§5 Stokes theorem

Problem 1 .

$$
\left.\begin{array}{r}
\frac{1}{2} \int_{\partial D}(x d y-y d x)=\frac{1}{2} \int_{D} d(x d y-y d x)=\frac{1}{2} \int_{D}(d x \wedge d y-d y \wedge d x)= \\
\frac{1}{2} \int_{D} 2 d x
\end{array}\right) d y=\int_{D} d x \wedge d y=\operatorname{area}(D)
$$

Problem 3. Denote the sphere by S_{R}. Consider the ball B_{R} of radius R such that the sphere S_{R} is its boundary. Then by Stokes's theorem

$$
\int_{S_{R}} \omega=\int_{\partial B_{R}} \omega=\int_{B_{R}} d \omega .
$$

We need to calculate $d \omega$. We have
$d \omega=d\left(r^{\alpha}\right) \wedge(x d y \wedge d z-y d x \wedge d z+z d x \wedge d y)+r^{\alpha} d(x d y \wedge d z-y d x \wedge d z+z d x \wedge d y) ;$
it is possible to use the answer obtained earlier (see coursework):

$$
d \omega=(\alpha+3) r^{\alpha} d x \wedge d y \wedge d z
$$

Thus (using spherical coordinates and recalling that $d x \wedge d y \wedge d z=r^{2} \sin \theta d r \wedge$ $d \theta \wedge d \varphi)$

$$
\begin{aligned}
& \int_{B_{R}} d \omega=\int_{B_{R}}(\alpha+3) r^{\alpha} d x \wedge d y \wedge d z=\int_{B_{R}}(\alpha+3) r^{\alpha} r^{2} \sin \theta d r \wedge d \theta \wedge d \varphi= \\
& \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \varphi \int_{0}^{R}(\alpha+3) r^{\alpha+2} d r=\left.\left.(-\cos \theta)\right|_{0} ^{\pi} 2 \pi r^{\alpha+3}\right|_{0} ^{R}=4 \pi R^{\alpha+3}
\end{aligned}
$$

Notice that we used the condition $\alpha \geqslant 0$ to be able to apply the Stokes theorem to the form ω : we have to be sure that ω is defined everywhere in B_{R}, including the origin. (If α is negative, ω is not defined at $r=0$.) Another method. Notice that

$$
\int_{S_{R}} \omega=\int_{S_{R}} \omega_{0}
$$

where $\omega_{0}=R^{\alpha}(x d y \wedge d z-y d x \wedge d z+z d x \wedge d y)$, since on the surface of the sphere ω equals ω_{0}. Applying the Stokes theorem we get

$$
\begin{array}{r}
\int_{S_{R}} \omega=\int_{S_{R}} \omega_{0}=\int_{B_{R}} d \omega_{0}=R^{\alpha} \int_{B_{R}} d(x d y \wedge d z-y d x \wedge d z+z d x \wedge d y)= \\
R^{\alpha} \int_{B_{R}} 3 d x \wedge d y \wedge d z=3 R^{\alpha} \operatorname{vol}\left(B_{R}\right)=4 \pi R^{\alpha+3}
\end{array}
$$

where we used the formula $\operatorname{vol}\left(B_{R}\right)=\frac{4}{3} \pi R^{3}$ for the volume of a ball of radius R. The trick is that it is easier to calculate $d \omega_{0}$ than $d \omega$ and the integral over B_{R} is reduced to a familiar formula for the volume. (The formula $\operatorname{vol}\left(B_{R}\right)=\frac{4}{3} \pi R^{3}$ can be obtained, e.g., by using spherical coordinates.) An extra advantage is that now we can drop the restriction $\alpha \geqslant 0$, since the Stokes formula is applied not to ω, but to ω_{0}, which is defined everywhere regardless of α. The answer is valid for any $\alpha \in \mathbb{R}$.
Solution without Stokes's theorem. Introduce parametrization by x, y so that $z= \pm \sqrt{R^{2}-x^{2}-y^{2}}$ (plus sign in the upper hemisphere and minus, in the lower). Then

$$
d z= \pm \frac{-x d x-y d y}{\sqrt{R^{2}-x^{2}-y^{2}}}=-\frac{x d x+y d y}{z}
$$

From here it follows that the restriction of ω on the sphere will be

$$
\begin{aligned}
R^{\alpha}\left(-\frac{x^{2} d y \wedge d x}{z}+\frac{y^{2} d x \wedge d y}{z}+z d x\right. & \wedge d y)= \\
R^{\alpha} \frac{\left(x^{2}+y^{2}+z^{2}\right) d x \wedge d y}{z} & =\frac{R^{\alpha+2} d x \wedge d y}{z}= \pm \frac{R^{\alpha+2} d x \wedge d y}{\sqrt{R^{2}-x^{2}-y^{2}}}
\end{aligned}
$$

Here $x^{2}+y^{2} \leqslant R^{2}$, and plus sign should be taken for the upper hemisphere, while minus, for the lower. Now, the orientation induced by x, y in the upper hemisphere coincides with the orientation given by the outward normal, and the lower, is the opposite. Hence the integral for the lower hemisphere should be taken with the negative sign. It cancels the negative sign in the above formula. Therefore

$$
\int_{S_{R}^{2}} \omega=2 \int_{x^{2}+y^{2} \leqslant R^{2}} \frac{R^{\alpha+2} d x \wedge d y}{\sqrt{R^{2}-x^{2}-y^{2}}}
$$

We use substitution: $x=R \rho \cos \varphi, y=R \rho \sin \varphi$, where $0 \leqslant \rho \leqslant 1,0 \leqslant \varphi \leqslant$ 2π. We have $d x \wedge d y=R^{2} \rho d \rho \wedge d \varphi$, and the denominator will be $R \sqrt{1-\rho^{2}}$. We have

$$
\begin{aligned}
\int_{S_{R}^{2}} \omega=2 \int_{0}^{1} \int_{0}^{2 \pi} \frac{R^{4+\alpha} \rho d \rho \wedge d \varphi}{R \sqrt{1-\rho^{2}}}=2 R^{\alpha+3} \int_{0}^{1} \frac{\rho d \rho}{\sqrt{1-\rho^{2}}} \int_{0}^{2 \pi} d \varphi= \\
2 \pi R^{\alpha+3} \int_{0}^{1} \frac{d\left(\rho^{2}\right)}{\sqrt{1-\rho^{2}}}=2 \pi R^{\alpha+3} \int_{0}^{1} \frac{u}{\sqrt{u}}=4 \pi R^{\alpha+3} .
\end{aligned}
$$

Problem 6 .

$$
\begin{aligned}
& \partial \partial(A B C D)=\partial([A B]+[B C]+[C D]+[D A])= \\
& \quad \partial[A B]+\partial[B C]+\partial[C D]+\partial[D A]= \\
& \quad B-A+C-B+D-C+D-A=0
\end{aligned}
$$

