=\int_{B_{R}} d(a x d y \wedge d z+b y d z \wedge d x+c z d x \wedge d y)= \\
\int_{B_{R}}(a+b+c) d x \wedge d y \wedge d z=(a+b+c) \int_{B_{R}} d V=(a+b+c) \operatorname{vol}\left(B_{R}\right)=\frac{4}{3} \pi R^{3}(a+b+c)
\end{gathered}
$$

(b) Denote the cube by C; notice that $\operatorname{vol} C=1$. By the Stokes formula we get

$$
\oint_{\partial C} \omega=\int_{C} d \omega=\int_{C}(a+b+c) d x \wedge d y \wedge d z=(a+b+c) \operatorname{vol}(C)=a+b+c .
$$

