
THEODORE VORONOV. VECTOR CALCULUS. Fall 2005. Selected solutions

§4 Integration of forms

Problem 1. (a)
∫

γ
ω =

∫ 2

−2
γ∗ω =

∫ 2

−2
(2d(t2)+d(t3)) = 2t2 |t=2

t=−2+t3 |t=2
t=−2 =

0 + 8− (−8) = 16

Problem 5. (a)∮
C

A =

∫
KL

A +

∫
LM

A +

∫
MN

A +

∫
NK

A =∫
KL

(ax + by) dx +

∫
LM

(px + qy) dy +

∫
MN

(ax + by) dx +

∫
NK

(px + qy) dy =∫ 1

0

ax dx +

∫ 1

0

(p + qy) dy +

∫ 0

1

(ax + b) dx +

∫ 0

1

qy dy =

a

2
+ p +

q

2
− a

2
− b− q

2
= p− b.

(b) It follows that
∮

C
A = 0 if p = b.

(c) dA = d ((ax + by) dx + (px + qy) dy) = b dy ∧ dx + p dx ∧ dy = (−b +
p) dx ∧ dy.
(d) p = b, the same as in part (b).
(e) Setting p = b, we have:∫

C1

A =

∫
KL

A +

∫
LM

A =
a

2
+ b +

q

2
;∫

C2

A =

∫
KN

A +

∫
NM

A =
q

2
+ b +

a

2

(we used the calculations from part (a));∫
C3

A =

∫
KM

A =

∫ 1

0

((at+bt) dt+(bt+qt) dt) =

∫ 1

0

(a+2b+q)t dt =
a

2
+b+

q

2

(we used the parametrization x = y = t);∫
C4

A =

∫ 1

0

((at+bt2) dt+2t(bt+qt2) dt) =

∫ 1

0

(at+3bt2+2qt3) dt =
a

2
+b+

q

2

(we used the parametrization x = t, y = t2). As expected, all these integrals
coincide.

Problem 9.
(a)∫

Γ

ω =

∫
D

Γ∗ω =

∫
D

(u + u2 − v2) du∧ dv =

∫ 1

−1

∫ 1

−1

(u + u2 − v2) du∧ dv =

2

∫ 1

−1

(u + u2) du− 2

∫ 1

−1

v2 dv =
4

3
− 4

3
= 0.
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(b)∫
Γ

ω =

∫
D

Γ∗ω =

∫
D

(u + 3uv) du ∧ dv =

∫ 1

−1

∫ 1

−1

(u + 3uv) du ∧ dv =∫ 1

−1

(∫ 1

−1

(1 + 3v)u du

)
dv = 0

Problem 10. “Orientation by a normal” means that the cross-product
of basis vectors defining a chosen orientation in a tangent plane gives this
normal.

Considering the outward normal to the sphere we see that, e.g., at the
point (0, 0, R) the normal points in the direction of e3 = (0, 0, 1); hence
at (0, 0, R) as such a basis in the tangent plane defining the orientation we
can take e1 = (1, 0, 0), e2 = (0, 1, 0). Hence, if we use x, y as parameters
to calculate the integral and express z as z =

√
R2 − x2 − y2 for the upper

hemisphere, we do not have to insert an extra sign. For the lower hemisphere,
where z = −

√
R2 − x2 − y2, we have to take the integral over x, y with the

minus sign, since there the orientation given by the outward normal and that
defined by x, y are the opposite (e.g., at (0, 0,−R) the normal points in the
direction of −e3 = −e1 × e2).

The integral can be calculated using the parametrization by x, y or by
spherical coordinates θ, ϕ. In the latter case, as a “test point” to compare
orientations it is convenient to take (R, 0, 0). At this point the outward
normal points in the direction of e1 = (1, 0, 0). At the same point the vectors
eθ, eϕ corresponding to θ, ϕ coincide with −e3, e2, respectively, and their
cross-product gives exactly e1. Therefore, the orientation by θ, ϕ coincides
with the orientation by the outward normal. Hence the integral over θ, ϕ
should be taken with the plus sign. (The advantage of using θ, ϕ is that
they work for almost all points of the sphere and we do not have to split the
integral over the sphere into the sum of two, as we do if we use x, y.)

The answer to the second question is: the integral changes sign if we take
the inward normal instead.

We skip either of the direct calculations of the integral, because the short-
est way is to apply the Stokes theorem. “Orientation by outward normal” in
the above sense exactly coincides with the one induced on the sphere from
the standard orientation of the ball in R3 if we consider the sphere as the
boundary of the ball. Hence

1

3

∫
S2

R

(x dy∧dz+y dz∧dx+z dx∧dy) =
1

3

∫
BR

d(x dy∧dz+y dz∧dx+z dx∧dy) =

1

3

∫
BR

3 dx ∧ dy ∧ dz =

∫
BR

dx ∧ dy ∧ dz = vol(BR) =
4

3
πR3

(we used the formula for the volume of a ball; see also §5, Problem 3).
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