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§5 Stokes theorem

Problem 1.

1
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∫
∂D

(x dy − y dx) =
1

2

∫
D

d(x dy − y dx) =
1

2

∫
D

(dx ∧ dy − dy ∧ dx) =

1

2

∫
D

2dx ∧ dy =

∫
D

dx ∧ dy = area(D)

Problem 3. Denote the sphere by SR. Consider the ball BR of radius R
such that the sphere SR is its boundary. Then by Stokes’s theorem∫

SR

ω =

∫
∂BR

ω =

∫
BR

dω.

We need to calculate dω. We have

dω = d(rα)∧(x dy∧dz−y dx∧dz+z dx∧dy)+rαd(x dy∧dz−y dx∧dz+z dx∧dy);

it is possible to use the answer obtained earlier (see coursework):

dω = (α + 3)rα dx ∧ dy ∧ dz.

Thus (using spherical coordinates and recalling that dx∧dy∧dz = r2 sin θ dr∧
dθ ∧ dϕ)∫

BR

dω =

∫
BR

(α + 3)rα dx∧ dy ∧ dz =

∫
BR

(α + 3)rα r2 sin θ dr ∧ dθ ∧ dϕ =∫ π

0

sin θ dθ

∫ 2π

0

dϕ

∫ R

0

(α + 3)rα+2 dr = (− cos θ)|π0 2π rα+3|R0 = 4πRα+3.

Notice that we used the condition α > 0 to be able to apply the Stokes
theorem to the form ω: we have to be sure that ω is defined everywhere in
BR, including the origin. (If α is negative, ω is not defined at r = 0.)
Another method. Notice that ∫

SR

ω =

∫
SR

ω0

where ω0 = Rα(x dy ∧ dz− y dx∧ dz + z dx∧ dy), since on the surface of the
sphere ω equals ω0. Applying the Stokes theorem we get∫

SR

ω =

∫
SR

ω0 =

∫
BR

dω0 = Rα

∫
BR

d(x dy ∧ dz− y dx∧ dz + z dx∧ dy) =

Rα

∫
BR

3 dx ∧ dy ∧ dz = 3Rα vol(BR) = 4πRα+3,
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where we used the formula vol(BR) = 4
3
πR3 for the volume of a ball of

radius R. The trick is that it is easier to calculate dω0 than dω and the
integral over BR is reduced to a familiar formula for the volume. (The formula
vol(BR) = 4

3
πR3 can be obtained, e.g., by using spherical coordinates.) An

extra advantage is that now we can drop the restriction α > 0, since the
Stokes formula is applied not to ω, but to ω0, which is defined everywhere
regardless of α. The answer is valid for any α ∈ R.
Solution without Stokes’s theorem. Introduce parametrization by x, y so that
z = ±

√
R2 − x2 − y2 (plus sign in the upper hemisphere and minus, in the

lower). Then

dz = ± −xdx− ydy√
R2 − x2 − y2

= −xdx + ydy

z
.

From here it follows that the restriction of ω on the sphere will be

Rα
(
−x2dy ∧ dx

z
+

y2dx ∧ dy

z
+ zdx ∧ dy

)
=

Rα (x2 + y2 + z2)dx ∧ dy

z
=

Rα+2 dx ∧ dy

z
= ± Rα+2 dx ∧ dy√

R2 − x2 − y2
.

Here x2 + y2 6 R2, and plus sign should be taken for the upper hemisphere,
while minus, for the lower. Now, the orientation induced by x, y in the upper
hemisphere coincides with the orientation given by the outward normal, and
the lower, is the opposite. Hence the integral for the lower hemisphere should
be taken with the negative sign. It cancels the negative sign in the above
formula. Therefore ∫

S2
R

ω = 2

∫
x2+y26R2

Rα+2 dx ∧ dy√
R2 − x2 − y2

.

We use substitution: x = Rρ cos ϕ, y = Rρ sin ϕ, where 0 6 ρ 6 1, 0 6 ϕ 6
2π. We have dx∧ dy = R2ρdρ∧ dϕ, and the denominator will be R

√
1− ρ2.

We have∫
S2

R

ω = 2

∫ 1

0

∫ 2π

0

R4+αρdρ ∧ dϕ

R
√

1− ρ2
= 2Rα+3

∫ 1

0

ρdρ√
1− ρ2

∫ 2π

0

dϕ =

2πRα+3

∫ 1

0

d(ρ2)√
1− ρ2

= 2πRα+3

∫ 1

0

u√
u

= 4πRα+3 .

Problem 6.

∂∂(ABCD) = ∂ ([AB] + [BC] + [CD] + [DA]) =

∂[AB] + ∂[BC] + ∂[CD] + ∂[DA] =

B − A + C −B + D − C + D − A = 0
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